
EURECOM, BasicOS Course, FALL 2024: complementary information on the project

Complementary Information on the Project

Sophie Coudert
Télécom Paris

November 8, 2024

VERSION 0.

1 Client/Server and Sockets

Warning: this presentation assumes an IP address references a single machine (which could be a
virtual machine). In systems, such as cloud systems, an IP address can reference multiple executions
machines (also called nodes).
Roughly speaking, when a client wants to request a service from a server, it sends a message to
an address IP:port, where IP is an "Internet Protocol" address (IPV4 or IPV6) that identifies the
machine in which the service is located on the network, and port (a number) references an address
of a service inside a machine. When a server starts on a machine at address IP, it asks the operating
system to use a given port p. Then, when a message for port p reaches the operating system using
address IP:port, the operating system forwards the message to the server software.
Clients also need an IP:port couple reserved in the computer it runs: this address allows a client
to send messages to servers, and to wait for servers’ answers.
Clients and Servers connect to ports using a syscall called socket. There are two main kind of
sockets:

• connection/listening sockets associated to an address to which clients send connection requests.
This connection mechanism is used by all kind of servers.

• communication/data sockets which offer full duplex communication and are used to exchange
data between the client and the server. The exchanged data depends of the offered service.

The usual way to establish a connection is:

1. the servers "opens" (with a syscall) a listening socket at an IP:port address. It then waits
for clients to connect at this address.

2. a client sends a connection request at the server address.

3. if the server accepts the connection (syscall accept), a (virtual) communication channel is
created by the operating systems at both ends. This commucation channel consists in two
bound communication sockets:

• a client data socket on the client’s machine (at some IP_c:port_c address you don’t need
to know). This is the socket a client can use to read (receiving data from the server) and
write (sending data to the server).

• a dual server data socket on the server’s machine (at some IP_s:port_s address you
don’t need to know), which works similarly to the one of the client.

1



Course BasicOS, Fall 2024, EURECOM Project specification: complementary information

4. client and server exchange data related to the precise service the server offers, generally fol-
lowing some communication conventions/protocol associated to this service.

5. The client or the server closes the connection, using the close syscall.

In this project, you won’t have to worry about points 1-3 above as we provide the client and server
code for this. Your job is to implement point 4, at client and server side, in order to implement the
Eurecom drive.
There are different kinds of sockets (not detailed), but all you need to know is that as the used
sockets in this project are "stream" sockets (also known as TCP sockets), you can use them as
ordinary files, i.e., you can use the read and write syscalls, just like you would do for files. Indeed,
these sockets are considered as file descriptors (i.e., int values), similar to the ones you obtain when
you use open to open a file on your system. Yet, there are three small differences:

• a return value equal to 0 while reading means that the connection has been closed (for files,
the meaning is different. . . ). Note that reading from a closed socket may also return -1 with
error variable errno containing ECONNRESET (for example if the peer did not cleanly closed
the socket).

• if the amount of read data is smaller than the expected one, it does not mean that the end of
file has been reached but that not enough data has currenltly reached the client / server.

• writing to a closed socket causes a SIGPIPE signal, which (by default) makes the program exit.
The instruction signal(SIGPIPE, SIG_IGN); inhibits this signal. After using this instruction,
a write to a closed socket does not lead to an exit anymore, but it returns -1 (i.e., an error),
and the error variable errno contains EPIPE.

Warning: the default behaviour of read is to block until at least one byte is available. So, if
meanwhile the sender has crashed, the receiver is blocked forever.

As a summary, you have to:

• At server side, implement function:
void student_server(int channel, int argc, char *argv[])
where channel is the server data socket used to communicate with the client, us-
ing read and write system calls. argc and argv[] are the usual command line
arguments: they are given as input to student_server to allow you to use them.

• At client side, implement function:
int student_client(int channel, int argc, char *argv[])
where channel is the client data socket used to communicate with the server read
and write system calls. As for previous function, argc and argv[] are the usual
command line arguments.
Returning 0 from this function makes the client exit. Returning any other value
makes the client restart.

Both functions are called just after the dual way communiation channel has been es-
tablished, before any data exchange apart from the necessary messages to establish this
communication channel. When student_server returns (i.e., if no error occured when
the connected client leaves), the server closes the server data socket and waits for the
next client. When student_client returns, the client closes the client data socket (thus,
from the server point of view, the client "leaves"). If the returned value is 0, the program
exits. Otherwise the client tries to reconnect and then calls student_client again.

2



Course BasicOS, Fall 2024, EURECOM Project specification: complementary information

2 Project Structure

The client and server code we provide (so you don’t have to implement: it’s done, please, give us a
good grade!) look like:

student_server.h:
int student_server(int channel, int argc, char *argv[]);

student_client.h:
int student_client(int channel, int argc, char *argv[]);

server.c:
#include "lib/student_server.h"
main:

create listening socket
loop:

print connection IP:port (stdout)
wait for client connection
! client connects !
-> establish channel

(*) student_server(channel,...)
close channel

client.c: (connection IP:port in command line)
#include "lib/student_client.h"
main:

1. connect to server,
i.e. obtain channel

(*) x = student_client(channel,...)
close channel
if x is 0 then exit
otherwise goto 1

Note: also exits if connection fails.
The two lines with an asterisk (*) are the ones where the functions that you have to implement
are called. As you do not need to know the precise C code of the client and the server, they are
not provided as source code but as two library server.o and client.o. Both have been placed
in the lib directory. student_server.h and student_client.h are also provided in the include
directory. Your job is to therefore to complete the student_server.c and student_client.c files
in the usrc directory with your implementation of the service specified in the webpage of the course.
Your code should look like:
usrc/student_server.c:

#include "../include/student_server.h"
... your code ...
void student_server(int channel, int argc, char *argv[]) {

... your code ...
}

usrc/student_client.c:
#include "../include/student_client.h"
... your code ...
int student_client(int channel, int argc, char *argv[]) {

... your code ...
}

The Makefile we provide is ready to compile your code: it handles dependencies in order to
combine all components to produce the two executable files: server and client. This files are
produced in directory bin (and linked in working directories bin/EDserver and bin/EDclient). Of
course, if your code were to grow quite consequently, you could decompose your C file into several
files/libraries. To know how to do this, you can read the provided short introduction to how to
structure a C program (in doc/Cstructuring.pdf).

3



Course BasicOS, Fall 2024, EURECOM Project specification: complementary information

3 Provided Library, Example and Executable

3.1 Provided Functions

To help you, a small and easy-to-understand library provides functions for parsing client’s com-
mands, for printing packets headers (debug for both client and server), and for sorting directory
content in string describing it.
Its header is include/utilities.h (do open this file and look at it). lib/utilities.o is auto-
matically added to the client’s executable file when running make).
The two following functions may help you:

• int parse_commandline(...);
You can directly use this function in your code to parse the command line after getting it from
the user. It checks whether commands are correct and then fills a structure that contains the
command’s arguments as strings. It returns 0 in case of error and a non zero value otherwise.

• char *pkt_string(...);
This function is intended for debugging purpose as observing packet headers content may help
you resolve bugs. The function returns a human readable string which describes the content
of the header of the packet passed as parameter. Warning: any call to this function erases the
content of the previous call.

• int sort_dir(...);
You can directly use this function in your code to sort files w.r.t alphabetical order in a string
describing a directory content. This may be useful to build the string returned by the server
when responding to an ls command. This function returns 0 in case of error and a non zero
value otherwise.

3.2 Provided Example

The skeletons for starting with student_server.c and student_client.c are given in the two
boxes just before. Yet, student_server.c and student_client.c files we provide (in usrc/)
contain an example that should help you understanding how to get some tasks done. Of course this
example does not solve your project, but it shows how to handle packets: formatting them, sending
and receiving them. In particular, it shows how to use the parse_commandline function.
Basically, in our example, the client parses a command line provided by the user and sends a
corresponding packet to the server, which in turn prints them in its terminal. The format of packets
is given as documentation in the source C files of this example. But beware, in this example, the
format of packets is different from the one of your project.
To run this example:

• in the root directory of the project, type make to produce client and server in directory bin.
Directories bin/EDclient and bin/EDserver can be used for testing and debugging. They
contain a link to the executable binaries and some example files.

• in a first terminal, run the server: ./server (in directory bin/EDserver)

• look at the IP:port information printed by the server

• in a second terminal, run the client: ./client IP port (in directory bin/EDclient)

• enter commands in the client terminal and look at the corresponding information printed by
the server in its terminal.

4



Course BasicOS, Fall 2024, EURECOM Project specification: complementary information

The way to compile and start your server and client shall be quite the same. Also, obvisouly, if
you were to decompose your code into different source files, which is probably a good idea, you will
have to accordingly update the Makefile.

3.3 Provided Client and Server Executables

Once you have replaced the example by your code, make should produce both an executable client
and an executable server respecting the project specifications. Actually, we provide our executable
files we have produced form our source code: they are located in tools directory, but of course
without the source code. . . This may be very useful for debugging your code. Indeed, to debug your
client, it is convenient to have a reliable server (our server). Reciprocally it is convenient to have a
reliable client to debug your server.
Moreover, these two executable files have additional options and features, i.e., it contains features not
specified in the project specification: Look at the README file in the tools directory. In particular,
you can trigger the printing of the headers of the exchanged packets (printed in terminals). You
can also start our client and server in a buggy mode to observe how errors are handled at the other
side by your client or server.

4 Advices and Remarks

Messages and error messages
The client and server we provide print many messages for debug purpose, in particular detailed
error message. This may be very useful to understand what happens in particular in case of error.
You don’t have to produce so many messages with so detailed information. Only the errors specified
in the project specification’s web page are required. However it is strongly recommended that you
print other significant error messages when relevant as it may help you to debug your own code.
Blocking programs, and more. . .
One common reason for a program to block is to enter into an infinite loop. In the provided
environment, the read syscall on sockets blocks when no data is available in this socket1, thus
waiting for data to arrive. So, if data never arrives, read blocks foerever . . . For this reason you
have to know which amount of data is to be read. The packet header is of fixed size, so no problem
for the header. When the packet contains data of variable size, the total size if data is given in the
header. So, after having read this header, you can deduce the amount of data to be read in the
data field of packets. Last, if you have made an error when computing data size of previous packet,
this error could impact next packets since what you read could be data of the previous packet.
Structuring the code
Since your code is likely to be much larger than the code you have produced during labs, we do
suggest to plit your code in different C source files. For example, both sides (client and server) have
to send and receive packets. Thus it could be a good idea to put the common communication code in
a communication library which can be included by both sides. The provided example illustrates this
practice. You can obvisouly develop any other library that could be necessary for your project. The
document doc/Cstructuring.pdf should help you to better understand how to develop libraries.
The provided project specifically contains directories for user libraries:

• uinclude (for "user include") to put your library headers (.h files).

• usrc (for "user source") to put your library source code (.c files).

• ulib (for "user libraries") to put your library objects files (.o files, generated by make).

• bin (for "binaries") to put binaries build by make).
1Other choices are possible but lead to more subtle and complex handling of communications.

5



Course BasicOS, Fall 2024, EURECOM Project specification: complementary information

include and lib are reserved for the libraries we provide. Last but not least, if you were to add
libraries, you will of course have to modify the Makefile. For this you can rely on the provided
example.

Syscall and LibC Functions that may be useful (this list is not exhaustive)

• open and write syscalls

• lseek (less probably fseek, ftell) to find file sizes.

• perror and strerror to print error messages associated to error codes errno. errno is set
each time you call a function (syscall or function of the libC)

• opendir, readdir and closedir to handle directories and their content.

• unlink to remove a directory entry.

• rename. . .

6


