
��������	
��
�������������

��	��������	����	������������

�������
������

�������	 ��!

��������	
������
��������
	�����������

��∀���	�����
��#�	
��������	
��
������∃��%����&∋�������	�������(�#��������	
��	
�
���	
�������	�������
�	����	�
�����������������	���	
���������
���	����
��	
�������	�����
����	
����	����
������	�����
��������
���������������������
������
��	��	����
�
������
�	��	��
�������
�������	
�����
��
�� !��∀��
�����	����	�#��∃������%!���
���
�����	����
��
	���	�
���	���� �&���
��	���
��	����
���∋	
��	���
�����
���������(�������	��������#��
�	
����
���
	���������
�������
���
	����
��

%
���
����	����#������	
���������	���#����%��	∀��	���
���
����	��
���
������
��
��	
���!�	
�
�
����	∀!��#�����������	�
	����)�#	��∗

)∗�+	#�����	#�	
��,��!��∀������∋+��	�
��(

∋�(,��������������∀��	
�
���∃������������∀�	�������
���
�−
��

������
������	���
���
�	�
��	���
�������������
������
�	�	
����	
��
�−
��

������
������	���
���
��	
��
�����
�
�
	����.�/	�����������
��)�������	�������
�����	�
��	�
���∋0��	�
��(

∋#(1�����	�
�
���	
���)����
�
�������������	
�������������	������	���	��������

���������
���
�������
��������%��	∀��
	������	����	
���	�������������	��������	���
�������

���
�������∋0��	�
��(

))∗�����∀�����	�−�	����∀!�#���	
�∋2��	�
��(

����,���
 � ���# � �!� � �	∀����# � ����∀�� ��
	� � −34� � ��
������� ������ � �	� �
���� �
���
������������������	�������∃����
�����
���	�(����!��,����(�	
�.������	��

∋�(�5
	������������
��	��678��	
���∋�������9:∃� 8;���
��
(�	�������
�������∋!��	�
��(

∋#(� <	
� ����<��
 ����
����������
���������
��
�	
�<���
��0∀ ������� � ��������	�� �������
��
���	
�∀�#	����
	��������)���
	��������	
�����������
�∀��
���
	�������	
���	����
�)������
	����	�����
���	
���∋6��	�
��(

∋�(�5������������������	���
���	
���	�������=��������������
���
���	���>�����	
�∋#(∀��
��
�
	���� �� �>����������� �	� � ��� ����	
����� ���� ����
 �	��
���	
� � ���� ��
� ��
	#�#���
�������
����#���������
���
����������	
���
�	
��
����	�����
���	
�����
�������
�������� ������	����)��������
����
����������#�
�����
��
���
��#���	
���#��
����
��
������
�����∀��)����
��	����������
���	
���	����������#������
�����
����
��	���	�
�
�
��
��	
��∋0��	�
��(

)))∗ ����∀�����	�&���/∋�����∀!�#���	
�∋!��	�
��(

����������
,���	
����
������	��	��
�����������

�����
��� 1������� 5�
�	� ���������?�����
�

5 1 �≅�0 � �≅�! ? �≅�!

56 16�≅�6 �6�≅�68 ?6�≅� Α

50 10�≅� �0�≅� 8 ?0�≅�0

����0��������
�����
������
��
	
	�������������8�
�(�−�����������������������#������	
��
���	������4	
	�	
���
����.
#(�−�����������������������#������	
��
���	�?�����
��4	
	�	
���
����.
�(�−�����������������������#������	
��
���	�Β?<�∋Β�
������?�����
��<�
��(�
����.

����������
,���������������������∀��
��������)�����	
��������
���
������
��
����Χ8�68(��
����������	��
Β?<���������
��

��

��

��

����	

Inside the Linux 2.6 Completely Fair Scheduler
Providing fair access to CPUs since 2.6.23

Skill Level: Intermediate

M. Tim Jones (mtj@mtjones.com)
Independent Author

15 Dec 2009

The task scheduler is a key part of any operating system, and Linux® continues to
evolve and innovate in this area. In kernel 2.6.23, the Completely Fair Scheduler
(CFS) was introduced. This scheduler, instead of relying on run queues, uses a
red-black tree implementation for task management. Explore the ideas behind CFS,
its implementation, and advantages over the prior O(1) scheduler.

The Linux scheduler is an interesting study in competing pressures. On one side are
the use models in which Linux is applied. Although Linux was originally developed
as a desktop operating system experiment, you'll now find it on servers, tiny
embedded devices, mainframes, and supercomputers. Not surprisingly, the
scheduling loads for these domains differ. On the other side are the technological
advances made in the platform, including architectures (multiprocessing, symmetric
multithreading, non-uniform memory access [NUMA]) and virtualization. Also
embedded here is the balance between interactivity (user responsiveness) and
overall fairness. From this perspective, it's easy to see how difficult the scheduling
problem can be within Linux.

A short history of Linux schedulers

Early Linux schedulers used minimal designs, obviously not focused on massive
architectures with many processors or even hyperthreading. The 1.2 Linux scheduler
used a circular queue for runnable task management that operated with a
round-robin scheduling policy. This scheduler was efficient for adding and removing
processes (with a lock to protect the structure). In short, the scheduler wasn't
complex but was simple and fast.

Inside the Linux 2.6 Completely Fair Scheduler
© Copyright IBM Corporation 2009. All rights reserved. Page 1 of 10

mailto:mtj@mtjones.com
http://www.ibm.com/legal/copytrade.shtml

Linux version 2.2 introduced the idea of scheduling classes, permitting scheduling
policies for real-time tasks, non-preemptible tasks, and non-real-time tasks. The 2.2
scheduler also included support for symmetric multiprocessing (SMP).

The 2.4 kernel included a relatively simple scheduler that operated in O(N) time (as
it iterated over every task during a scheduling event). The 2.4 scheduler divided time
into epochs, and within each epoch, every task was allowed to execute up to its time
slice. If a task did not use all of its time slice, then half of the remaining time slice
was added to the new time slice to allow it to execute longer in the next epoch. The
scheduler would simply iterate over the tasks, applying a goodness function (metric)
to determine which task to execute next. Although this approach was relatively
simple, it was relatively inefficient, lacked scalability, and was weak for real-time
systems. It also lacked features to exploit new hardware architectures such as
multi-core processors.

The early 2.6 scheduler, called the O(1) scheduler, was designed to solve many of
the problems with the 2.4 scheduler—namely, the scheduler was not required to
iterate the entire task list to identify the next task to schedule (resulting in its name,
O(1), which meant that it was much more efficient and much more scalable). The
O(1) scheduler kept track of runnable tasks in a run queue (actually, two run queues
for each priority level—one for active and one for expired tasks), which meant that to
identify the task to execute next, the scheduler simply needed to dequeue the next
task off the specific active per-priority run queue. The O(1) scheduler was much
more scalable and incorporated interactivity metrics with numerous heuristics to
determine whether tasks were I/O-bound or processor-bound. But the O(1)
scheduler became unwieldy in the kernel. The large mass of code needed to
calculate heuristics was fundamentally difficult to manage and, for the purist, lacked
algorithmic substance.

Processes vs. threads
Linux incorporates process and thread scheduling by treating them
as one in the same. A process can be viewed as a single thread,
but a process can contain multiple threads that share some number
of resources (code and/or data).

Given the issues facing the O(1) scheduler and other external pressures, something
needed to change. That change came in the way of a kernel patch from Con Kolivas,
with his Rotating Staircase Deadline Scheduler (RSDL), which included his earlier
work on the staircase scheduler. The result of this work was a simply designed
scheduler that incorporated fairness with bounded latency. Kolivas' scheduler
impressed many (with calls to incorporate it into the current 2.6.21 mainline kernel),
so it was clear that a scheduler change was on the way. Ingo Molnar, the creator of
the O(1) scheduler, then developed the CFS based around some of the ideas from
Kolivas' work. Let's dig into the CFS to see how it operates at a high level.

developerWorks® ibm.com/developerWorks

Inside the Linux 2.6 Completely Fair Scheduler
Page 2 of 10 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

An overview of CFS

The main idea behind the CFS is to maintain balance (fairness) in providing
processor time to tasks. This means processes should be given a fair amount of the
processor. When the time for tasks is out of balance (meaning that one or more
tasks are not given a fair amount of time relative to others), then those
out-of-balance tasks should be given time to execute.

To determine the balance, the CFS maintains the amount of time provided to a given
task in what's called the virtual runtime. The smaller a task's virtual
runtime—meaning the smaller amount of time a task has been permitted access to
the processor—the higher its need for the processor. The CFS also includes the
concept of sleeper fairness to ensure that tasks that are not currently runnable (for
example, waiting for I/O) receive a comparable share of the processor when they
eventually need it.

But rather than maintain the tasks in a run queue, as has been done in prior Linux
schedulers, the CFS maintains a time-ordered red-black tree (see Figure 1). A
red-black tree is a tree with a couple of interesting and useful properties. First, it's
self-balancing, which means that no path in the tree will ever be more than twice as
long as any other. Second, operations on the tree occur in O(log n) time (where n is
the number of nodes in the tree). This means that you can insert or delete a task
quickly and efficiently.

Figure 1. Example of a red-black tree

ibm.com/developerWorks developerWorks®

Inside the Linux 2.6 Completely Fair Scheduler
© Copyright IBM Corporation 2009. All rights reserved. Page 3 of 10

http://www.ibm.com/legal/copytrade.shtml

With tasks (represented by sched_entity objects) stored in the time-ordered
red-black tree, tasks with the gravest need for the processor (lowest virtual runtime)
are stored toward the left side of the tree, and tasks with the least need of the
processor (highest virtual runtimes) are stored toward the right side of the tree. The
scheduler then, to be fair, picks the left-most node of the red-black tree to schedule
next to maintain fairness. The task accounts for its time with the CPU by adding its
execution time to the virtual runtime and is then inserted back into the tree if
runnable. In this way, tasks on the left side of the tree are given time to execute, and
the contents of the tree migrate from the right to the left to maintain fairness.
Therefore, each runnable task chases the other to maintain a balance of execution
across the set of runnable tasks.

CFS internals

All tasks within Linux are represented by a task structure called task_struct. This
structure (along with others associated with it) fully describes the task and includes
the task's current state, its stack, process flags, priority (both static and dynamic),
and much more. You can find this and many of the related structures in
./linux/include/linux/sched.h. But because not all tasks are runnable, you won't find
any CFS-related fields in task_struct. Instead, a new structure called
sched_entity was created to track scheduling information (see Figure 2).

Figure 2. Structure hierarchy for tasks and the red-black tree

developerWorks® ibm.com/developerWorks

Inside the Linux 2.6 Completely Fair Scheduler
Page 4 of 10 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

The relationships of the various structures are shown in Figure 2. The root of the
tree is referenced via the rb_root element from the cfs_rq structure (in
./kernel/sched.c). Leaves in a red-black tree contain no information, but internal
nodes represent one or more tasks that are runnable. Each node in the red-black
tree is represented by an rb_node, which contains nothing more than the child
references and the color of the parent. The rb_node is contained within the
sched_entity structure, which includes the rb_node reference, load weight, and
a variety of statistics data. Most importantly, the sched_entity contains the
vruntime (64-bit field), which indicates the amount of time the task has run and
serves as the index for the red-black tree. Finally, the task_struct sits at the top,
which fully describes the task and includes the sched_entity structure.

The scheduling function is quite simple when it comes to the CFS portion. In
./kernel/sched.c, you'll find the generic schedule() function, which preempts the
currently running task (unless it preempts itself with yield()). Note that CFS has
no real notion of time slices for preemption, because the preemption time is variable.
The currently running task (now preempted) is returned to the red-black tree through
a call to put_prev_task (via the scheduling class). When the schedule function

ibm.com/developerWorks developerWorks®

Inside the Linux 2.6 Completely Fair Scheduler
© Copyright IBM Corporation 2009. All rights reserved. Page 5 of 10

fig2
http://www.ibm.com/legal/copytrade.shtml

comes to identifying the next task to schedule, it calls the pick_next_task
function. This function is also generic (within ./kernel/sched.c), but it calls the CFS
scheduler through the scheduler class. The pick_next_task function in CFS can
be found in ./kernel/sched_fair.c (called pick_next_task_fair()). This function
simply picks the left-most task from the red-black tree and returns the associated
sched_entity. With this reference, a simple call to task_of() identifies the
task_struct reference returned. The generic scheduler finally provides the
processor to this task.

Priorities and CFS

CFS doesn't use priorities directly but instead uses them as a decay factor for the
time a task is permitted to execute. Lower-priority tasks have higher factors of
decay, where higher-priority tasks have lower factors of delay. This means that the
time a task is permitted to execute dissipates more quickly for a lower-priority task
than for a higher-priority task. That's an elegant solution to avoid maintaining run
queues per priority.

CFS group scheduling

Another interesting aspect of CFS is the concept of group scheduling (introduced
with the 2.6.24 kernel). Group scheduling is another way to bring fairness to
scheduling, particularly in the face of tasks that spawn many other tasks. Consider a
server that spawns many tasks to parallelize incoming connections (a typical
architecture for HTTP servers). Instead of all tasks being treated fairly uniformly,
CFS introduces groups to account for this behavior. The server process that spawns
tasks share their virtual runtimes across the group (in a hierarchy), while the single
task maintains its own independent virtual runtime. In this way, the single task
receives roughly the same scheduling time as the group. You'll find a /proc interface
to manage the process hierarchies, giving you full control over how groups are
formed. Using this configuration, you can assign fairness across users, across
processes, or a variation of each.

Scheduling classes and domains

Also introduced with CFS is the idea of scheduling classes (recall from Figure 2).
Each task belongs to a scheduling class, which determines how a task will be
scheduled. A scheduling class defines a common set of functions (via
sched_class) that define the behavior of the scheduler. For example, each
scheduler provides a way to add a task to be scheduled, pull the next task to be run,
yield to the scheduler, and so on. Each scheduler class is linked with one another in
a singly linked list, allowing the classes to be iterated (for example, for the purposes
of enablement of disablement on a given processor). The general structure is shown
in Figure 3. Note here that enqueue and dequeue task functions simply add or
remove a task from the particular scheduling structures. The function

developerWorks® ibm.com/developerWorks

Inside the Linux 2.6 Completely Fair Scheduler
Page 6 of 10 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

pick_next_task chooses the next task to execute (depending upon the particular
policy of the scheduling class).

Figure 3. Graphical view of scheduling classes

But recall that the scheduling classes are part of the task structure itself (see Figure
2). This simplifies operations on tasks, regardless of their scheduling class. For
example, the following function preempts the currently running task with a new task
(where curr defines the currently running task, rq represents the red-black tree for
CFS, and p is the next task to schedule) from ./kernel/sched.c:

static inline void check_preempt(struct rq *rq, struct task_struct *p)
{

rq->curr->sched_class->check_preempt_curr(rq, p);
}

If this task were using the fair scheduling class, check_preempt_curr() would
resolve to check_preempt_wakeup(). You can see these relationships in
./kernel/sched_rt.c, ./kernel/sched_fair.c and ./kernel/sched_idle.c.

Scheduling classes are yet another interesting aspect of the scheduling changes,
but the functionality grows with the addition of scheduling domains. These domains
allow you to group one or more processors hierarchically for purposes load
balancing and segregation. One or more processors can share scheduling policies
(and load balance between them) or implement independent scheduling policies to
intentionally segregate tasks.

Other schedulers

Work on scheduling continues, and you'll find schedulers under development that
push the boundaries of performance and scaling. Con Kolivas was not deterred by
his Linux experience and has developed another scheduler for Linux with a
provocative acronym: BFS. The scheduler was reported to have better performance

ibm.com/developerWorks developerWorks®

Inside the Linux 2.6 Completely Fair Scheduler
© Copyright IBM Corporation 2009. All rights reserved. Page 7 of 10

http://www.ibm.com/legal/copytrade.shtml

on NUMA systems as well as mobile devices and was introduced into a derivative of
the Android operating system.

Going further

If there's one constant with Linux, it's that change is inevitable. Today, the CFS is
the 2.6 Linux scheduler; but tomorrow, it could be another new scheduler or a suite
of schedulers that can be statically or dynamically invoked. There's also a certain
amount of mystery in the process behind the CFS, RSDL, and kernel inclusion, but
thanks to both Kolivas' and Molnar's work, we have a new level of fairness in 2.6
task scheduling.

developerWorks® ibm.com/developerWorks

Inside the Linux 2.6 Completely Fair Scheduler
Page 8 of 10 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• A red-black tree (or symmetric binary B-tree) is a self-balancing binary tree
invented by Rudolf Bayer. It's a very useful tree representation that has good
worst-case time for operations such as insert, search, and delete. You can find
red-black trees used in a variety of applications, including the construction of
associative arrays.

• Task scheduling is an important aspect to operating system design, from
desktop operating system schedulers to real-time schedulers and embedded
operating system schedulers. These notes from Martin C. Rinard's operating
systems lecture provide a great condensed summary of processor scheduling.

• The big O notation is useful in describing the limiting behavior of a function. This
Wikipedia entry includes great information as well as a useful list of function
classes.

• You can learn more about the Linux O(1) scheduler in the article "Inside the
Linux Scheduler" (developerWorks, June 2006).

• Con Kolivas has been working on new experimental Linux schedulers for some
time. You can learn more about his schedulers, including the Staircase Process
Scheduler and the Rotating Staircase Deadline Scheduler, which ultimately
proved that fair share scheduling was possible.

• Avinesh Kumar provides a good introduction to CFS along with other newly
released features. Check out his article "Multiprocessing with the Completely
Fair Scheduler" (developerWorks, January 2008).

• What would life be without drama? For a behind-the-scenes look at the
development of the CFS, check out this collection of Linux kernel mailing list
posts, which includes Con Kolivas (who introduced the RSDL patch,
implementing the core ideas of the CFS), and Ingo Molnar (the scheduler code
gatekeeper who later introduced his own version of the scheduler after initially
rejecting the ideas behind it). As always, the truth lies somewhere in the middle,
but this interesting article from Kerneltrap uncovers another aspect of open
source development.

• In the developerWorks Linux zone, find more resources for Linux developers,
and scan our most popular articles and tutorials.

• See all Linux tips and Linux tutorials on developerWorks.

• Stay current with developerWorks technical events and Webcasts.

Get products and technologies

• An alternative, BFS scheduler from Con Kolivas is available as a patch for Linux

ibm.com/developerWorks developerWorks®

Inside the Linux 2.6 Completely Fair Scheduler
© Copyright IBM Corporation 2009. All rights reserved. Page 9 of 10

http://en.wikipedia.org/wiki/Red-black_tree
http://williamstallings.com/Extras/OS-Notes/h6.html
http://williamstallings.com/Extras/OS-Notes/h6.html
http://en.wikipedia.org/wiki/Big_O_notation
http://www.ibm.com/developerworks/linux/library/l-scheduler/
http://www.ibm.com/developerworks/linux/library/l-scheduler/
http://kerneltrap.org/node/2744
http://kerneltrap.org/node/2744
http://lwn.net/Articles/224865/
http://www.ibm.com/developerworks/linux/library/l-cfs/index.html
http://www.ibm.com/developerworks/linux/library/l-cfs/index.html
http://kerneltrap.org/node/8059
http://kerneltrap.org
http://www.ibm.com/developerworks/linux/
http://www.ibm.com/developerworks/linux/library/l-top-10.html
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=linux+tip%3A&search_flag=true&type_by=All+Types&show_abstract=true&start_no=1&sort_by=Date&end_no=100&show_all=false
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=&search_flag=&type_by=Tutorials&show_abstract=true&sort_by=Date&end_no=100&show_all=false
http://www.ibm.com/developerworks/offers/techbriefings/
http://en.wikipedia.org/wiki/Brain_Fuck_Scheduler
http://www.ibm.com/legal/copytrade.shtml

desktop systems as well as small mobile devices. Kolivas chose this acronym
(whose name shall not be spoken), because he wanted to raise attention to the
fact that having a scheduler support a massive number of tasks is great but
shouldn't penalize a desktop scheduler built on more modest hardware.

• With IBM trial software, available for download directly from developerWorks,
build your next development project on Linux.

Discuss

• Get involved in the My developerWorks community; with your personal profile
and custom home page, you can tailor developerWorks to your interests and
interact with other developerWorks users.

About the author

M. Tim Jones
M. Tim Jones is an embedded firmware architect and the author of Artificial
Intelligence: A Systems Approach, GNU/Linux Application Programming (now in its
second edition), AI Application Programming (in its second edition), and BSD
Sockets Programming from a Multilanguage Perspective. His engineering
background ranges from the development of kernels for geosynchronous spacecraft
to embedded systems architecture and networking protocols development. Tim is a
Senior Architect for Emulex Corp. in Longmont, Colorado.

developerWorks® ibm.com/developerWorks

Inside the Linux 2.6 Completely Fair Scheduler
Page 10 of 10 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/developerworks/community
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	A short history of Linux schedulers
	An overview of CFS
	CFS internals
	Scheduling classes and domains
	Other schedulers
	Going further
	Resources
	About the author

