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ABSTRACT
Gradient Vector Flow has become a popular method to recover me-
dial information in medical imaging, in particular for vessels center-
line extraction. This renewed interest has been motivated by its abil-
ity to process gray-scale images without prior segmentation. How-
ever, another interesting property lies in the diffusion process used
to solve the underlying variational problem. We propose a method
to recover scale information in the context of vascular structures ex-
traction, relying on analytical properties of the Gradient Vector Flow
only, with no multiscale analysis. Through simple one-dimensional
considerations, we demonstrate the ability of our approach to esti-
mate the radii of the vessels with an error of 10% only in the pres-
ence of noise and less than 3% without noise. Our approach is eval-
uated on convolved bar-like templates and is illustrated on 2D X-ray
angiographic images.

Index Terms— gradient vector flow, diffusion, medialness,
skeleton, shape analysis

1. INTRODUCTION

Gradient Vector Flow (GVF) has first been introduced as an external
force field for active contours and active surfaces by Xu et al. [1].
The GVF of an image is the vector field obtained by diffusing its
gradients in homogeneous regions while keeping strong gradients
untouched. The diffusion process spreads edge information into uni-
form regions and acts as a long range force (see Fig. 2). Conse-
quently, it also introduces more robustness against initialization and
speeds up convergence.

Formally, the GVF of an image I over a domain Ω is defined as
the global minimizer V of the following energy functional E:

E =

∫
Ω

(
g(x) ‖ ∇V ‖2 (x) + h(x)|V (x)−∇I(x)|2) dx , (1)

where g : Ω → R and h : Ω → R are spatially-varying weight-
ing functions and ‖ ∇V ‖ is the vector norm for tensors given by√∇V .∇V . The first term is a regularization term that controls the
diffusion over the whole image domain. The second term is a data
attachment term which ensures that V is close to the image gradient
at strong edges. This is the General Gradient Vector Field (GGVF)
devised by Xu et al. [2], which comes down to the original formu-
lation of the GVF [1] if g is constant and h(x) = |∇I(x)|2. The

most widely used functions are g(x) = e−|∇I(x)|/K , K ∈ R
∗ and

h(x) = 1 − g(x), and will be used in this paper too. Since both
GVF and GGVF formulations yield similar results, we will use the
term GVF in the remaining of the paper.

The first variation of the functional E yields the following Euler-
Lagrange equation1:

g(x)Δvi(x)− h(x)(vi(x)−∇I(x)) = 0 , (2)

where vi is the i-th component of the vector field and Δ is the Lapla-
cian operator.

Recently, GVF has become popular in the field of medial infor-
mation extraction. Many ways of using it have been proposed since
it can be viewed as an improved gradient vector field to compute
various features. For instance, Bauer et al. [3] propose to recover
the centerlines of airways by computing the Hessian matrix from the
GVF. Then, they determine the cross-sectional planes of the tubular
structures and compute a tube-likeliness map from flux measures in
those planes, based again on the GVF. Flux measures were also used
by Engel et al. [4] for medial features detection. Several previous
works also exhibit GVF-based medialness maps derived from obser-
vations. Among them, the tube-likeliness from Bauer et al. [5] has
already been mentioned. Yu et al. [6] propose to build a skeleton
strength map from the GVF norm for gray-scale image segmenta-
tion. Finally, the GVF has also been used to extract skeletons from
binary shapes. In this context, the GVF is used by Hassouna et al. [7]
in a front propagation setting to design a speed function allowing
faster propagation at the center of structures.

Although the GVF has already been used to extract medial in-
formation, few approaches have been proposed to recover scale in-
formation. Unlike multiscale filters, which retain the maximum re-
sponse over several scales, the GVF diffuses information without
keeping track of the scale. Although one benefits from this by free-
ing oneself from scale constraints (e.g. Hessian matrices can be
computed on a 3x3 neighborhood only), scale information is still
of paramount importance for skeletons or medialness maps. Know-
ing the centerlines, the method by Bauer et al. [3] goes back to the
airways wall by tracking the GVF back to the edges in the image,
which is quite time-consuming. Engel et al. [4] recover the size of
the structures as the radius yielding a maximal circular (or spherical)
flux. It seems to contradict the multiscale-free approach of the GVF.

In this paper, we propose a simple, segmentation-free and
multiscale-free algorithm to extract medial information from im-
ages, based on the GVF. Since our approach heavily relies on 1-D
analysis of the GVF (line by line in different directions), Sect. 2
gives a thorough review of the analytic solution for the 1-D case.
Section 3 details the algorithm, especially how scale information is

1As stated by Xu et al. [2], the calculus of variations yields a third term
〈∇g(x),∇vi〉 in the corresponding Euler-Lagrange equation, which does
not change the result much in practice.
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recovered. Finally, we discuss parameters and show results on 2D
angiographic images in Sect. 4.

2. ANALYTICAL SOLUTION FOR THE
ONE-DIMENSIONAL CASE

Equation 2 is a diffusion-reaction equation whose analytical solution
is not obvious without further assumptions on h and g (as defined in
Sect. 1). For a better understanding, we will first focus on the 1-D
case. We consider vessel edges as ramps which lead to plateau-like
patterns in the original gradient (Fig. 1). A bar-like convolved model
approximates well a vessel profile, but the influence of the convolu-
tion is limited in practice (see Sect. 4.1). The equation is decom-
posed and can be solved onto subdomains {Ωk}0≤k≤N where gk
and hk, the restrictions of g and h to Ωk, are constant. In the follow-
ing developments, fk will denote the restriction of any function f to
Ωk.

Two cases arise. If Ωk is a homogeneous region, ∇Ik = 0 so
gk(x) = 1 and hk(x) = 0. Equation 2 is then the 1-D heat equation
∂2Vk
∂x2 = 0, and the solution is a linear function:

Vk(x) = mkx+ pk , mk, pk ∈ R . (3)

If Ωk is a region where the gradient is non-zero, then ∇Ik is con-
stant (with the ramp model) and so are gk and hk. Equation 2 has
then the form:

∂2Vk

∂x2
−a2(Vk− ∂I

∂x
) = 0 , a2 =

1− gk
gk

, 0 < gk ≤ 1 . (4)

Solutions to this second order linear equation with constant coeffi-

cients are of the form Vk(x) = c
(1)
k eax + c

(2)
k e−ax + b(x), where

c
(1)
k , c

(2)
k ∈ R and b is a particular solution. Since ∇I is constant

over Ωk, it satisfies the equation. Finally, the solutions on such sub-
domains are of the form:

Vk(x) = c
(1)
k eax + c

(2)
k e−ax +∇I(x) . (5)

The parameters mk, pk, c
(1)
k and c

(2)
k for each subdomain Ωk are

given by the Dirichlet boundary condition V = 0 on ∂Ω and the C0

and C1 properties of the global solution V at boundaries between the
N subdomains. This yields the following linear system (in the same
order):

p1 = 0

mNxN + pN = 0

mk−1xk + pk−1 = c
(1)
k eaxk + c

(2)
k e−axk + Vk(xk)

mk+1xk+1 + pk+1 = ac
(1)
k eaxk+1 − ac

(2)
k e−axk+1 , (6)

where xi denotes the point limiting Ωi−1 and Ωi, and 0 < k < N .
If there are M plateau-like patterns, this yields a linear system of
4M+2 equations. A numerical solution and the corresponding ana-
lytical solution, computed from a two ramps gradient, are illustrated
in Fig. 1. In practice, subdomains Ωk where ∇I �= 0 tend towards
∅, which means that the GVF can be approximated by a piecewise-
linear function. Although this is a mere approximation, we will use
this property to derive our scale measure.

3. DETECTION OF MEDIAL POINTS AND THEIR
CORRESPONDING SCALE

The GVF energy functional in Eq. 1 contains a diffusion term which
is equivalent to a multiscale analysis, from a scale-space point of

(a) (b)

Fig. 1: (a) Original signal and (b) the analytical solution of the GVF
equation for K = 3, K = 15 and K = 30 (where K is the param-
eter of function g). The dotted line represents the original normal-
ized gradient, the analytical solution is plotted in plain red, and the
numerical solution is in plain blue. Both solutions overlap almost
completely. The zero-crossings are preserved for all values of K but
the positions of the maxima of the solutions are clearly impacted.

view. The method proposed here is driven by two ideas. First,
scale information should be available directly from the GVF, without
any further multiscale analysis. Second, given the sophistication of
the GVF, recovering scales should not use overcomplicated analysis
schemes of the solution.

In contrast-enhanced images, vascular structures are considered
as homogeneous regions surrounded by strong gradients. In those
regions, gradients having opposite directions collide at the center of
the structures because of the diffusion process. This interpretation
still holds in the 1-D case: thanks to the separability property of the
GVF, one can consider working on the projections of the solution V
along each dimension instead of working on the gradient vector field
itself. This means that analyzing the d-th component vd of V along
the d-th dimension only is relevant. In this outlook, the separability
of the GVF and results from Sect. 2 are exploited both to detect
medial points and to estimate the radius of vessel structures.

3.1. Detection of medial points

Associating gradients having opposite directions comes down to
finding projections along each dimension d having opposite signs
(see Fig. 1). According to Sect. 2, the GVF may be approximated
by a linear function and vanishes between those two gradients. To
ensure that zero-crossings happen in the center of structures, both
corresponding gradients must have exactly the same magnitude.
This is why we choose to diffuse the normalized image gradient.

In practice, the Point Spread Function (PSF) of the acquisition
system interferes with the linearity of the solution inside homoge-
neous regions so that the slope of the solution V is weaker near
edges. Along a given dimension d, medial points are thus detected
as zero-crossings of the GVF components vd, which can still be em-
phasized by taking the components ṽd of the normalized solution
Ṽ . Responses are summed over all dimensions to obtain the final
measure for medial points (see Fig. 2(c)):

M = div(Ṽ ) =
∑
d

dṽd
dxd

. (7)
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(a) (b) (c)

Fig. 2: (a) Original image, (b) normalized GGVF and (c) medialness
map M from Eq. 7.

3.2. Estimation of the radius of the structures

Following the remarks formulated in the previous paragraph con-
cerning the linear approximation, the slope of vd is inversely pro-
portional to the radius of the structures. Let rd,k be the size of the
structures along dimension d, delimited by two gradients vd(xk) and
vd(xk+1) at positions xk and xk+1, corresponding to edges of a
structure. The slope mk can be recovered where vd vanishes and the
radius can be estimated as:

rd,k =
vd(xk)− vd(xk+1)

2mk
. (8)

Knowing the positions xk and xk+1 is not obvious. This is why
previous works usually resort to an exhaustive search through multi-
scale analysis. On the contrary, since we are able to detect structures
(vessels or other structures) thanks to zero-crossings, we have all
the necessary information to approximate vd with a piecewise-linear
function. We are only interested in the positions where two linear
functions intersect. Thus, the approximation does not have to be ac-
curate (see Fig. 3). A position xk, at the boundary of linear regions
Ωk and Ωk+1 with corresponding zero-crossings ck and ck+1, is thus
recovered as:

xk =
mk+1ck+1 −mkck

mk+1 −mk
. (9)

Note that the radii rd,k are computed only once for a range
[xk;xk+1]. Thus, our algorithm scales well with the size of the
image.

Under the assumption that the curvature of the vessel wall is
locally small, the actual radius rk can now be computed with simple
geometrical considerations. For example, for 2D images where d ∈
{x, y}, the radius is:

rk = rx,k sin arccos

⎛
⎝ rx,k√

r2x,k + r2y,k

⎞
⎠ . (10)

The situation for a given medial point is summarized in Fig. 4. Fi-
nally, an additional smoothing of estimated radii is performed along
the centerlines to increase the robustness.

4. EVALUATION OF THE ESTIMATED SCALES AND
APPLICATION TO VASCULAR STRUCTURES

Equation 2 can be solved with various explicit, implicit or semi-
implicit schemes. We implemented the common explicit scheme for
simplicity (see [8] for more efficient explicit and implicit schemes).
In particular, unconditionnally stable explicit schemes exist (the Al-
ternating Direction Explicit scheme, for example). In practice, the
straightforward explicit scheme is still widely used and is very use-
ful for investigation. We recall the 1-D version of this scheme [2].

Fig. 3: Solution to the GVF (in blue) for a 1-D profile extracted from
Fig. 2 and its corresponding piecewise linear reconstruction (in red).

Fig. 4: Provided the curvature is small with respect to the vessel
radius r, the latter can be approximated from the estimations rx and
ry along each direction by simple geometric considerations.

If V n
i is the value of the solution at point xi after the n-th iteration,

then:

V n+1
i = (1− hΔt)V n

i +
gΔt

Δx
(V n

i−1 + V n
i+1 − 2V n

i )+ h∇IΔt ,

(11)
where Δx is the spatial resolution and Δt is the time step.

4.1. Validation on synthetical vessel templates

As mentioned in Sect. 3.1, the PSF of the acquisition system and
partial volume effects impact the estimation of the vessels radius.
To study their influence, we apply our algorithm to vessel templates
with various radii and PSF. Vessels are modeled by convolved bar-
like cross-sections with radii r0 ranging from 1 to 25 pixels, and
the scale of the convolution σPSF is set to 0.5, 1 and 2 pixels (we
approximate the PSF by a Gaussian kernel).

The relative error of the estimation with respect to the ground

truth err(r) = |r−r0|
r0

is illustrated in Fig. 5. The algorithm intro-
duced in Sect. 3.2 is represented by blue lines. We compare it with
two alternative approaches. The first one, represented by red lines,
computes the radius by taking r = min (|xk − ck|, |xk+1 − ck+1|).
The second one, represented by the green lines, corresponds to the
distance from ck to the closest local maximum of ‖ V ‖. Finally, the
evaluation was performed on noise-free profiles (K = 5) in the first
line, and on profiles corrupted with a 10% random additive Gaus-
sian noise (K = 15 to compensate for the presence of noise) in the
second line.
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(d) (e) (f)

Fig. 5: Relative error err of the estimated radius for radii r0 ranging
from 1 to 25 pixels and a Gaussian PSF with (a,d) σPSF = 0.5,
(b,e) σPSF = 1, (c,f) σPSF = 2. The first row shows the result for
profiles with no noise, while a 10% random Gaussian noise has been
added to vessel templates in the second row (see Sec. 4.1 for further
details).

It is clear that our algorithm performs better for all PSF values
and is globally more robust to noise. When r0 ≤ σPSF with no
noise, the estimation is clearly unreliable but usable since the error
is still less than one pixel. For r0 > σPSF , the error is less than 3%
for noise-free profiles, and remains low (around 10%) in the presence
of additive Gaussian noise . However, for radii smaller than the PSF,
zero-crossings of the GVF may disappear and thus our algorithm
fails to recover the structure, which corresponds to very high errors
for small r0 values in Fig. 5.

4.2. Skeleton extraction of vascular structures

Our algorithm was also tested to extract the skeleton of vascular
structures in 2D angiographic images. The medialness map M from
Eq.7 and the radii are computed from the 2D GVF of the image. Seed
points are selected as directional maxima of M but discarded if they
are in regions with low local contrast. Finally, centerlines are ex-
tracted as the ridges of M going through seed points, as in [9]. The
centerlines and a segmentation reconstructed from the medial points
and their radius are shown in Fig. 6. Most vessels are correctly re-
covered, with accurate radii (they are slightly overestimated in the
case of very small vessels, as one should expect from Sect. 4.1).

5. CONCLUSION

We presented a new segmentation-free method to extract scale in-
formation of vascular structures from the GVF of an image, without
any additional multiscale analysis. We demonstrated that, through
fast and effective 1-D analysis of the GVF, we are able to devise
a method which is both accurate and robust to noise. The result
can serve as an input for deformable model-based algorithms, to fur-
ther refine the segmentation. The current bottleneck of our approach
lies in the computation of the GVF which is highly time-consuming,
as any process involving diffusion. Efforts will be put on efficient
schemes to solve the underlying variational problem. In the future,
we believe that our approach will prove to be a good alternative to
multiscale vessel analysis.

(a) (b)

(c) (d)

Fig. 6: Two examples of centerlines extracted from the medialness
map M and their corresponding vessel segmentation, on 2D X-ray
angiographies.
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