
“Operating Systems” Course

Final Examination – Fall 2007

February, 2008

Duration: 2h

ludovic.apvrille@telecom-paristech.fr

No document regarding Operating Systems (OS) or RTOS is allowed. Questions on
OS or RTOS do take into account the fact that you don't have any document on that topic.
The only documents allowed are the three slide sets and the paper that was given to you
during the two following lecture sessions: January 14th and 28th. Having other
documents (or communicating devices) with you shall be considered as a regular cheating
procedure.
Answers should be as concise as possible. Also, you are free to answer either in English
or in French, but please do not mix both!

I. Understanding of the course (7 points)

(a) What are the minimum hardware mechanisms on which an Operating System

must rely to ensure protection between user processes? Clearly explain those
mechanisms (just mentioning them is not enough) and which kind of protection
they provide. (2 points)

(b) What are the actions taken by the Operating System when a user program makes a

call to the write() system call? We assume that this call is performed to write data
in a file. Provide an answer for the two following cases:

a. Files are not cached in main memory. (1.5 points)
b. Files are cached in main memory. (1.5 points)

(c) What are the techniques used in Real-Time Operating Systems to reduce the time
between a timer’s expiration and the notification of that expiration to a user
program? (2 points)

II. Kernel-level programming (8 points)

When programming at kernel level, you may have noticed that it is impossible to use the
malloc() C-library function, but only kmalloc(). Unfortunately, kmalloc() can only return
blocks of memory which size is a power of 2 (equal or greater than 16B, and less or equal
than 128kB). This means that when you allocate some memory with kmalloc(), you may
have unused blocks since kmalloc() allocates more memory than required when you
request sizes are not a power of 2. On the contrary, malloc() returns a block of memory of
the exact required size.

(a) Explain the main steps that happen on UNIX Operating Systems when you start a
program i.e. main actions that are executed (by the Shell from which the program
is started, by the Operating System) when you type the name of an executable file
in a shell until your first C instruction is executed. (2 points)

(b) We now assume that kmalloc() is a system call. Suppose that the implementation

of malloc() C library can only rely on kmalloc() (remember: kmalloc can return
only blocks of memory that are power of 2, equal or greater than 16B, and less or
equal than 128kB). How could malloc() be implemented with limited waste of
memory? I definitely don’t ask you to provide the full C code of your malloc(), I
just ask you to provide main algorithms and data structures that you may need to
implement malloc() in a efficient way. (4 points)

(c) Now, you want to program the free() C-library function. Propose a short

implementation of it that can work conjointly with your malloc() function. This
function is only allowed to make calls to kfree() (we assume that this is a system
call). (2 points)

III. Synchronizing tasks (4 points)

Microsoft Windows Vista provides an EventPair object to help support fast
request/response message passing between client and server threads. EventPair
synchronizes a pair of client / server threads. The server thread waits for a request by
calling Event-Pair::Wait(). The client issues a request by first placing a request message
in a shared memory location, and then by calling EventPair::Handoff(). Handoff wakes
up the server thread and simultaneously blocks the client to wait for the reply. The server
thread eventually responds by placing the reply message in another shared memory
location and then it calls Handoff: this wakes up the client and simultaneously blocks the
server which waits for the next request. Then, the client may consult the response.

(a) Show how to implement EventPair using semaphores. (2 points)

(b) Show how to implement EventPair using mutex and condition variables (2 points)

