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ABSTRACT
In this paper, we investigate how the CS framework can be adapted to biological video microscopy acquisition
problems. We first consider a frame-by-frame linear acquisition model in the Fourier domain of the signal, and
discuss the relevance of several sparsity models that can be used to drive the reconstruction of the whole video
sequence. Then, we switch to a non-linear acquisition model – therefore beyond the “pure” CS framework – in
which only the modulus of the Fourier transform of the signal is acquired: by exploiting sparsity properties similar
to the one used in the linear acquisition case, we demonstrate the feasibility of a phase retrieval reconstruction
procedure applied to video signals.
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1. INTRODUCTION
1.1 Video acquisition through Fourier measurements
Compared to 2D images, processing 2D+T video signals leads to particular problems related to the large size
of this type of data. However, the counter part of this large size is that natural video signals are in general
highly redundant, which allows them to undergone important compression ratio without noticeable degradations.
Formally, this property can be exploited to represent the 2D+T video signals in an highly sparse or compressible
manner, making these type of signals good candidates for being acquired as advocated by the compressed sensing
theory.

In this paper, we assume that this sequence is acquired through a measurement device that works as follows:

1. for each frame of the video, take the 2D Fourier transform of the frame,

2. return a subset of the Fourier coefficients of each frame.

The reason why we focus on this type of measurement operator is that the Fourier transform can be implemented
using optical devices, upstream from the actual photo-electric sensors, allowing a simplification of the whole device
with a CS-like acquisition strategy.

We focus in particular on two situations, that involve different optical set-ups, as well as different reconstruc-
tion algorithms:

• First, the two components of the Fourier coefficients – modulus and phase – are actually measured. In this
situation, the measurement vector y can be modeled as a linear transformation of the signal of interest x,
up to some noise:

y = Φx+ noise (1)

• Second situation, only the modulus of the Fourier coefficients is measured:

y = |Φx|+ noise (2)



The first situation is simpler in terms of mathematical formulation and reconstruction algorithm, as – up
to the definition of a regularization energy promoting sparsity for the class of studied video sequence – it is a
direct application of the general theory of compressed sensing (see sec. 2.1). However, measuring the phase of
an optical wave involves quite sophisticated set-ups (such as holography set-ups), which limits the usability of
this acquisition scheme.

On the other hand, the lack of phase information in the second situation is more challenging in terms
of reconstruction procedure. In particular, two video sequences equal up to a spatial translation would be
indistinguishable through this acquisition scheme, which means that this ambiguity somehow has to be removed
by injecting some prior knowledge during the reconstruction procedure.

1.2 Sparse representations adapted to biological video sequences
In the context of microscopy video, the signals of interest often have similar characteristics, that can be used for
reconstruction. In particular, similarly to what was proposed in,11, 12 we assume that the following properties
hold for a video sequence x composed of several frames xt (1 ≤ t ≤ T ):

1. each frame xt has a sparse 2D gradient map ∇xt (intra-frame sparsity),

2. the difference map xt − xt−1 between two consecutive frames is sparse (inter-frame sparsity),

3. the non-zeros coefficients in the spatial gradient maps ∇xt, which mainly correspond to edges in the
underlying frames xt, are located close to the non-zero coefficients in the corresponding difference maps
xt − xt−1.

The first hypothesis accounts for the fact that biological images are well approximated by piecewise constant
signals, as they contain few textured areas. The second hypothesis relies on the assumption that the sampling
period between two frames is small enough with respect to the time constant that characterizes the displacements
in the image medium. Finally, the last hypothesis can be interpreted as a coupling between sparsity in the spatial
domain (intra-frame sparsity) and in the temporal domain (inter-frame sparsity): in video sequences of moving
and deforming objects and structures, the non-zeros coefficients in the difference maps xt − xt−1 are located
ahead of and behind the displacement fronts of the object boundaries, which correspond also – by definition –
to areas where the spatial gradient is non-zero. This last hypothesis dramatically reduces the set of a priori
acceptable sequences, which improves video reconstructions as shown by the results presented below.

2. RECONSTRUCTION FROM LINEAR MEASUREMENTS: CS WITH 3D TOTAL
VARIATION

In the case of the linear acquisition scheme (1), the reconstruction problem fits right into the general theory of
compressed sensing. We recall here some of the main aspects of this theory, before presenting how it applies to
our particular reconstruction problem.

2.1 Compressed sensing background
The inverse problem tackled by CS can be formulated as follows: given a signal of interest x ∈ RN measured
through a random linear operator Φ that outputs a vector y ∈ RM of observations with M � N , can x be
recovered from y? The randomness of the measurement operator Φ should not be understood in strict meaning,
but rather as the fact that Φ should spread the information contained in x over the whole vector y. Examples
of such operators include random Gaussian or Bernouilli matrices,5 randomly subsampled Fourier or Hadamard
transforms,3 or dedicated unitary matrices.6

Previous results (see2, 4, 7) establish that x can be recovered from y if it has a sparse representation in some
known dictionary Ψ, i.e. there exists a sparse vector γ ∈ RD such that x = Ψγ, and if Φ behaves like an isometry
for sparse linear combinations of columns of Ψ; this idea is quantified using the notion of restricted isometry



property (see2 for more details). Up to some technical hypothesis, an estimator x̂ of x can be defined as a solution
of the following convex problem:

x̂ = arg min
x∈RN

‖Ψ∗x‖1 s.t. ‖Φx− y‖2 ≤ ε (3)

where ε is a parameter tuned according to the level of noise that corrupts the observations y. Candes et al.2
gives an upper bound on the estimation error ‖x̂− x‖2.

In the following, we denote the entities involved in our problem as follows: the 2D+T signal of interest
composed of T successive 2D frames xt ∈ RN (1 ≤ t ≤ T ) is X ∈ RNT . This signal is measured through a linear
memoryless operator Φ, resulting in a vector Y ∈ RM of observations. Formally:

y1
y2
...
yT


︸ ︷︷ ︸
Y

=


φ1

φ2
. . .

φT


︸ ︷︷ ︸

Φ

·


x1
x2
...
xT


︸ ︷︷ ︸
X

(4)

2.2 Sparsity prior based on 3D total variation
To enforce the sparsity properties of microscopy video sequences presented in Sec. 1.2, we propose to use the
three dimensional total variation as a regularization term in the reconstruction problem (3). 3D total variation
(3D-TV) is defined as:

‖X‖TV-3D =
T−1∑
t=1

∑
P

√
|(Dhxt) [P ]|2 + |(Dvxt) [P ]|2 + |(xt+1 − xt) [P ]|2 (5)

where P visits every pixel of the frames, and Dh and Dv stand for the discrete derivative operators respectively
in the horizontal and vertical directions.

The reason explaining why minimizing ‖X‖TV-3D enforces the first two sparsity properties mentioned in
Sec. 1.2 (i.e. intra-frame and inter-frame sparsity) stems from the following inequalities, that can be easily
derived from the definition of the 3D total variation (5):

max
(∑

t

‖xt‖TV ,
∑
t

‖xt+1 − xt‖1

)
≤ ‖X‖TV-3D ≤

(∑
t

‖xt‖TV

)
+
(∑

t

‖xt+1 − xt‖1

)
(6)

where ‖·‖TV is the usual 2D total variation (see for instance15). Indeed, minimizing ‖X‖TV-3D leads to small
values of both the cumulated 2D TV of all the frames of the sequence

∑
t ‖xt‖TV and the cumulated l1-norm of

all the frame to frame differences
∑
t ‖xt+1 − xt‖1, and reciprocally. Moreover, from the concavity property of

the square root function, it can be shown that:(∑
t

‖xt‖TV

)
+
(∑

t

‖xt+1 − xt‖1

)
≤
√

2 · ‖X‖TV-3D (7)

and that this inequality is tight if and only if, for all t ∈ [1, T − 1] and all pixels P , the following holds:√
|(Dhxt) [P ]|2 + |(Dvxt) [P ]|2 = |(xt+1 − xt) [P ]| (8)

In other words, for given values of
∑
t ‖xt‖TV and

∑
t ‖xt+1 − xt‖1 – which can be thought as measures of,

respectively, the intra-frame and inter-frame sparsity – the 3D total variation is minimal when, at each pixel P
and time point t, the amplitude of the local spatial gradient

√
|(Dhxt) [P ]|2 + |(Dvxt) [P ]|2 is equal to amplitude

of the local frame-to-frame difference |(xt+1 − xt) [P ]|: this explain the relation between the minimization of
‖X‖TV-3D and the third sparsity property enforced on 2D+T video sequences mentioned in Sec. 1.2. This relation
can also be explained by interpreting ‖X‖TV-3D as a particular mixed l1,2-norm (see for example the work of
Bach1 and references therein) operating on a linear transform of X that would stack its discrete derivatives in
the horizontal, vertical and diagonal directions.



3. RECONSTRUCTION FROM NON-LINEAR MEASUREMENTS: PHASE
RETRIEVAL WITH TOTAL VARIATION CONSTRAINTS

3.1 Phase retrieval background
The problem of recovering a signal from the modulus of its Fourier transform, known as the phase retrieval
problem, has been studied for a long time: this reconstruction technique is used for instance for X-ray microscopy
applications in crystallography (see9, 13). To recover a signal x ∈ RN from a measurement vector y defined as
(2), the algorithm proposed in9 defines two subsets of RN :

• the data set Dy,ε, that contains all the signals x that correspond to the measured samples, with a certain
tolerance ε that depends on the noise that affects these measurements:

Dy,ε =
{
x ∈ RN s.t. ‖y − |Φx|‖2 ≤ ε

}
(9)

• a regularization set R that corresponds to all the signals that meet certain prior conditions which are
known to be true for the actual solution. For crystallography applications, R typically consists in all the
2D images that are supported on a given subset of pixels.

Then, an estimator x̂ of the solution is obtained as the limit of alternated projections over the two sets Dy,ε and
R:

x̂ =
(
ΠR ◦ΠDy,ε ◦ΠR ◦ · · · ◦ΠDy,ε

)
(x0) (10)

where ◦ is the composition operator, x0 is an initial guess of the solution, and ΠDy,ε and ΠR stand respectively
for the projection operators over Dy,ε and R:

ΠDy,ε (x) = arg min
z∈Dy,ε

‖z − x‖2 (11)

and similarly for ΠR. It was shown in9 that the sequence of estimators (10) converges toward the intersection
of Dy,ε and R.

In our case, the prior information is quite different from the one available in crystallography applications (i.e.
support constraints). We therefore introduce in the next sections a general reconstruction approach suited for
microscopic video reconstruction which exploits a similar alternated projection iteration scheme as the one used
in phase retrieval, but allows different a priori information to be used.

3.2 Problem formulation
We consider here a reconstruction scheme that operates iteratively on consecutive frames. Starting from an
initial key-frame assumed to be available, we reconstruct the following frame using its partial Fourier modulus
data, and propagate the reconstruction process to the next step. This step-by-step procedure differs from the
reconstruction scheme presented in Sec. 2, in which all the frames of the video sequence are reconstructed in a
joint manner.

With this formulation, it is important to note that, although the set Dy,ε is not convex, (11) can be solved
explicitly. In the case of ε = 0, ΠDy,ε (x) is computed as follows: 1st) take the Fourier transform x̃ of x; 2nd)
for all the spatial frequencies k for which a measure y (k) is available, replace the obtained modulus |x̃ (k)| with
y (k); 3rd) finally, inverse the Fourier transform. For ε > 0, the second step is slightly more complex, but can
still be run in O (N) operations. The overall procedure is then dominated by the first and third steps, whose
complexity O (N logN) corresponds to the evaluation of the Fourier transform.



3.3 Definition of a regularization set using an hybrid total variation
To enforce the sparsity properties mentioned in Sec. 1.2, we introduce a hybrid total variation energy over the
space RN of 2D images, defined as:

‖x‖hTV,a =
∑
P

√
|(Dhx) [P ]|2 + |(Dvx) [P ]|2 + |(x− a) [P ]|2 (12)

where P visits every pixel, and where the discrete derivation operators Dh and Dv are defined as in (5). The
hybrid TV of each frame xt and the 3D total variation (5) of the whole sequence X are related through the
following relation:

‖X‖TV-3D =
∑
t

‖xt‖hTV,xt+1
(13)

As a consequence, the hybrid total variation inherits the properties of the 3D total variation in terms of sparsity
enforcement (see Sec. 2.2), and can be used to reconstruct a video sequence that presents the characteristics
stated in Sec. 1.2.

The regularization set R involved in the alternated projection scheme (10) is defined as a level set of the
hybrid TV (12): Ra,τ =

{
x ∈ RN s.t. ‖x‖hTV,a ≤ τ

}
. τ > 0 is a parameter that can be either set a priori or

adaptively estimated during the reconstruction process, as proposed in.12

3.4 Evaluation of the projection operator ΠRa,τ

The alternated projection scheme (10) involves several projections on the set Ra,τ , which implies to solve the
following problem for several values of the argument x:

ΠRa,τ (x) = arg min
z
‖z − x‖2 s.t. ‖z‖hTV,a ≤ τ (14)

This convex optimization problem can be solved by using an algorithm derived from the total variation
projection method presented by Fadili and Peyré,8 where the constrained problem (14) is recast into the following
unconstrained one:

arg min
u

τ ‖u‖∞ +
〈
u(1), a

〉
+ 1

2

∥∥∥x− u(1) + Div u(2,3)
∥∥∥2

2
(15)

where u represents a 3D vector field (i.e. a 3-channel image) over the same domain than x, u(1) and u(2,3)

denote respectively the first and the concatenation of the second and third components of u, Div is the adjoint
operator of −∇, and ‖u‖∞ = max

P
‖u (P )‖2 where P visits every pixel. It can be shown (see10) that (14) and

(15) are equivalent in that the corresponding optimal variables z? and u? are related through the equation
z? = x − u?(1) + Div u?(2,3). Problem (15) can be solved with a first-order gradient method, with a Nesterov
accelerated scheme (see14 and algorithm 4.2 in16). The projection operator ΠRa,τ is then evaluated iteratively,
with each iteration having a O (N logN) complexity, and an overall quadratic convergence rate thanks to the
Nesterov scheme. It is however much slower than the computation of ΠDy,ε , although a careful initialization of
the gradient descent proved to provide a significant speed up of the computation.

4. RESULTS
4.1 Simulation data
We present in the following a comparison of the two reconstructions schemes on an test sequence showing amoeba
cells, that comprises 80 frames of 256×256 pixels. The reconstructions were performed according to the following
conditions:

• CS-TV-3D with linear measurements: 10% of the Fourier samples (amplitude and phase) selected in a
uniform random manner were used. The whole sequence is reconstructed in a joint manner.

• Phase retrieval with non-linear measurements: we used 25% of Fourier samples (amplitude only), also
selected in a uniform random manner. In this case, the first frame of the sequence is used as a key frame
to initialize the iterative reconstruction process.
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Figure 1. Frame-wise RMSE between the original Amoeba cells video sequences and the reconstructions obtained with the
two tested methods.
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Figure 2. Original test sequence showing amoeba cells (top row), and reconstruction results obtained with the two tested
methods. The parameter t represents the frame index in the sequence.



4.2 Quantitative and qualitative results
The reconstruction results are presented in Figs. 1 and 2. Figure 1 plots the reconstructed error (root mean
squared error) computed frame-by-frame for the two schemes, and Figure 2 shows examples of intermediate
reconstructed frames. It can be seen that when reconstructing the sequence from linear measurements using
CS-TV-3D, the visual quality of the reconstructed sequence is very good: in particular, we observe sharp edges,
flat background, and well-contrasted objects. These characteristics are stable all along the sequence, as confirmed
by the almost constant RMSE error (≈ 5× 10−3) in Fig. 1.

This is in contrast with the results obtained for the reconstruction from non-linear measurements using phase
retrieval: in this case, the quality of the reconstructed sequence is quite satisfactory at the beginning of the
sequence (i.e. in the vicinity of the key frame), but degrades rapidly. This degradation is clearly visible on the
RMSE curve, and appears as an increasing blurring effect. The fact that the degradation increases with time
can be explained by error accumulations, as in the iterative phase retrieval scheme, each frame is reconstructed
from the previous ones. This effect could be limited by using more frequent key-frames, or by slightly modifying
the expression of the hybrid total variation to include an appropriate motion prediction heuristic (see12).

5. CONCLUSION
In this paper, we presented two sparsity-based video microscopy reconstruction methods, using random projec-
tions in the Fourier domain, either linear (amplitude and phase) or non-linear (amplitude only). In the former
case, the reconstruction scheme exploits general CS reconstruction results with a 3D-TV based reconstruction
functional, where all the frames of the sequence are reconstructed in a joint manner. In the latter case the
reconstruction is inspired by previous variational phase retrieval techniques, and introduces a regularization set
exploiting an hybrid TV regularization energy within an iterative scheme. The results demonstrate that video
reconstruction can be performed from partial Fourier measurements, but that the quality of the resulting images
is much higher if phase information is available.
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