
Exam

Operating Systems - OS

Solution

Ludovic Apvrille

ludovic.apvrille@telecom-paristech.fr

February, 2016

Authorized documents: Nothing! The grading takes into account the fact that
you don't have any documents with you.
A grade is provided for every question (beware: do organize your time, e.g., last question
is a 4-point question). 1 additional point is given as a general appreciation, including
written skills and readability.
Solutions are provided within this font/color style. You may naturally get the maximum
grade with a di�erent solution. Also, please contact me if you �nd any improvement to
this solution.

1 Course understanding (7 points, ∼30 minutes)

a . What is the interest of double bu�ering for drivers? Provide an example to illustrate
your answer. [3 points]
Double bu�ering is a software technique - commonly used by drivers - in order
to perform simultaneous read/write operations on a data �ow. Thus, a producer
�rst writes data to bu�er #1. When bu�er 1 is full, then the bu�er is "given" to
the consumer, and the producer can continue writing data in another bu�er (bu�er
#2), and so on. This technique is useful when there is a di�erence in bandwidth
between a producing device and a reading application. For example, a modem is
commonly much slower than the protocol stacks of the Operating systems,so double
bu�ers are used in the drivers of modems.

b. A process may contain several threads. What are the memory areas which are
shared by the threads of one given process, and which areas belong only to one
thread? Why is it so? Provide a pseudo-code that illustrates the sharing of a
memory area - e.g. a variable - between two processes, and between two threads of

1



the same process. [4 points]
All the threads of one given process share the whole address space of the process
apart from the stack, that is, the heap, the code (text section), the global variables
and the environment data. There is one stack reserved for each thread. The stack
of a thread is used to store the function calls of that given thread. Yet, nothing
prevents a thread from writing in the stack of another thread. Said di�erently, the
MMU or the operating system cannot detect that a thread is writing in the stack of
another thread.

To share a variable between two processes, here is how it can be done. Let's start
with process #1.

(a) Create a shared memory segment.

(b) Map this shared memory segment into the address space of the current process.

(c) Allocate a variable in that mapped area, and save the address.

In process #2:

(a) Open the shared memory segment created by process #1

(b) Map this shared memory segment into the address space of the current process.

(c) Read the value at the address of the variable in the shared address space.

With threads, things are much easier, because a process global variable is intrinsi-
cally shared between two threads of this process.

(a) int sharedVariable ...

(b) main()

• Create thread1 and thread2 // Thread1 and thread2 can use sharedVariable

2 Linux Ram disk (11 points, ∼90 minutes)

File partitions in Linux can also be set directly in RAM. Below, you will �nd an article
discussing two di�erent RAM-based �le systems (ramfs, tmpfs). Carefully read this
article, and answer to the following questions.

a . Provide a summary of this article in 150 words (+/- 10 words). [4 points]
(This summary is the one of Federico Madotto).
Modern Linux distributions permit the creation of a particular type of storage area
very e�cient in terms of R/W performance. This is useful for applications that
intensively use cached data. This mechanisms is based on the allocation of a portion
of the RAM which can be mounted on the �le systems as if it were a "normal"
folder. There are two di�erent types of RAM-based �le systems that implement
this mechanism: ramfs and tmpfs. ramfs - the older - uses the same mechanism
that Linux uses for caching recently accessed �les, with the exception of not being

2



�ushed when the used memory exceeds a threshold. Another drawback is that the
size of the �le system cannot be precisely estimated. A size limit can be speci�ed
with tmpfs, resulting in a more manageable �le system, but since it may use swap
space, �les may have to be read from the disk, reducing the overall performance.

b. Comment on the current memory/swap state of the Linux machine of the author.
[2 points]
Most of the RAM is allocated (29GB out of 31GB). Out of these 29GB of allocated
RAM, about 8GB are used by bu�ers/cache. The actual amount of RAM used by
the system and applications is thus 20GB. As bu�ers and cache could be removed
(at the cost of performance), this leaves 11GB actually usable. Also, 6GB out of the
13GB of the swap partition are used, which means that the amount of memory used
by the applications and bu�ers/cache would be 35GB and so the system must either
swap part of its memory (this is the case here) or reduce the amount of memory
used by bu�ers and cache.

c. Could you be more precise on what the author meant by "As the data is lost when
the machine reboots the data must not be precious as even scheduling backups
cannot guarantee that all the data will be replicated in the event of a system
crash" [2 points]
The author means that the partition is volatile i.e. whenever the system reboots or
crashes, data stored on the partition is lost. So, only data that has been copied to a
non volatile memory before the crash - e.g., during a backup - can be recovered.

d . I have done the following test on my Linux machine: I have compiled the latex
sources of the RTOS slides from the same state (i.e., after removing all intermediate
�les of the compilation process) in two cases: (i) with the �les located on my SSD,
and (ii) with the same �les located in a Ramdisk. Comment on the results with
regards to what is stated in the article. Imagine a better test to evaluate the
di�erence between an SSD and a ramfs. [4 points]
There is a signi�cant improvement when using the tmpfs with regards to the SSD.
This di�erence mostly applies to the overall time, and is not really signi�cant for
the process or the OS processing time. It probably means that most of the extra
time with the SSD is due to I/O blocking delays. Yet, the author of the article was
claiming an improvement of a factor of 10, and the test demonstrates a much lower
improvement. This is probably due to our test not doing only �le accesses, but also
intensive computations - compilation - for which the use of tmpfs has no impact.
A better test would thus either evaluate the two �le systems for �le operations only -
reading/writing large �les, small ones� a mix of the two, etc. -, or on the contrary,
performing an evaluation for more realistic applications, e.g. with video games,
o�ce applications, multimedia, etc.

SSD:

$ make ultraclean &&time make all

real 0m34 .464s

user 0m22 .256s

3



sys 0m6.528s

Ramdisk (tmpfs): I have �rst created the ramdisk, then, I have mounted it in
/mnt/ramdisk. Finally, I have copied the �les from the SSD and compiled the
latex sources:

$ sudo mkdir /mnt/ramdisk

$ sudo mount -t tmpfs -o size =1024m tmpfs /mnt/ramdisk

$ cd /mnt/ramdisk

$ cp -R /homes/apvrille/slidesRTOS .

$ make ultraclean &&time make all

real 0m26 .788s

user 0m21 .192s

sys 0m6.052s

The Di�erence Between a tmpfs and ramfs RAM Disk

Dec 2013.
Taken from http://www.jamescoyle.net/knowledge/951-the-di�erence-between-a-tmpfs-

and-ramfs-ram-disk

There are two �le system types built into most modern Linux distributions which
allow you to create a RAM based storage area which can be mounted and used like a
normal folder.

Before using this type of �le system you must understand the bene�ts and problems of
memory �le system in general, as well as the two di�erent types. The two types of RAM
disk �le systems are tmpfs and ramfs and each type has it's own strengths and weaknesses.

What is a memory based �le system (RAM disk)?

A memory based �le system is something which creates a storage area directly in a
computers RAM as if it were a partition on a disk drive. As RAM is a volatile type of
memory which means when the system is restarted or crashes the �le system is lost along
with all it's data.

The major bene�t to memory based �le systems is that they are very fast � 10s of
times faster than modern SSDs. Read and write performance is massively increased for
all workload types. These types of fast storage areas are ideally suited for applications
which need repetitively small data areas for caching or using as temporary space. As the
data is lost when the machine reboots the data must not be precious as even scheduling
backups cannot guarantee that all the data will be replicated in the event of a system
crash.

tmpfs vs. ramfs

The two main RAM based �le system types in Linux are tmpfs and ramfs. ramfs is
the older �le system type and is largely replaced in most scenarios by tmpfs.

4



ramfs creates an in memory �le system which uses the same mechanism and storage
space as Linux �le system cache. Running the command free in Linux will show you the
amount of RAM you have on your system, including the amount of �le system cache in
use. The below is an example of a 31GB of ram in a production server.

$ free -g

total used free shared buffers cached

Mem: 31 29 2 0 0 8

-/+ buffers/cache: 20 11

Swap: 13 6 7

Note: free displays the total amount of free and used physical and swap memory in the
system, as well as the bu�ers used by the kernel. The "-g" option is used to display the
amount of memory in gigabytes.

Currently 8GB of �le system cache is in use on the system. This memory is generally
used by Linux to cache recently accessed �les so that the next time they are requested
then can be fetched from RAM very quickly. ramfs uses this same memory and exactly
the same mechanism which causes Linux to cache �les with the exception that it is not
removed when the memory used exceeds threshold set by the system.

ramfs �le systems cannot be limited in size like a disk base �le system which is limited
by its capacity. ramfs will continue using memory storage until the system runs out of
RAM and likely crashes or becomes unresponsive. This is a problem if the application
writing to the �le system cannot be limited in total size. Another issue is you cannot see
the size of the �le system in df and it can only be estimated by looking at the cached
entry in free. tmpfs

tmpfs is a more recent RAM �le system which overcomes many of the drawbacks with
ramfs. You can specify a size limit in tmpfs which will give a `disk full' error when the
limit is reached. This behaviour is exactly the same as a partition of a physical disk.

The size and used amount of space on a tmpfs partition is also displayed in df. The
below example shows an empty 512MB RAM disk.

$ df -h /mnt/ramdisk

Filesystem Size Used Avail Use% Mounted on

tmpfs 512M 0 512M 0% /mnt/ramdisk

These two di�erences between ramfs and tmpfs make tmpfs much more manageable
however this is one major drawback; tmpfs may use SWAP space. If your system runs
out of physical RAM, �les in your tmpfs partitions may be written to disk based SWAP
partitions and will have to be read from disk when the �le is next accessed. In some
environments this can be seen as a bene�t as you are less likely to get out of memory
exceptions as you could with ramfs because more `memory' is available to use.

5


	Course understanding (7 points, 30 minutes)
	Linux Ram disk (11 points, 90 minutes)

