
Course Operating Systems

Final Examination – Fall 2005

February, 2005

Duration: 2h

Ludovic.Apvrille@telecom-paris.fr

Authorized documents are limited to course’s slides and to the code you produced during
lab sessions. Calculators are authorized but quite useless. Answers should be as concise
as possible. Also, you are free to answer either in English or in French, but please do not
mix them!

Note: There are several possible solutions, this is no more than a sample. The exam was
long but grading took it into account.

I. Understanding of the course (4 points)

(a) Closely explain the drawbacks of using the micro-kernel approach when
implementing an Operating System?

Microkernels are characterized by their modularity: functionalities are cut into small
pieces inside the kernel or moved to user space as processes. Compared to other kinds of
kernels (monolithic, layered), this results in a performance drawback. Indeed,
communication between kernels’ entities are implemented by message passing, which is
less efficient than direct function calls. In addition, communicating to an entity running
in user space results in context switching.

(b) What is the main interest in using buffers for achieving input/output on devices?

Also, what is double buffering? For what kind of devices is it used? Justify your
answer.

Buffers are used to achieve better performance (it has been seen in labs #1). Indeed,
communicating entities may produce / consume data with at very different rates. Buffers
make it possible to manage this gap.
Double buffering is useful when a data consumer wants to access data while the producer
is still generating new data.

(c) Describe the fundamentals of process signals under UNIX. What were the issues

of applying process signals to threads? How has it been solved?

Under UNIX, signals represent an asynchronous mean for processes to communicate. To
send a signal, a process performs a system call to kill(), and gives as parameter the
target process identifier and the signal number. The OS forwards the signal to the
destination process using in-kernel tables. The signal can either be ignored by the target
process or computed using a registered handler.
Because signal sending takes into account a destination process, this communication
scheme cannot be applied to threads. To apply it to threads, one could for example
implement a system call handling thread identifiers, or allow whatever threads of a
process to deal with signals received by the process. Note that communication between
the threads of the same process is much easier because they share the same address
space.

(d) How are used / implemented interrupt handlers of real-time systems to enhance

the efficiency of these systems?

In real-time systems, efficiency is a matter of giving the computing resource to the task
with the highest priority: interrupts interrupting such tasks should be given the
computing resource during a period of time as small as possible. For this reason,
interrupt handlers are commonly cut into two pieces. The first one is the interrupt
handler which unlocks a process (let’s call it P). The second piece is P. Thus, all
processes with a higher priority than P’s are blocked for a shorter time. Note also that
other techniques used at interrupt handler level make it possible to enhance efficiency:
interrupt masking, interrupt priority, etc.

II. Operating systems’ reliability (4 points)

The following article has been extracted from LinuxWorld.

Linux Kernel 2.6 vs Windows XP: 2.6 Has Far Fewer Bugs
"Well below the industry average for commercial enterprise software," Wired reports
December 15, 2004

Four years ago at the Stanford University Computer Science Research Center an
analysis project began to compare the 5.7 million lines of code in the 2.6 Linux
production kernel with the 40 million lines of code in Windows XP.
According to Wired, the resulting study - which appeared yesterday - shows that, while in
commercial code the industry standard is that there would be expected to be 114,000 to
171,000 bugs in 5.7 million lines of code, in Linux 2.6 there were just 985 bugs.

"This is a benefit to the Linux development community," Andrew Morton, lead Linux
kernel maintainer, told Wired, "and we appreciate Coverity's efforts [Coverity is a

software engineering startup that now employs the five researchers who conducted the
study] to help us improve the security and stability of Linux."

Of the 985 bugs identified, 627 were in critical parts of the kernel, Wired noted, while
"another 569 could cause a system crash, 100 were security holes, and 33 of the bugs
could result in less-than-optimal system performance."

(a) Provide a very short summary of this paper (2 lines).

This short article presents a study demonstrating that Linux has fewer bugs than
Windows XP, with regards to the number of lines of code.

(b) Comment this paper. You should clearly emphasize which issues are raised, how
they are solved, and comment whether results are relevant or not.

The purpose of this study is to compare the reliability of Linux kernel 2.6 with Windows
XP’s. I would not comment the results but rather the way the study was led. As a matter
of fact, in my opinion, the results are not relevant at all.
Indeed, the evaluation process takes into account only one way to evaluate the number of
bugs (source code analysis) and totally ignores the observed reliability of both operating
systems in operation. Also, the evaluation considers all lines of code as equivalent
whereas only a few lines of code of windows out of the 40 millions are really part of the
operating system.

(c) What would be your approach to you compare the number of bugs in two

operating systems?

I would use the proposed approach plus a benchmarking approach. I would run both
operating systems on hundreds of PCs, and compare them for various operations. I
would take into account the availability of these two systems per class of applications
(file server, web server, end-user tools, etc.). With such a study, we might obtain exactly
the results describe in the article, but these results would be much more trustable.

III. Programming with POSIX (6 points)

The goal of this exercise is for you to propose two different implementations of periodic
threads using POSIX primitives (and not primitives specific to RT-Linux). More
precisely, you should propose a C program running a thread that periodically executes a
foo() function. Your first implementation should not use timers whereas the second one
should make use of them.

(a) Your two implementations face a fundamental issue raised by real-time systems.
Explain this issue and explain how you intend to solve it in your implementations.

The purpose of real-time systems is to handle time constraints. Our two implementations
face the problem of handling the periodicity of the thread. More precisely, our
implementation must guarantee that the periodic thread wakes up at the right moment
(not before, not after) and that its periodicity does not drift.

(b) Provide your first implementation (without timer) and explain it. (For example,

you may provide the implementation of a periodic thread calling the function
foo() periodically with a period of 1 ms).

Note: I have simplified the management of time to focus my code on waking-up
management. I assume the function gethrtime() returns the time as a long integer. Also, I
have used a pseudo code to get rid of complex function arguments. Finally, I also assume
that the deadline is smaller than the period.

Thread code:
 long periodNumber = 0;
 long currentTime, wakeupTime, startTime;

long period = 1000000;

 startTime = gethrtime();
 while(1) {
 foo();
 /* Must sleep until the next period */
 /* Danger: we must deal with spurious wake up -> we might be waked up
too early */
 periodNumber ++;
 wakeupTime = periodNumer*period + startTime;
 while(currentTime=gethrtime() < wakeupTime) {
 nanosleep(wakeupTime – currentTime);

}
}

main:
 create the thread with pthread_create.

To be even more precise (i.e to be sure not to wake up too late), it would be better to
wake-up a bit in advance, and to perform a busy waiting for a short period of time
(100useconds for example).

(c) Provide your second implementation (based on timers) and explain it.

Same assumptions are taken (see previous question). In this code, I use a busy waiting to
illustrate it and to be sure to wake-up right on time. Also, I assume that, when the timer
expires, it calls a function thread1.

/* Timer handler */

Function thread1:
 mutex_lock(&mutex);
 pthread_cond_signal(&timerExpired);

mutex_unlock(&mutex);

Thread code:
 long periodNumber = 0;
 long currentTime, timerTime, startTime;

long period = 1000000;

 startTime = gethrtime();
 while(1) {
 /* Must set the timer until the next period */

periodNumber ++;
 timerTime = periodNumer*period + startTime;
 currentTime=gethrtime();

 /* Timer set for a shorter time */

timer_settime(timer, timerTime- currentTime – 100000);

/* Wait for timer to expire */

 mutex_lock(&mutex);
 pthread_cond_wait(&timerExpired, &mutex);
 mutex_unlock(&mutex);

 /* Busy waiting until the right time of wake-up is reached */
 currentTime=gethrtime();
 while (currentTime < timerTime) {

currentTime=gethrtime();
}

/* Call to periodic function */
foo();

}

main:
 create mutex (pthread_mutex_init())
 create condition variable (pthread_cond_init())
 create the timer (timer_create()). We assume that the function thread1 is called
when the timer expires
 create the thread with pthread_create().

IV. Scheduling algorithms (6 points)

We consider the following task set composed of 6 tasks P1, P2, P3, P4, P5, P6.
Notations: Ci and Ti designate respectively the capacity and the period of task Pi.

P1: C1 = 10, T1 = 80, the last 3 units of execution time requires exclusive access to a
resource (protected by a mutex semaphore S) shared with task P4. P1 is periodic and its
relative deadline is equal to 80.

P2: C2 = 20, T2 = 90. P2 is periodic and its relative deadline is equal to 90.

P3: is also periodic but (important !!) is interrupt-driven. It means that all processing is
done by an interrupt routine and cannot be preempted. C3 = 20, T3 = 150; relative
deadline is equal to 150.

P4: C4 = 20, T4 = 200; P4 executes 10 units of time, then requires S for 5 units (in order
to access exclusively to the resource shared with P1) then after releasing S, P4 executes
another 5 time units. P4 is periodic and its relative deadline is 200.

P5: is a periodic task whose execution is split into 2 parts. The first part is interrupt-
driven (no preemption) and has a duration of C5a = 5 units of time. The second part is a
normal task processing of C5b = 15 units of time. T5 = 250. Relative deadline is 250.

P6: C6 = 30, T6 = 300. P6 is periodic and its relative deadline is equal to 300.

We assume that the priorities are allocated according to the Rate Monotonic
method.

Question 1

We consider only tasks P1, P2, P4 in the task set (we do not put the other tasks in
service).

(a) Determine the worst case scenario of execution for the Task P1 assuming no
special algorithm for priority inversion handling.

(b) Determine the worst case scenario of execution for the Task P1 assuming that
Priority Inheritance Protocol is used to manage the semaphore S.

For both cases, give the termination time of task P1.

From now, we assume the protocol PIP for managing semaphore S and all tasks P1
to P6 are present in the system.

Question 2

For each task P1, P2, P3, P4, P5, P6, give the value of their “blocking factor” B1, B2, B3,
B4, B5, B6, if any.

Question 3

Determine if the task set is schedulable under Rate Monotonic. (Use any valid method to
justify your answer)

Question 4
Give the worst termination time of task P6.

