
Pledge on honor

1. Carefully read the text below

2. Once you have understood this text, and agreed with it, recopy it in the text
field below.

3. Once you have recopied this text, you can proceed to the end of the quizz and
to the final exam

Pledge on honor

C program

Check all the true claims about a c program

The execution of a C program creates a new process in the OS if enough
memory is available

The main function of a C program cannot call sub-functions

A call to exit() makes the program returns to the OS after cleanup handlers
have been called

A call to_exit() provokes the immediate end of the program

When calling _exit(), no allocated resources are freed by the OS

Compilation and OS

Check all the true claims about compilation of a C program P.

Once compiled, P can always be executed on another computer running the
same Operating System

Once compiled, P can be executed on another computer running the same
Operating System and having the same hardware architecture

The compilation of P generates an executable file only if no errors are
detected by the compiler

The compilation of P generates an executable file only if no warnings are
detected by the compiler

Data streams of processes

Check all the true claims about data streams of processes.

A process has 3 default data streams

The standard output stream (stdout) of a process can be redirected to the
standard error stream (stderr)

The output stream of a process can be redirected to the input stream of a
process

"$ ls | grep bin" creates two processes, with the first one forwarding its
output data stream to the input data stream of the second.

Files cannot be used as input data stream

gcc

Check all the true claims about the C compiler "gcc".

gcc can take as input a C file from which it can generate an executable file
specific to the OS

gcc can print all warnings of the C input code when required

An executable file generated by gcc can be executed only once

Inter Process Communication

Check all the true claims about Inter Process Communications.

In the shell, the "|" symbol represents a communication between two
processes

Memory can be shared between processes without the permission of the OS

Files can be used to exchange data between processes

The ">" symbol of the shell cannot be used to store information in files

Inter Process Communication: the basics

Check all the true claims about the communication between processes.

Processes can share part of their memory without asking the OS

OS can prevent processes from communicating together

Killing a process is a communication from the sending process to the killed
process

ls | grep "*.tgz is a shell command that uses communication between
processes

Entering CTRL-C is handled as a communication between two processes

Malloc() and Brk()

Check all the true claims about brk() and malloc(). To help you, we provide the
manul page of brk() below.

--

BRK(2) Linux Programmer's
Manual BRK(2)

NAME
 brk, sbrk - change data segment size

SYNOPSIS
 #include <unistd.h>

 int brk(void *addr);

 void *sbrk(intptr_t increment);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 brk(), sbrk():
 Since glibc 2.19:
 _DEFAULT_SOURCE ||
 (_XOPEN_SOURCE >= 500) &&
 ! (_POSIX_C_SOURCE >= 200112L)
 From glibc 2.12 to 2.19:
 _BSD_SOURCE || _SVID_SOURCE ||
 (_XOPEN_SOURCE >= 500) &&
 ! (_POSIX_C_SOURCE >= 200112L)
 Before glibc 2.12:
 _BSD_SOURCE || _SVID_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
 brk() and sbrk() change the location of the program break, which defines
the end of the process's data segment (i.e., the
 program break is the first location after the end of the uninitialized data
segment). Increasing the program break has the
 effect of allocating memory to the process; decreasing the break deallocates
memory.

 brk() sets the end of the data segment to the value specified by addr, when
that value is reasonable, the system has enough
 memory, and the process does not exceed its maximum data size (see
setrlimit(2)).

 sbrk() increments the program's data space by increment bytes. Calling
sbrk() with an increment of 0 can be used to find
 the current location of the program break.

RETURN VALUE
 On success, brk() returns zero. On error, -1 is returned, and errno is set to
ENOMEM.

 On success, sbrk() returns the previous program break. (If the break was
increased, then this value is a pointer to the
 start of the newly allocated memory). On error, (void *) -1 is returned, and
errno is set to ENOMEM.

CONFORMING TO
 4.3BSD; SUSv1, marked LEGACY in SUSv2, removed in POSIX.1-2001.

NOTES
 Avoid using brk() and sbrk(): the malloc(3) memory allocation package is
the portable and comfortable way of allocating memory.

 Various systems use various types for the argument of sbrk(). Common are
int, ssize_t, ptrdiff_t, intptr_t.

 C library/kernel differences
 The return value described above for brk() is the behavior provided by the
glibc wrapper function for the Linux brk() system
 call. (On most other implementations, the return value from brk() is the
same; this return value was also specified in
 SUSv2.) However, the actual Linux system call returns the new program
break on success. On failure, the system call re-
 turns the current break. The glibc wrapper function does some work (i.e.,
checks whether the new break is less than addr)
 to provide the 0 and -1 return values described above.

 On Linux, sbrk() is implemented as a library function that uses the brk()
system call, and does some internal bookkeeping so
 that it can return the old break value.

SEE ALSO
 execve(2), getrlimit(2), end(3), malloc(3)

COLOPHON
 This page is part of release 4.16 of the Linux man-pages project. A
description of the project, information about reporting
 bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.

Linux

2016-03-15 BRK(2)

This manual page of brk() applies to all Linux 4 versions

brk() can be used to allocate memory

brk() can be used to disallocate memory

malloc() can be used to allocate memory

malloc() can be used to disallocate memory

brk() is a syscall

malloc() is a syscall

brk() fails if not enough memory is available

Malloc: memory areas

Check all the true claims about malloc().

malloc() can be used to allocate the mémory of global variables

malloc() can be used to allocate memory on the stack

malloc() can be used to allocate memory on the heap

malloc() can be used to allocate memory for the code of the program

Manual page of mq_receive

Check all the true claims about the manual page of mq_receive provided below.

--

MQ_RECEIVE(3) Linux Programmer's
Manual MQ_RECEIVE(3)

NAME
 mq_receive, mq_timedreceive - receive a message from a message queue

SYNOPSIS
 #include <mqueue.h>

 ssize_t mq_receive(mqd_t mqdes, char *msg_ptr,
 size_t msg_len, unsigned int *msg_prio);

 #include <time.h>
 #include <mqueue.h>

 ssize_t mq_timedreceive(mqd_t mqdes, char *msg_ptr,
 size_t msg_len, unsigned int *msg_prio,
 const struct timespec *abs_timeout);

 Link with -lrt.

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 mq_timedreceive():
 _POSIX_C_SOURCE >= 200112L

DESCRIPTION
 mq_receive() removes the oldest message with the highest priority from
the message queue referred to by the message queue de-
 scriptor mqdes, and places it in the buffer pointed to by msg_ptr. The
msg_len argument specifies the size of the buffer pointed
 to by msg_ptr; this must be greater than or equal to the mq_msgsize
attribute of the queue (see mq_getattr(3)). If msg_prio is
 not NULL, then the buffer to which it points is used to return the priority
associated with the received message.

 If the queue is empty, then, by default, mq_receive() blocks until a message
becomes available, or the call is interrupted by a
 signal handler. If the O_NONBLOCK flag is enabled for the message
queue description, then the call instead fails immediately
 with the error EAGAIN.

 mq_timedreceive() behaves just like mq_receive(), except that if the queue
is empty and the O_NONBLOCK flag is not enabled for
 the message queue description, then abs_timeout points to a structure
which specifies how long the call will block. This value
 is an absolute timeout in seconds and nanoseconds since the Epoch,
1970-01-01 00:00:00 +0000 (UTC), specified in the following
 structure:

 struct timespec {
 time_t tv_sec; /* seconds */
 long tv_nsec; /* nanoseconds */
 };

 If no message is available, and the timeout has already expired by the time
of the call, mq_timedreceive() returns immediately.

RETURN VALUE
 On success, mq_receive() and mq_timedreceive() return the number of
bytes in the received message; on error, -1 is returned, with
 errno set to indicate the error.

No specific include is necessary for using mq_receive()

mq_receive() is a syscall

An extra library must be added to the compilation line to use mq_receive()

O_NONBLOCK cannot be used with mq_timedreceive()

mq_receive() always returns the number of bytes read

Manual page of write

Check all the true claims about the following manual page

--

WRITE(2) Linux Programmer's
Manual WRITE(2)

NAME
 write - write to a file descriptor

SYNOPSIS
 #include <unistd.h>

 ssize_t write(int fd, const void *buf, size_t count);

DESCRIPTION
 write() writes up to count bytes from the buffer starting at buf to the file
referred to by the file descriptor fd.

 The number of bytes written may be less than count if, for example, there is
insufficient space on the underlying physical
 medium, or the RLIMIT_FSIZE resource limit is encountered (see
setrlimit(2)), or the call was interrupted by a signal han-
 dler after having written less than count bytes. (See also pipe(7).)

 For a seekable file (i.e., one to which lseek(2) may be applied, for
example, a regular file) writing takes place at the
 file offset, and the file offset is incremented by the number of bytes actually
written. If the file was open(2)ed with
 O_APPEND, the file offset is first set to the end of the file before writing.
The adjustment of the file offset and the
 write operation are performed as an atomic step.

 POSIX requires that a read(2) that can be proved to occur after a write() has
returned will return the new data. Note that
 not all filesystems are POSIX conforming.

 According to POSIX.1, if count is greater than SSIZE_MAX, the result is
implementation-defined; see NOTES for the upper
 limit on Linux.

RETURN VALUE
 On success, the number of bytes written is returned (zero indicates nothing
was written). It is not an error if this num-
 ber is smaller than the number of bytes requested; this may happen for
example because the disk device was filled. See
 also NOTES.

 On error, -1 is returned, and errno is set appropriately.

 If count is zero and fd refers to a regular file, then write() may return a
failure status if one of the errors below is
 detected. If no errors are detected, or error detection is not performed, 0
will be returned without causing any other ef-
 fect. If count is zero and fd refers to a file other than a regular file, the
results are not specified.

write() is a system call

To compile a C program with write(), unistd.h must be included

write() takes as input 3 parameters

write() always returns the number of written bytes

When write() returns less than "count", an error occurred in the system

Written bytes are always placed at the beginning of a file

Manual pages

Check all the true claims about manual pages.

Manual pages are divided in sections

Section 2 of manual pages is for system calls

Section 2 of manual pages is specific to the installed kernel

Manual pages give information about the functions of the C library (a.k.a.
libc)

Memory allocation

Check all the true claims about the execution of the C code provided below.

--

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

int funnyAllocation(char *buf, int b) {
 buf = (char *) (malloc(sizeof(char) * 5));
 strcpy(buf, "hello");

 return 7;
}

int main(int argc, char*argv[]) {
 int b = 3;

 char *buf = (char *) (malloc(sizeof(char) * 5));

 int returned = funnyAllocation(buf, b);

 printf("The content of buf is: %s\n", buf);
}

argc is not used

The execution can provoke a memory allocation error

hello is printed in the standard output

Memory allocation: At run time or not?

Check the memory sections of processes containing memory dynamically
allocated during run time

Global variables

Code of the program

Stack

Heap

Memory management

Check all the true claims about memory management.

OS translates logical memory addresses into physical addresses each time a
user process performs a read/write operation in physical memory

OS configures the Memory Management Unit for address translation

Memory Management Unit must be configured by user processes before
accessing to the physical memory

Programmers usually directly use system calls to allocate memory

Message queues: Linux kernel code

The following code is taken from the ipc/msg.c file of the Linux Kernel 4.19.225.
Check all the true claims that follow.

/**
 * newque - Create a new msg queue
 * @ns: namespace
 * @params: ptr to the structure that contains the key and msgflg
 *
 * Called with msg_ids.rwsem held (writer)
 */
static int newque(struct ipc_namespace *ns, struct ipc_params *params)
{
 struct msg_queue *msq;
 int retval;
 key_t key = params->key;
 int msgflg = params->flg;

 msq = kvmalloc(sizeof(*msq), GFP_KERNEL);
 if (unlikely(!msq))
 return -ENOMEM;

 msq->q_perm.mode = msgflg & S_IRWXUGO;
 msq->q_perm.key = key;

 msq->q_perm.security = NULL;
 retval = security_msg_queue_alloc(&msq->q_perm);
 if (retval) {
 kvfree(msq);
 return retval;
 }

 msq->q_stime = msq->q_rtime = 0;
 msq->q_ctime = ktime_get_real_seconds();
 msq->q_cbytes = msq->q_qnum = 0;
 msq->q_qbytes = ns->msg_ctlmnb;
 msq->q_lspid = msq->q_lrpid = NULL;
 INIT_LIST_HEAD(&msq->q_messages);
 INIT_LIST_HEAD(&msq->q_receivers);
 INIT_LIST_HEAD(&msq->q_senders);

 /* ipc_addid() locks msq upon success. */
 retval = ipc_addid(&msg_ids(ns), &msq->q_perm, ns->msg_ctlmni);
 if (retval < 0) {
 ipc_rcu_putref(&msq->q_perm, msg_rcu_free);
 return retval;
 }

 ipc_unlock_object(&msq->q_perm);

 rcu_read_unlock();

 return msq->q_perm.id;
}

The function creates a new message

The function returns a pointer to a message queue

This function returns an error if no "id" is available

The function allocates a new structure but has to disallocate it in case of
error

The created object can handle receivers

Processor execution mode

Processors usually have two executions modes: the kernel mode, and the user
mode. Check all the true claims among the following ones.

Privileged assembly instructions can be executed only in user mode

Switching from user mode to kernel mode requires a privileged assembly
instruction

The administrator (i.e., root) of a machine can only execute privileged
assembly instructions

Interrupt handlers are executed in kernel mode

System calls are executed in kernel model

Sending and receiving signals

Check all the correct claims which concern the code below.
The following code makes it possible to exchange signals between a sender and a
receiver. We assume that the receiver is started a few seconds before the sender.
Also, the command line to start the sender provides the process id of receiver.
Last but not least, we assume that all works as expected (no process is killed
during execution, etc.)

Receiver code:
void getSignal(int signo) {

if (signo == SIGUSR1) {
printf("Received SIGUSR1\n");
} else {
printf("Received%d\n", signo);
}

}

int main(void) {
printf("Registering SIGUSR1 signal / #SIGUSR1=%d\n", SIGUSR1);
signal(SIGUSR1, getSignal);
sleep(30);

}

Sender code:
int main(int argc, char**argv) {
int pid;
if (argc <2) {
printf("Usage: sender <destination process pid>\n");
exit(-1);
}
pid = atoi(argv[1]);
printf("Sending SIGURG to %d\n", pid);
kill(pid, SIGURG);
printf("Sending SIGUSR1 to %d\n", pid);
kill(pid, SIGUSR1);
printf("Sending SIGUSR1 to %d\n", pid);
kill(pid, SIGUSR1);

}

getSignal() is called at most three times

getSignal() is called at most two times

getSignal() is called at most one time

If SIGKILL were to be sent at first by sender instead of SIGURG, the
behavior of the receiver would be different
behavior of receiver would be the same.

The value returned by all system calls are checked for errors

Sending and receiving signals

Check all the correct claims which concern the code below.

The following code makes it possible to exchange signals between a sender and a
receiver. We assume that the receiver is started a few seconds before the sender.
Also, the command line to start the sender provides the process id of receiver.
Last but not least, we assume that all works as expected (no process is killed
during execution, etc.)

Receiver code:

void getSignal(int signo) {

 if (signo == SIGUSR1) {
 printf("Received SIGUSR1\n");
 } else {
 printf("Received%d\n", signo);
 }

}

int main(void) {
 printf("Registering SIGUSR1 signal / #SIGUSR1=%d\n", SIGUSR1);
 signal(SIGUSR1, getSignal);
 sleep(30);
}

Sender code:

int main(int argc, char**argv) {

 int pid;
 if (argc <2) {
 printf("Usage: sender <destination process pid>\n");
 exit(-1);
 }
 pid = atoi(argv[1]);
 printf("Sending SIGURG to %d\n", pid);
 kill(pid, SIGURG);
 printf("Sending SIGUSR1 to %d\n", pid);
 kill(pid, SIGUSR1);
 printf("Sending SIGUSR1 to %d\n", pid);
 kill(pid, SIGUSR1);
 }

getSignal() is called three times

The return values of all system calls are checked for errors

getSignal() is called two times

getSignal() is called one time

If SIGKILL were to be sent at first by sender instead of SIGURG, the
behavior of receiver would be the same.

Stat on a file

Check all the true claims about the result of the stat command given below.

--

$ stat test
 File: test
 Size: 8811 Blocks: 24 IO Block: 4096 regular file
Device: fd01h/64769d Inode: 22814078 Links: 1
Access: (0644/-rw-r--r--) Uid: (8003/apvrille) Gid: (105/soc_staff)
Access: 2022-09-16 18:10:22.641433749 +0200
Modify: 2022-09-16 18:10:22.625433571 +0200
Change: 2022-09-16 18:10:22.625433571 +0200
 Birth: -
\end{lstlisting}

All persons belonging to the "soc_staff" group can modify "test"

"test" is a directory

As a student, you can read the content of "test"

"test" uses 22814078 inodes on the disk

System calls vs. librady functions

Which following claims are correct? Thee claims are related to the differences
between system calls and functions of libraries.

System calls can execute privileged assembly instructions but functions of
libraries cannot

The manual pages of system calls are listed in a different section than the
ones of library functions

There are more system calls than functions of libraries

Function of libraries cannot call memory allocations routines while system
calls can

The kill bash command

Check all the true claims about the manual page of kill(1) provided below.

--

KILL(1) User
Commands KILL(1)

NAME
 kill - send a signal to a process

SYNOPSIS
 kill [options] <pid> [...]

DESCRIPTION
 The default signal for kill is TERM. Use -l or -L to list available signals.
Particularly useful signals include HUP,
 INT, KILL, STOP, CONT, and 0. Alternate signals may be specified in three
ways: -9, -SIGKILL or -KILL. Negative PID val-
 ues may be used to choose whole process groups; see the PGID column in
ps command output. A PID of -1 is special; it indi-
 cates all processes except the kill process itself and init.

OPTIONS
 <pid> [...]
 Send signal to every <pid> listed.

 -<signal>
 -s <signal>
 --signal <signal>
 Specify the signal to be sent. The signal can be specified by using
name or number. The behavior of signals is ex-
 plained in signal(7) manual page.

 -l, --list [signal]
 List signal names. This option has optional argument, which will
convert signal number to signal name, or other way
 round.

 -L, --table
 List signal names in a nice table.

 NOTES Your shell (command line interpreter) may have a built-in kill
command. You may need to run the command described

 here as /bin/kill to solve the conflict.

EXAMPLES
 kill -9 -1
 Kill all processes you can kill.

 kill -l 11
 Translate number 11 into a signal name.

 kill -L
 List the available signal choices in a nice table.

 kill 123 543 2341 3453
 Send the default signal, SIGTERM, to all those processes.

SEE ALSO
 kill(2), killall(1), nice(1), pkill(1), renice(1), signal(7), skill(1)

kill can only be used to terminate a process

kill takes as input at least one process id or -1

-9 is a process id

kill -9 -1 terminates all processes of the OS

Specifiying a signal number is optional

The kill command accepts more than one pid

When will my program crash?

The following program has a memory allocation issue. At which loop index will our
program generate a segmentation fault?

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char ** argv) {
 char *name;

 long long i;

 name = (char *) (malloc (20 * sizeof (char)));

 for(i=0; i>-1; i++) {
 name[i] = (char)i;
 printf("i=%lld\n", i);
 }

}

We cannot predict exactly, but it may crash when i >= 20

At i = 0

At i = 20

At i = 21

at i = 19

Segmentation fault or not?

Does this program always provoke a segmentation fault?

#include <stdlib.h>

int main(int argc, char ** argv) {
 char *name;

 name = (char *) (malloc (20 * sizeof (char)));
 name[22] = 'h';
}

True
False

Envoyer

