
Exam
Operating Systems - OS

Ludovic Apvrille
ludovic.apvrille@telecom-paristech.fr

February, 6th, 2014

Authorized documents: Nothing! The grading takes into account the fact that
you don’t have any document with you.
A grade is provided for every question (beware: do organize your time, e.g., last question
is a 4-point question). 1 additional point is given as a general appreciation, including
written skills and readability.

1 Course understanding (6 points, ∼30 minutes)

a . Explain the difference between system calls and library functions. Why are these
two facilities needed? [2 points]

b. All programming errors cannot be detected at compilation step. Mention two
different programming errors that an OS can detect during a program execution
that a compiler cannot detect. For both errors, closely explain the OS mechanisms
that are used to detect those errors. [4 points]

2 Linux kernel code analysis (14 points, ∼90 minutes)

The code of the first real version of the Linux kernel1 is quite readable. The purpose
of this exercise is for you to explain parts of the code of this kernel. For a few lines of
lines, in particular those referring to sub-functions, you will need to make assumptions
on their behaviours.
We recall that the notation "z=a?x:y" means "if (a) then z=x else z=y".

1Kernel version 0.01, released by Linux Torvalds in 1991

1

a . panic function, of panic.c. Let’s start with a basic yet important function pro-
vided by the kernel: panic(). The code is provided just below. Explain it briefly,
and give in which context it is ought to be used. [1 point]
volat i le void panic (const char ∗ s)
{

pr in tk ("Kernel panic: %s\n\r" , s) ;
for (; ;) ;

}

b. uname, provided in sys.c. Explain line by line the code of this function, and
explain its use in the system. [2 points]
1 . int sys_uname (struct utsname ∗ name)
2 . {
3 . stat ic struct utsname thisname = {
4 . "linux .0" , "nodename" , "release " , "version " , "machine "
5 . } ;
6 . int i ;
7 .
8 . i f (! name) return −1;
9 . ve r i fy_area (name , s izeof ∗name) ;
10 . for (i =0; i<s izeof ∗name ; i++)
11 . put_fs_byte (((char ∗) &thisname) [i] , i +(char ∗) name) ;
12 . return (0) ;
13 . }

c. Task structure
"task_struct" is the structure that stores information about the processes - or
tasks - scheduled by the kernel. Its declaration is provided in linux/include/sched.h.
Right below is provided a raw excerpt of this struct declaration. Your purpose is
to explain various elements of the struct, that is, give an explanation on how the
struct fields are probably used by the kernel. [2 points]
struct task_struct {
/∗ t h e se are hardcoded − don ’ t touch ∗/

long s t a t e ; /∗ −1 unrunnable , 0 runnable , >0 stopped ∗/
long counter ;
long p r i o r i t y ;
long s i g n a l ;
fn_ptr s i g_r e s t o r e r ;
fn_ptr s ig_fn [3 2] ;

/∗ var ious f i e l d s ∗/
int exit_code ;
unsigned long end_code , end_data , brk , s ta r t_stack ;
long pid , fa ther , pgrp , s e s s i on , l e ade r ;
unsigned short uid , euid , su id ;
unsigned short gid , egid , s g id ;
long alarm ;
long utime , stime , cutime , cst ime , start_time ;

/∗ f i l e system in fo ∗/
int t ty ; /∗ −1 i f no t ty , so i t must be s igned ∗/
unsigned short umask ;
struct f i l e ∗ f i l p [NR_OPEN] ;

. . .
} ;

2

d . Main comment of schedule() function. The code of the schedule() function
is given in kernel/sched.c, and is provided just below. Let’s first analyze the top
comment of the function: What does Linus Torvalds mean by "IO-bound processes
good response"? [1 point]

e . "First part" of the schedule() function. What is the purpose of that part?
Also, give the comment you would put before that part of code. [2 points]

f . Main part of the schedule() function: "this is the scheduler proper:". What
is the purpose of that part? What are the main elements of that code? You may
explain line by line, but what I expect is rather the various steps of the scheduling
algorithm. [2 points]

∗
∗ ’schedule ()’ i s the s chedu l e r func t i on . This i s GOOD CODE! There
∗ probably won’t be any reason to change this , as it should work well
* in all circumstances (ie gives IO-bound processes good response etc).
* The one thing you might take a look at is the signal -handler code here.
*
* NOTE!! Task 0 is the ’ i d l e ’ task , which gets called when no other
* tasks can run. It can not be killed , and it cannot sleep. The ’ s t a t e ’
* information in task [0] is never used.
*/

void schedule(void)
{

int i,next ,c;
struct task_struct ** p;

/* First part */

for(p = &LAST_TASK ; p > &FIRST_TASK ; --p)
if (*p) {

if ((*p)->alarm && (*p)->alarm < jiffies) {
(*p)->signal |= (1<<(SIGALRM -1));
(*p)->alarm = 0;

}
if ((*p)->signal && (*p)->state== TASK_INTERRUPTIBLE)

(*p)->state=TASK_RUNNING;
}

/* this is the scheduler proper: */

while (1) {
c = -1;
next = 0;
i = NR_TASKS;
p = &task[NR_TASKS];
while (--i) {

if (!*--p)
continue;

if ((*p)->state == TASK_RUNNING && (*p)->counter > c)
c = (*p)->counter , next = i;

}
if (c) break;
for(p = &LAST_TASK ; p > &FIRST_TASK ; --p)

if (*p)
(*p)->counter = ((*p)->counter >> 1) +

3

(*p)->priority;
}
switch_to(next);

}

g . block_read(), provided in block_dev.c. Closely explain that code line by line.
Also, explain what is returned by that function in various situations. And so, put
what is necessary in the two lines commented with "//", and explain why you have
put this. [4 points]
1 . int block_read (int dev , unsigned long ∗ pos , char ∗ buf , int count)
2 . {
3 . int block = ∗pos / BLOCK_SIZE;
4 . int o f f s e t = ∗pos % BLOCK_SIZE;
5 . int chars ;
6 . int read = 0 ;
7 . struct buffer_head ∗ bh ;
8 . register char ∗ p ;
9 .
10 . while (count >0) {
11 . bh = bread (dev , b lock) ;
12 . i f (! bh)
13 . return read ? read :−EIO ;
14 . chars = (count<BLOCK_SIZE) ? count : BLOCK_SIZE;
15 . p = o f f s e t + bh−>b_data ;
16 . o f f s e t = 0 ;
17 . b lock++;
18 . ∗pos += chars ;
19 . // read +=
20 . // count −=
21 . while (chars−−>0)
22 . put_fs_byte (∗ (p++),buf++);
23 . bh−>b_dirt = 1 ;
24 . b r e l s e (bh) ;
25 . }
26 . return read ;
27 . }

4

	Course understanding (6 points, 30 minutes)
	Linux kernel code analysis (14 points, 90 minutes)

