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Abstract. Cardiac computed tomography (CT) scans include approx-
imately 2/3 of the lung and can be obtained with low radiation expo-
sure. Large cohorts of population-based research studies reported high
correlations of emphysema quantification between full-lung (FL) and
cardiac CT scans, using thresholding-based measurements. This work
extends a hidden Markov measure field (HMMF) model-based segmen-
tation method for automated emphysema quantification on cardiac CT
scans. We show that the HMMF-based method, when compared with
several types of thresholding, provides more reproducible emphysema
segmentation on repeated cardiac scans, and more consistent measure-
ments between longitudinal cardiac and FL scans from a diverse pool of
scanner types and thousands of subjects with ten thousands of scans.

1 Introduction

Pulmonary emphysema is defined by a loss of lung tissue in the absence of
fibrosis, and overlaps considerably with chronic obstructive pulmonary disease
(COPD). Full-lung (FL) quantitative computed tomography (CT) imaging is
commonly used to measure a continuous score of the extent of emphysema-like
lung tissue, which has been shown to be reproducible [1], and correlates well
with respiratory symptoms [2]. Cardiac CT scans, which are commonly used for
the assessment of coronary artery calcium scores to predict cardiac events [3],
include about 70 % of the lung volume, and can be obtained with low radiation
exposure. Despite missing apical and basal individual measurements, emphysema
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quantification on cardiac CT were shown to have high reproducibility and high
correlation with FL measures [4], and correlate well with risk factors of lung
disease and mortality [5] at the population-based level. With the availability of
large-scale well characterized cardiac CT databases such as the Multi-Ethnic
Study of Atherosclerosis (MESA) [6,7], emphysema quantification on cardiac
scans has now been actively used in various population-based studies [8].

However, currently used methods for emphysema quantification on cardiac
scans rely on measuring the percentage of lung volume (referred to as %emph)
with intensity values below a fixed threshold. Although thresholding-based meth-
ods are commonly used in research, they can be very sensitive to factors leading
to variation in image quality and voxel intensity distributions, including varia-
tions in scanner type, reconstruction kernel, radiation dose and slice thickness.

To study %emph on heterogeneous datasets of FL scans, density correction
[9], noise filtering [10,11] and reconstruction-kernel adaptation [12] have been pro-
posed. These approaches consider only a part of the sources of variation, and their
applicability to cardiac scans has not been demonstrated. Superiority of a segmen-
tation method based on Hidden Markov Measure Field (HMMF) to thresholding-
based measures and these correction methods was demonstrated in [13,14] on
FL scans. In this work, we propose to adapt the parameterization of the HMMF
model to cardiac scans from 6,814 subjects in the longitudinal MESA Lung Study.
Results compare HMMF and thresholding-based %emph measures for three met-
rics: (1) intra-cardiac scan reproducibility, (2) longitudinal correlation on “nor-
mal” subjects (never-smokers without respiratory symptoms or disease [15]), and
(3) emphysema progression on “normal” and “disease” subjects.

2 Method

2.1 Data

The MESA Study consists of 6,814 subjects screened with cardiac CT scans
at baseline (Exam 1, 2000–2002), and with follow-up scans in Exam 2 to 4
(2002–2008). Most subjects had two repeated cardiac scans per visit (same scan-
ner). Among these subjects, 3,965 were enrolled in the MESA Lung Study and
underwent FL scans in Exam 5 (2010–2012). Cardiac scans were collected using
either an EBT scanner from GE, or six types of MDCT scanners from GE or
Siemens (details in [4]). The average slice thickness is 2.82 mm, and in-plane reso-
lution is in the range [0.44, 0.78] mm. Lung segmentation was performed with the
APOLLO R© software (VIDA Diagnostics, Iowa). FL scans were cropped (remov-
ing apical and basal lung) to match the cardiac scans field of view. Longitudinal
correlation of lung volumes in incremental cardiac exams is in the range [0.84,
0.95]. Cardiac scans were acquired at full inspiration with cardiac and respiration
gating, while FL scans were acquired at full inspiration without cardiac gating.

For this study, we selected a random subset of 10,000 pairs of repeated cardiac
scans with one in each pair considered as the “best” scan in terms of inflation
or scan quality [8]. Out of these 10,000 pairs, 379 pairs were discarded due
to corruption in one scan during image reconstruction or storage, detected via
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Fig. 1. (a) Illustration of fitting lung-field intensity with skew-normal distribution on
three cardiac scans. (b) Population average of %emphHMMF (mB(λ)) measured from
normal subjects on four baseline cardiac scanners (SB) versus λ values. (c) [top] Outside
air mean value (HU) per subject and per scanner used to tune μE ; [bottom] Initial μN

value (HU) per subject and per scanner.

Table 1. Year and number of MESA cardiac/FL CT scans evaluated.

MESA Exam # 1 2 3 4 5

Year start-end 2000-02 2002-04 2004-05 2005-08 2010-12

# of subjects available in MESA 6,814 2,955 2,929 1,406 3,965

# of normal subjects evaluated 741 261 307 141 827

Total # of scans evaluated 6,088 (×2) 1,164 (×2) 1,645 (×2) 724 (×2) 2,984

abnormally high values of mean and standard deviation of outside air voxel
intensities (cf. Fig. 1(c) for ranges of normal values). The selected subset involves
6,552 subjects, among which 2,984 subjects had a FL scan in Exam 5, and 827
are “normals”, as detailed in Table 1. Overall, we processed a grand total of
9,621 pairs of repeated cardiac scans, 3,508 pairs of “best” longitudinal cardiac
scans, and 5,134 pairs of “best” cardiac-FL scans.

2.2 HMMF-Based Emphysema Segmentation

The HMMF-based method [13] enforces spatial coherence of the segmentation,
and relies on parametric models of intensity distributions within emphysema-
tous and normal lung tissue. It uses a Gaussian distribution NE(θE) for the
emphysema class and a skew-normal distribution NN (θN ) for normal lung tis-
sue. We found the skew-normal distribution model to be applicable to cardiac
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scans. Figure 1(a) gives examples of histogram fitting results for three cardiac
scans from normal subjects.

For a given image I : Ω → R, the HMMF estimates on Ω the continuous-
valued measure field q ∈ [0, 1] by maximizing the posterior distribution P for q
and the associated parameter vector θ = [θE , θN ] expressed as:

P (q, θ|I) =
1
R

P (I|q, θ)Pq(q)Pθ(θ) (1)

where R is a normalization constant. The Markov random field (MRF) vari-
able q is a vector q = [qE , qN ], representing the intermediate labeling of both
classes. Emphysema voxels are selected as {v ∈ Ω|qE(v) > qN (v)}, from which
%emphHMMF is computed. The distribution Pq(q) enforces spatial regularity
via Markovian regularization on neighborhood cliques C and involves a weight
parameter λ in the potential of the Gibbs distribution. The likelihood P(I|q, θ)
requires initialization of parameter values for both classes, which are tuned in
this work to handle the heterogeneity of the dataset, as described below.

Parameter Tuning for Cardiac Scans. The parameters of intensity distrib-
utions are θE = [μE , σE ], θN = [μN , σN , αN ] where μ denotes the mean, σ the
standard deviation and α the skewness of respective classes.

Likelihood for Normal Lung Tissue: The standard deviation σN and the
skewness αN are assumed to be sensitive to scanner-specific image variations.
They are tuned separately for each scanner type by averaging on the subpopula-
tion of normal subjects, after fitting their intensity histograms. The initial value
of mean μN is sensitive to inflation level and morphology and therefore made
subject-specific via fitting individual intensity histograms with the pre-fixed σN

and αN . Measured initial μN values are plotted in Fig. 1(c).

Likelihood for Emphysema Class: The initial value of mean μE is set to
the average scanner-specific outside air mean intensity value, learned on a sub-
population of both normal and disease subjects from each scanner type, and
illustrated in Fig. 1(c). The standard deviation σE is set to be equal to the
scanner-specific σN since the value of σ is mainly affected by image quality.

Cliques: To handle the slice thickness change from FL (mean 0.65 mm) to car-
diac CT (mean 2.82 mm), the spatial clique is set to 8-connected neighborhoods
in 2-D planes instead of 26-connected 3-D cliques used in [13].

Regularization Weight λ: The regularization weight λ is made scanner-
specific to adapt to image quality and noise level. We note mX the population
average of %emphHMMF measures on normal subjects using scanners in category
X. There are three scanner categories: scanners used only at baseline (SB), scan-
ners used at baseline and some follow-up times (SBF ) and scanners used only at
follow-up (SF ). For each scanner in SB and SBF , we chose, via Bootstrapping,
the λB values that returns mB(λB) = 2% (i.e. a small arbitrary value). The
selection process is illustrated in Fig. 1(b). For scanners in SBF , the same λB
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values are used at follow-up times, leading to population %emphHMMF averages
mBF (λB). Finally, the λF are chosen such that mBF (λB) = mF (λF ).

Parameter Tuning for FL Scans. Parameters for the segmentation of FL
scans with HMMF were tuned similarly to [13], except for λ and the initial val-
ues of μN and μE . In [13], scans reconstructed with a smooth kernel were used
as a reference to set λ for noisier reconstructions. In this work, having only one
reconstruction per scan, we propose to use the progression rate of %emph mea-
sured on longitudinal cardiac scans from the subpopulation of normal subjects.
We set mFL(λFL) = mpr with mpr the predicted normal population average of
%emph at the time of acquisition of the FL scans, based on linear interpola-
tion of anterior progression rates. This leads to λFL in the range [3, 3.5] for the
different scanners, which is quite different from the range of λ values tuned on
cardiac scans (cf. Fig. 1(b)).

2.3 Quantification via Thresholding (%emph−950)

Standard thresholding-based measures %emph−950 were obtained for compari-
son, using a threshold value of reference Tref . Among standard values used by
radiologists, Tref = −950HU was found to generate higher intra-class correlation
and lower maximal differences on a subpopulation of repeated cardiac scans.

For reproducibility testing on repeated cardiac scans (same scanner), an addi-
tional measure %emph−950G was generated after Gaussian filtering, which was
shown to reduce image noise-level effect in previous studies [13]. The scale para-
meter of the Gaussian filter is tuned in the same manner as λ for the HMMF (i.e.
matching average values of %emph−950G on normal subpopulations with the ref-
erence values). This leads to scale parameter values in the range [0.075, 0.175].

For longitudinal correlations, an additional measure %emph−950C was com-
puted correcting Tref with respect to the scanner-dependent bias observed on
mean outside air intensity values (μE), as: Tref = −950 + (μE − (−1000)) HU.

3 Experimental Results

3.1 Intra-Cardiac Scan Reproducibility

Intraclass Correlation (ICC) on Repeated Cardiac Scans. Scatter plots
and ICC (average over Exams 1–4) of %emph in 9,621 pairs of repeat cardiac
scans are shown in Fig. 2(a). All three measures show high reproducibility (ICC
> 0.98). %emph−950G provides minor improvement compared with %emph−950,
which may be explained by the low noise level in MESA cardiac scans.

SpatialOverlap of EmphysemaMasks onRepeatedCardiac Scans. Lung
masks of repeated cardiac scans were registered with FSL [16], using a similar-
ity transform (7 degrees of freedom). Spatial overlap of emphysema was measured
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Fig. 2. Reproducibility of %emph measures on repeated cardiac scans: (a) Intraclass cor-
relation (ICC) (N = 9,621); (b) Dice of emphysema mask overlap for disease subjects (N
= 471); (c) Example of emphysema spatial overlap on a baseline axial slice from a pair of
repeated cardiac scans (TP = true positive, FN = false negative, FP = false positive.)

with the Dice coefficient, on subjects with %emph−950 > 5% (N = 471). Scat-
ter plots and average values of Dice are reported in Fig. 2(b). Except for very few
cases, HMMF returned higher overlap measures than thresholding, with an aver-
age Dice = 0.61, which is comparable to the value achieved on FL scans (0.62) [14].
Figure 2(c) gives an example of spatial overlaps of emphysema segmented on a pair
of repeated cardiac scans, where there is less disagreement with HMMF.

3.2 Longitudinal Correlation and Progression of %emph

Pairwise Correlation on Longitudinal Cardiac Scans. For longitudinal
cardiac scans, we correlated all baseline scans and follow-up scans acquired
within a time interval of 48 months, in the population of normal subjects, who
are expected to have little emphysema progression over time (only due to aging).
Figure 3(a) shows that %emphHMMF measures return the highest pair-wise cor-
relations on longitudinal cardiac scans, followed by %emph−950C measures.

Emphysema Progression. Differential %emph scores Δ were computed at
follow-up times t to evaluate emphysema progression, as: Δ(t) = %emph(t) −
%emph(baseline). Mean values and standard errors of the mean of Δ for 87
normal subjects and 238 disease subjects who have three longitudinal cardiac
scans and one FL scan are shown in Fig. 3(b).

The %emphHMMF measures progressed steadily along cardiac and FL (mea-
suring on cardiac field of view) scans, and at different rates for normal and disease
populations. The %emph−950C measures progressed steadily across cardiac scans
but decreased from cardiac to FL scans, which indicates that a single threshold
is not able to provide consistency between cardiac and FL scans. Furthermore,
thresholding-based measurements on cardiac scans show similar progression rates
in normal and disease populations, which is not what is expected.
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Fig. 3. (a) %emph measures on longitudinal cardiac scans of normal subjects (N =
478; r = pairwise Pearson correlation); (b) Mean and standard error of the mean of
emphysema progression Δ (normal: N = 87, disease: N = 238).

Finally, we tested mixed linear regression models on all longitudinal scans to
assess the progression of %emphHMMF and %emph−950C over time after adjust-
ing for demographic and scanner related factors. The initial model (model 1)
includes age at baseline, gender, race, height, weight, BMI, baseline smoking
pack years, current cigarettes smoking per day, scanner type, and voxel size. In
the subsequent model (model 2), to assess the effect modification for some demo-
graphic factors (including age at baseline, gender, race, baseline smoking pack
years and current cigarettes smoking per day), their interaction terms with time
(starting from the baseline) were added. In model 2 we observed that progres-
sion of %emphHMMF was higher with higher baseline age (p = 0.0001), baseline
smoking pack years (p < 0.0001) and current cigarettes smoking per day (p =
0.03). These findings were not significant for %emph−950C except for baseline
smoking pack years (p = 0.0016). Additionally, both models demonstrated that
the effects of scanner types in cardiac scans are attenuated for %emphHMMF

when compared with %emph−950C .

4 Discussions and Conclusions

This study introduced a dedicated parameter tuning framework to enable the
use of an automated HMMF segmentation method to quantify emphysema in
a robust and reproducible manner on a large dataset of cardiac CT scans from
multiple scanners. While thresholding compared well with HMMF segmentation
for intraclass correlation on repeated cardiac scans, only HMMF was able to
provide high spatial overlaps of emphysema segmentations on repeated cardiac
scans, consistent longitudinal measures between cardiac and FL scans, attenu-
ated scanner effects on population-wide analysis of emphysema progression rates,
and clear discrimination of emphysema progression rates between normal and
disease subjects. Exploiting HMMF segmentation to quantify emphysema on
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low-dose cardiac CT scans has great potentials given their very large incidence
in clinical routine.
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