
Exam
Operating Systems - OS - Fall 2019

Ludovic Apvrille
ludovic.apvrille@telecom-paris.fr

February, 2020

Authorized documents: closed books and notes, except one A4 sheet (i.e. two
pages) with handwritten notes. The grading takes into account the fact that you don’t
have any other document with you.
A grade is provided for each question (beware: be sure to organize your time with regards
to the grading policy). 1 additional point is given for general appreciation, including writ-
ing skills and readability.

1 Course knowledge (5 points, ∼30 minutes)

a . What is the difference between a user-level thread and a kernel-level thread? Which
scheduling policy is applied to user-level threads? [2 points]

User-level threads are threads which are managed by a library running in user mode.
For instance, Java green threads are handled by the Java Virtual Machine, i.e. the
Operating System is not aware these threads run in the system. The library is
responsible for scheduling these threads. Thus, the scheduling policy depends on the
used library. Java green threads are scheduled with a round-robin approach, and
with fixed priorities.

On the contrary, kernel threads are managed by the Operating System that has
routines to create them, schedule them and destroy them. Kernel threads can use
the support offered by processors (multi-core, hyper-threading).

b. What are the two reasons for getting a page fault? When a page fault occurs, what
are the actions taken by the Operating System for these two reasons, respectively?
[3 points]

A page fault occurs when a memory request (read, write) to a given page is performed
by a process to the MMU, and this page is not present in physical memory: the MMU

1

informs the OS of this situation via a trap. The two reasons for this situation can
be:

• The page does not exist, i.e. the process is trying to access to an invalid
address. In this case, the OS kills the faulty process (e.g. "Page/segmentation
fault".

• The page has been swapped out, e.g. on disk. There, the OS must swap in the
swapped out page. For this, it may need to swap out another page in order to
free space in main memory. If the swap out/in process is expected to last, the
process is put on I/O wait and another process might be scheduled meanwhile.

2 Deadlocks (6 points, ∼30 minutes)

a . Define what is a deadlock. [1 point]

A deadlock is a situation in which a process waits for a resource that will never be
available. For instance, a process tries to lock a mutex that will never be freed.

b. Give an example of a program1 that sometimes leads to a deadlock situation, and
sometimes not. You should use at least two threads and at least one shared object
protected by at least one mutex in your program. The deadlock situation should
be linked to the shared object and the mutex. [5 points]

A simple program that may lead to a deadlock is to use two mutex objects, m1 and
m2, two processes P1 and P2, and a shared variable (a). P1 first tries to lock m1
and then m2, and P2 tries to lock m2 and then m1. Let us assume P1 runs totally
before P2: it will be able to lock m1, then m2. Let us now assume that P1 locks
m1, and then P1 is preempted. P2 locks m2. Now, P1 is blocked since it waits for
m2, and P2 is blocked because it waits for m1: this is a deadlock situation. We thus
have a program that may sometimes lead to a deadlock situation.

P1()
mutex_lock(m1)
mutex_lock(m2)
a++
mutex_unlock(m2)
mutex_unlock(m1)

P2()
mutex_lock(m2)
mutex_lock(m1)
a--
mutex_unlock(m1)
mutex_unlock(m2)

3 Load balancing in Linux (10 points, ∼60 minutes)

Answer to the following questions after having understood the text that is
provided after the questions.

a . List three main objectives of the Linux scheduler? How can load balancing support
these objectives? [3 points]

1Only pseudo code is requested

2

• Fairness. Tasks with the same similarities should be offered the same amount
of computation power. Tasks with the same needs are to be placed in the same
group, e.g. Real-Time, Batch, etc. One way to ensure fairness is to use
round-robins.

• Interactivity. The Linux scheduler boosts the priority of tasks that are inter-
active. The priority is inversely proportional to the use of the time quantum.

• Keeping the CPU busy. The Linux scheduler targets the maximum CPU
usage.

Task balancing helps enforcing the previous aspects. Balancing supports fairness
because if a task is in the queue of a busy CPU, it may be moved to a less busy
CPU, which is more fair. If an interactive task were to be mapped on a very busy
CPU, the interaction it offers may be worse than the one that could be obtained
with a task mapped on a idle processor. CPU usage is also maximized by having all
CPU busy at the same time.

b. Draw a figure (e.g. a flowchart) that explains how the main elements involved in
the load balancing of the Linux kernel interact. [5 points]

The following flowchart shows the main aspects of the different functions and their
corresponding behavior according to the provided text. The busiest_lock has been
left apart since we do not know when it is locked. The "10 ms" and "100 ms" are
just there to illustrate the different delays according to the situation.

3

rebalance_tick()
This behavior is called each time
rebalance_tick() is called

load_balance()
This behavior is called each time
load_balance() is called

waitFor100ms waitFor10ms

g = load_balance()

Main Scheduler

WaitForTick

rebalance_tick()

n = computeAverageLoad()

[else] []

[unbalanced]

g = load_balance()

[else] [idlevalue == SCHED_IDLE]

[]

b = computeUnbalance()

[!b] []

[]
lock(this_rq->lock)

g = findBusiestGroup()

return g

[else] [g contains tasks]

[]

unlock_migration_thread(g, rq)

Migration thread

getGroupOfTasks(g)

target_core = findMostIdleCore()

[g empty] [else]

[]

unlock(this_rq->lock) t = dequeue_task(g)

enqueue_task(t, target_core)
resched_tasks()

c. Why is it necessary to re-schedule the system after tasks have migrated? [2 points]

When a task that has just been added to a new core, this task may be more urgent
—said differently: has a higher priority— than the currently running one → the
scheduler has to be called. This ensures fairness with regards to tasks priorities.

The following text is taken from: Lim, G., Min, C., Eom, Y.: Load-Balancing for
Improving User Responsiveness on Multicore Embedded Systems. In: 2012 Linux Sym-
posium (July 2012) 10.

The current SMP scheduler in Linux kernel periodically executes the load-balancing
operation to equally utilize each CPU core whenever load imbalance among CPU cores
is detected.

At every tick, the scheduler_tick() function calls rebalance_tick() function to adjust
the load of the run-queue that is assigned to each CPU. There balance_tick() function

4

determines the number of tasks that exist in the run-queue. It updates the average load
of the run-queue by accessing nr_running of the run-queue descriptor and cpu_load
field for all domains from the default domain to the domain of the upper layer. If
the load imbalance is found, the SMP scheduler starts the procedure to balance the
load of the scheduling domain by calling load_balance() function. It is determined by
idle value in the sched_domain descriptor and other parameters how frequently load-
balancing happens. If idlevalue is SCHED_IDLE, meaning that the run-queue is empty,
rebalance_tick() function frequently calls load_balance() function. On the contrary,
if idlevalue is NOT_IDLE, the run-queue is not empty, and rebalance_tick() function
delays calling load_balance() function.

For example, if the number of running tasks in the run-queue increases, the SMP
scheduler inspects whether the load-balancing time of the scheduling domain belonging
to physical CPU needs to be changed from 10 milliseconds to 100 milliseconds.

When load_balance() function moves tasks from the busiest group to the run-queue
of other CPU, it calculates whether Linux can reduce the load imbalance of the schedul-
ing domain. If load_balance() function can reduce the load imbalance of the schedul-
ing domain as a result of the calculation, this function gets parameter information like
this_cpu,this_rq,sd, and idle, and acquires spin-lock called this_rq->lock for synchro-
nization. Then, load_balance() function returns sched_group descriptor address of the
busiest group to the caller after analyzing the load of the groupin the scheduling domain
by calling find_busiest_group() function. At this time, load_balance() function returns
the information of tasks to the caller to move the tasks into the run-queue of local CPU
for the load-balancing of scheduling domain.The kernel moves the selected tasks from the
busiest run-queue to this_rq of another CPU.

After turning on the flag, it wakes up migration thread. The migration thread scans
the hierarchical scheduling domain from the base domain of the busiest run-queue to
the top in order to find the most idle CPU. If it finds relatively idle CPU, it moves one
of the tasks in the busiest run-queue to the run-queue of relatively idle CPU (calling
move_tasks() function). If a task migration is completed, kernel releases two previously
held spin-locks (busiest->lock and this_rq->lock), and finally it finishes the task mi-
gration. dequeue_task() function removes a particular task in the run-queue of other
CPU. Then, enqueue_task() function adds a particular task into the run-queue of local
CPU. At this time, if the priority of the moved task is higher than the current task, the
moved task will preempt the current task by calling resched_task() function to gain the
ownership of CPU scheduling.

5

	Course knowledge (5 points, 30 minutes)
	Deadlocks (6 points, 30 minutes)
	Load balancing in Linux (10 points, 60 minutes)

