
Exam

Operating Systems - OS

Ludovic Apvrille

ludovic.apvrille@telecom-paristech.fr

February, 10th, 2012

Authorized documents: Nothing! The exam takes into account that you don't
have the right to have any document with you.
A grade is provided for every question (beware: do organize your time). 1 additional
point is given as a general appreciation, including written skills and readability.

1 Understanding of the course (10 points, ∼60 minutes)

1. Consider a user-level process executing on a CPU. Give several reasons for this process
to be blocked, and so to be preempted from the CPU by the OS? What are the
conditions for that process to be granted again the CPU? [2.5 points]

2. Recall what is the Shortest Job First scheduling policy, and explain its main advan-
tages and drawbacks. [2.5 points]

3. What is the purpose of a page replacement algorithm i.e., in which conditions is it
used by an OS? Do you remember or can you imagine a few algorithms? If so, explain
them brie�y. [3 points]

4. Provide the reasons why it is not a good idea to enter a critical section CS2 when
already being in a critical section CS1. Give concrete examples to illustrate your
response. [2 points]

2 Programming kernels (10 points, ∼60 minutes)

The Linux code provided at the end of this exercise is taken from an IBM webpage whose
purpose is to illustrate the use of Linked Lists at kernel level. You goal is to answer the
following questions regarding that code.

1

1. Cite di�erent reasons why linked lists are commonly used in kernels. In particular,
could you cite modules of kernel that make use of them? [1.5 points]

2. Apart from the list manipulation, give all the elements of the code that are speci�c
to a (Linux) kernel code, and explain them. Also, explain WHY they are speci�c to
kernel code. [1.5 points]

3. Basically explain how the code works. To do so, give the comments you would put in
that code to help readers/users of that code to understand it. [1.5 points]

4. To facilitate the use of linked lists for kernel programmers, Linux de�nes a set of
macros. For the following ones, your job is to try to guess their role. Justify your
answer, otherwise no point is given. [2.5 points]

a. LIST_HEAD

b. list_for_each

c. list_entry

d. list_for_each_entry

e. list_for_each_safe

5. Now, just assume that you have to program the same application in user mode. Ex-
plain the general approach, and give the main parts of the C code of that application.
[3 points]

(The code is on next page)

2

#include <l inux / ke rne l . h>
#include <l inux /module . h>
#include <l inux / l i s t . h>

MODULE_LICENSE("GPL") ;

struct my_data_struct {
int value ;
struct l i s t_head f u l l _ l i s t ;
struct l i s t_head odd_l i s t ;

} ;

LIST_HEAD(my_ful l_l i s t) ;
LIST_HEAD(my_odd_list) ;

int init_module (void) {
int count ;
struct my_data_struct ∗ obj ;

for (count = 1 ; count < 11 ; count++) {

obj = (struct my_data_struct ∗)
kmalloc (s izeof (struct my_data_struct) , GFP_KERNEL) ;

obj−>value = count ;

l i s t_add (&obj−>f u l l _ l i s t , &my_ful l_l i s t) ;

i f (obj−>value & 0x1) {
l i s t_add (&obj−>odd_list , &my_odd_list) ;

}

}
return 0 ;

}

void cleanup_module (void) {
struct l i s t_head ∗pos , ∗q ;
struct my_data_struct ∗my_obj ;

p r in tk ("Emit full list\n") ;
l i s t_for_each (pos , &my_ful l_l i s t) {
my_obj = l i s t_en t r y (pos , struct my_data_struct , f u l l _ l i s t) ;
p r in tk ("%d\n" , my_obj−>value) ;

}

pr in tk ("Emit odd list\n") ;
l i s t_for_each_entry (my_obj , &my_odd_list , odd_l i s t) {

pr in tk ("%d\n" , my_obj−>value) ;
}

pr in tk ("Cleaning up\n") ;
l i s t_for_each_sa fe (pos , q , &my_ful l_l i s t) {

struct my_data_struct ∗tmp ;
tmp = l i s t_en t r y (pos , struct my_data_struct , f u l l _ l i s t) ;
l i s t_d e l (pos) ;
k f r e e (tmp) ;

}

return ;
}

3

	Understanding of the course (10 points, 60 minutes)
	Programming kernels (10 points, 60 minutes)

