
Exam
Operating Systems - OS

Ludovic Apvrille
ludovic.apvrille@telecom-paristech.fr

February, 6th, 2015

Authorized documents: Nothing! The grading takes into account the fact that
you don’t have any document with you.
A grade is provided for every question (beware: do organize your time, e.g., last question
is a 4-point question). 1 additional point is given as a general appreciation, including
written skills and readability.

1 Course understanding (6 points, ∼30 minutes)

a . Multi-programming enables more than one single process to apparently execute
simultaneously. How can an Operating System achieve this on a mono-processor
computer? For your answer, clearly state the minimal hardware support that is
needed to achieve this. [2 points]

b. Virtual memory is always handled by OS of PCs, but its management is optional
in many RTOS. First, recall what is the main purpose of virtual memory. Then,
explain why it is not always useful in real-time and embedded systems. [2 points]

c. You have experimented with RTAI that processes/threads/tasks could wake up in
advance with regards to their expected wake up time. Explain why this can occur.
[2 points]

2 Linux kernel modules (13 points, ∼90 minutes)

If you want to add code to a Linux kernel, a common way to do is to add some source
files to the kernel source tree, or to modify existing files, and recompile the kernel, as we
have done to add a Linux system call during a lab. But you can also add code to the

1



Linux kernel while it is running, using a Loadable Kernel Module (LKM). A RTAI task,
with which you have played with during the labs, is a LKM.

a . Is it a good idead to use kernel modules to implement the following functions, or
is it better to rely on user-level processes: Drivers? Protocol stacks? Scheduler?
System calls? ssh server? Closely explain your answer. [1 points]

b. The crash of a kernel module can freeze the whole operating system. Explain why
a user-level application should not be able to freeze the entire system, and why a
LKM can easily do this. In particular, explain which hardware elements are in-
volved in that difference between user and kernel-level applications, and how they
are involved. Last, provide a code that leads the linux kernel to crash in the fol-
lowing init function of a module: [3 points]

#include <l inux / i n i t . h>
#include <l inux /module . h>

MODULE_LICENSE( "GPL" ) ;

stat ic int module_init (void ) {
. . .

}

c. Kernel modules can also be used to intercept system calls. The basic idea is to
replace in the list of pointers to system call functions (this list is an array) the
default reference of the system call to intercept with a reference to the function
provided by the kernel module. The following code provides a typical way to do
so. Explain the purpose of the following code. Also, explain how to execute that
code (this is similar to starting a task in RTAI). [3 points]
#include <l inux / i n i t . h>
#include <l inux /module . h>
#include <l inux / un i s td . h>
#include <asm/arch / un i s td . h>

MODULE_LICENSE( "GPL" ) ;

extern void∗ sys_ca l l_tab le [ ] ;
int (∗ o r i g i n a l_ f o r k ) ( struct pt_regs ) ;

stat ic int module_init (void ) {
pr in tk ( KERN_ALERT "[edu] Module successfully loaded\n" ) ;
p r in tk ( KERN_ALERT "[edu] Intercepting fork() syscall ... " ) ;

o r i g i n a l_ f o r k = sys_ca l l_tab le [__NR_fork ] ;
sys_ca l l_tab le [__NR_fork ] = edu_fork ;

p r in tk ( KERN_ALERT "done/n" ) ;
p r in tk ( KERN_ALERT "[edu] Starting Loging system calls\n" ) ;
return 0 ;

}

2



d . Implement the edu_fork system call that performs a printk each time the fork
system call is made in the system. After the printk, edu_fork should call the
default fork system call. [3 points]

e . When the module is unloaded, the default fork system call should be called instead
of edu_fork. Provide the implementation of module_exit() [1 point]

f . Why isn’t it a good idea to allow the interception of system calls with kernel
modules? How can this be prevented in the kernel? [2 points]

3


	Course understanding (6 points, 30 minutes)
	Linux kernel modules (13 points, 90 minutes)

