
Exam: Solutions
Operating Systems - OS

Ludovic Apvrille
ludovic.apvrille@telecom-paristech.fr

February, 6th, 2014

Authorized documents: Nothing! The grading takes into account the fact that
you don’t have any document with you.
A grade is provided for every question (beware: do organize your time, e.g., last question
is a 4-point question). 1 additional point is given as a general appreciation, including
written skills and readability.
You may naturally get the maximum grade with a different solution. Also, please contact
me if you find any improvement to this solution.

1 Course understanding (6 points, ∼30 minutes)

a . Explain the difference between system calls and library functions. Why are these
two facilities needed? [2 points]

A system call serves as an interface between a user-level application and the Operat-
ing System. This is the only way for a user-level application to execute commands
for which protected instructions must be executed, typically, I/O operations. On
the contrary, a library function is a way to factorize software code between appli-
cations. Library functions are executed in user mode, and thus, cannot execute
protected instructions.

b. All programming errors cannot be detected at compilation step. Mention two
different programming errors that an OS can detect during a program execution
that a compiler cannot detect. For both errors, closely explain the OS mechanisms
that are used to detect those errors. [4 points]

• Memory management error. A compiler cannot usually predict whether data
written at given memory adresses are part of the allocated memory of the

1

corresponding process, or not. The Memory Mamagement Unit can usually
detect such errors at execution time. When such an error occurs, the MMU
raises an exception that the operating system catches: the faulty process is then
aborted by the Operating System, and an error is returned to the user (e.g.,
"segmentation fault").

• I/O error. The program saves data into a file, but such data cannot be written
to the disk because the latter is full. The driver of hard disk detects that error,
and the system call used for that operation returns an error value, typically -1.

2 Linux kernel code analysis (14 points, ∼90 minutes)

The code of the first real version of the Linux kernel1 is quite readable. The purpose
of this exercise is for you to explain parts of the code of this kernel. For a few lines of
code, in particular those referring to sub-functions, you will need to make assumptions
on their behaviours.
We recall that the notation "z=a?x:y" means "if (a) then z=x else z=y".

a . panic function, of panic.c. Let’s start with a basic yet important function pro-
vided by the kernel: panic(). The code is provided just below. Explain it briefly,
and give in which context it is ought to be used. [1 point]
volat i le void panic (const char ∗ s)
{

pr in tk ("Kernel panic: %s\n\r" , s) ;
for (; ;) ;

}

The panic function is used when no other action can be taken by the operating
system, that is, an error occurred and the operating system does not know how to
handle it. Thus, the panic function merely returns a message to the user (the one
given as argument to the function), and ends by entering into an infinite loop.

b. uname, provided in sys.c. Explain line by line the code of this function, and
explain its use in the system. [2 points]
1 . int sys_uname (struct utsname ∗ name)
2 . {
3 . stat ic struct utsname thisname = {
4 . "linux .0" , "nodename" , "release " , "version " , "machine "
5 . } ;
6 . int i ;
7 .
8 . i f (! name) return −1;
9 . ve r i fy_area (name , s izeof ∗name) ;
10 . for (i =0; i<s izeof ∗name ; i++)
11 . put_fs_byte (((char ∗) &thisname) [i] , i +(char ∗) name) ;
12 . return (0) ;
13 . }

1Kernel version 0.01, released by Linux Torvalds in 1991

2

The sys_uname function provides the string values of the different fields of the
uname function. The code is as follows: (line by line)

• Line 1. Declaration of function. The provided argument is to be filled by the
function.

• Line 3 to 5. Filling a local structure with the different values of field for
uname.

• Line 8. Verifying that the provided pointer to the structure to be filled is not
null. Otherwise, return an error value (-1).

• Line 9. Verifying that the allocated memory at the provided pointer to the
structure is large enough.

• Line 10 to 11. Copying string from the local structure to the referenced one,
step by step. Note that each string must be 8-character long.

• Line 12. Returns a success value (0).

c. Task structure
"task_struct" is the structure that stores information about the processes - or
tasks - scheduled by the kernel. Its declaration is provided in linux/include/sched.h.
Right below is provided a raw excerpt of this struct declaration. Your purpose is
to explain various elements of the struct, that is, give an explanation on how the
struct fields are probably used by the kernel. [2 points]
struct task_struct {
/∗ t h e se are hardcoded − don ’ t touch ∗/

long s t a t e ; /∗ −1 unrunnable , 0 runnable , >0 stopped ∗/
long counter ;
long p r i o r i t y ;
long s i g n a l ;
fn_ptr s i g_r e s t o r e r ;
fn_ptr s ig_fn [3 2] ;

/∗ var ious f i e l d s ∗/
int exit_code ;
unsigned long end_code , end_data , brk , s ta r t_stack ;
long pid , f a ther , pgrp , s e s s i on , l e ade r ;
unsigned short uid , euid , su id ;
unsigned short gid , egid , s g id ;
long alarm ;
long utime , stime , cutime , cst ime , start_time ;

/∗ f i l e system in fo ∗/
int t ty ; /∗ −1 i f no t ty , so i t must be s igned ∗/
unsigned short umask ;
struct f i l e ∗ f i l p [NR_OPEN] ;

. . .
} ;

The usage of those fields is not always understandable from the definition of the
struct. We thus define only those for which the usage is the most obvious.

• "state" is used to store the current scheduling state to the process.

3

• "counter" might be used to count the number of instructions used by the process
during the last quantum of time, while "priority" is rather a static priority
attributed to the process.

• "signal" probably stores the pending signals, and "sig_fn" is an array of ref-
erences to functions which index in the array correspond to a signal number.

• "exit_code" probably references the code returned to the father process at ter-
mination.

• "end_code", "end_data", . . . references addresses of the memory used for the
allocated memory areas of the process (code, pre-declared data, dynamic allo-
cation,stack).

• "pid", . . . "sgid" are used to store the user/groups/etc. rights on the process.

• "alarm" is likely to be a timer that can be put on the process.

• *time" are used to store timing information on the process.

• "tty" refers to the terminal attached to the process.

• "umask" is the rights that are applied to newly created files.

• "file" is the list of opened files.

d . Main comment of schedule() function. The code of the schedule() function
is given in kernel/sched.c, and is provided just below. Let’s first analyze the top
comment of the function: What does Linus Torvalds mean by "IO-bound processes
good response"? [1 point]

An IO-bound process is a process that regularly waits for IO operations to be com-
pleted. Such a process spends most of its time waiting, i.e., the time it spends doing
computation is negligeable with regards to the time it spends waiting. IO-bound
processes are favroured in Linux to offer a better level of interactivity.

e . "First part" of the schedule() function. What is the purpose of that part?
Also, give the comment you would put before that part of code. [2 points]

The first part of the scheduler checks for terminated operations in processes, and in
particular it checks for timer expirations. I would put the following comments:

• Right after "if (*p)":

/∗ Check f o r t imer e xp i r a t i on ∗/

• Right before the last test of the first part:

/∗ Check f o r s l e e p i n g proces se s with pending s i g n a l s ∗/

4

f . Main part of the schedule() function: "this is the scheduler proper:". What
is the purpose of that part? What are the main elements of that code? You may
explain line by line, but what I expect is rather the various steps of the scheduling
algorithm. [2 points]

The second part of the schedule function is dedicated to the selection of the process to
be executed. Basically, it searches among the executable process for the process with
the highest counter (in the "while (–i)" loop). It saves the index of that process, and
the highest counter value in the variable "c" (that is: its dynamic priority). Then,
if a process with a non zero counter was found, the loop exits ("break") and the
system switches to the selected process ("switch_to(next)"). Otherwise, it means
that all processes have expired their quantum: and so, a new quantum begins: the
start value is put in the counter of processes (based on their static priority ((*p)-
>priority)), and the process selection is done again.

∗
∗ ’schedule ()’ i s the s chedu l e r func t i on . This i s GOOD CODE! There
∗ probably won’t be any reason to change this , as it should work well
* in all circumstances (ie gives IO-bound processes good response etc).
* The one thing you might take a look at is the signal -handler code here.
*
* NOTE!! Task 0 is the ’ i d l e ’ task , which gets called when no other
* tasks can run. It can not be killed , and it cannot sleep. The ’ s t a t e ’
* information in task [0] is never used.
*/

void schedule(void)
{

int i,next ,c;
struct task_struct ** p;

/* First part */

for(p = &LAST_TASK ; p > &FIRST_TASK ; --p)
if (*p) {

if ((*p)->alarm && (*p)->alarm < jiffies) {
(*p)->signal |= (1<<(SIGALRM -1));
(*p)->alarm = 0;

}
if ((*p)->signal && (*p)->state== TASK_INTERRUPTIBLE)

(*p)->state=TASK_RUNNING;
}

/* this is the scheduler proper: */

while (1) {
c = -1;
next = 0;
i = NR_TASKS;
p = &task[NR_TASKS];
while (--i) {

if (!*--p)
continue;

if ((*p)->state == TASK_RUNNING && (*p)->counter > c)
c = (*p)->counter , next = i;

}
if (c) break;
for(p = &LAST_TASK ; p > &FIRST_TASK ; --p)

5

if (*p)
(*p)->counter = ((*p)->counter >> 1) +

(*p)->priority;
}
switch_to(next);

}

g . block_read(), provided in block_dev.c. Closely explain that code line by line.
Also, explain what is returned by that function in various situations. And so, put
what is necessary in the two lines commented with "//", and explain why you have
put this. [4 points]
1 . int block_read (int dev , unsigned long ∗ pos , char ∗ buf , int count)

This function is probably used to read bytes in a block device whose reference is given
as argument (dev). Data must be read from a given position in the device (pos), put
in a destination buffer (buf). "count" elements must be read. An important part of
the function is dedicated the management of blocks of the device (e.g., block = *pos
/ BLOCK_SIZE, etc.)
2 . {
3 . int block = ∗pos / BLOCK_SIZE;
4 . int o f f s e t = ∗pos % BLOCK_SIZE;
5 . int chars ;
6 . int read = 0 ;
7 . struct buffer_head ∗ bh ;
8 . register char ∗ p ;
9 .
10 . while (count >0) {

Main reading loop, over the number of elements to be read
11 . bh = bread (dev , b lock) ;

Getting a pointer to the data of the current block of the device
12 . i f (! bh)
13 . return read ? read :−EIO ;

If no pointer was obtained, either return already read elements, or return an error
if no data could be read at all
14 . chars = (count<BLOCK_SIZE) ? count : BLOCK_SIZE;

The number of read elements is either count, or BLOCK_SIZE, depending on the
remaining data to be read in the considered block
15 . p = o f f s e t + bh−>b_data ;
16 . o f f s e t = 0 ;
17 . b lock++;
18 . ∗pos += chars ;
19 . // read +=

read += chars // the number of elements read is equal to what could be read (cf.
the definition of chars)

6

20 . // count −=

count -= chars
21 . while (chars−−>0)
22 . put_fs_byte (∗ (p++),buf++);

Putting elements of the block into the output buffer, byte by byte
23 . bh−>b_dirt = 1 ;
24 . b r e l s e (bh) ;
25 . }
26 . return read ;

The number of bytes read is returned
27 . }

7

	Course understanding (6 points, 30 minutes)
	Linux kernel code analysis (14 points, 90 minutes)

