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ABSTRACT
When undergoing reconstruction through a compressed sensing scheme, real microscopic images are affected
by various artifacts that lead to detail loss. Here, we discuss how the sampling strategy and the subsampling
rate affect the compressed sensing reconstruction, and how they should be determined according to a targeted
accuracy level of the reconstruction. We investigate the relevance and limits of theoretical results through
several numerical reconstructions of test images. We discuss the quantitative and qualitative artifacts that affect
the reconstructed signal when reducing the number of measurements in the Fourier domain. We conclude by
extending our results to real microscopic images.

1. SUMMARY OF THEORETICAL BACKGROUND IN THE COMPRESSED
SENSING FIELD

1.1 Recovering sparse data from incomplete measurements
The recent sampling theory of compressed sensing (CS) predicts that sparse signals and images can be re-
constructed from what was previously believed to be incomplete information. CS was introduced by Candès,
Romberg and Tao,1 and Donoho.2 It relies on the fact that many types of signals or images can be well-
approximated by a sparse decomposition on a suitable basis.

Relying on some previous work by Donoho and Huo,3 Donoho and Elad,4 Candès, Romberg and Tao,1 and
Donoho2 studied the following problem: given a signal of interest x0 ∈ CN , a measurement matrix F ∈ CM×N
withM < N , and an observation y = Fx0 ∈ CN , assuming that the original signal x0 is sparse (i.e. its number S
of non-zero coefficients is much smaller than its size N : S = ‖x‖l0 � N), can this signal of interest be recovered
only from the knowledge of the observation y? More precisely, under which conditions can x0 be recovered as
the solution of the following convex optimization program:

(P1) min
x∈CN

‖x‖l1 s.t. y = Fx (1)

In (P1), the l1 norm must be understood as a surrogate for the l0 pseudo-norm, whose minimization favors
the solutions that agree the sparsity prior we assume on the original signal x0. However, direct solving of
the l0 scheme leads to intractable combinatorial problems, whereas relaxing it into (P1) permits to use all the
mathematical tools coming from the convex optimization field.

In the mid-2000, various results showed that recovering the original sparse signal x0 from (P1) will actually
works for several classes of measurement matrix F . These results relies on the notion of restricted isometry prop-
erty, which is a tool that somehow quantify how much the a measurement matrix F behave like an orthonormal
matrix when applied to a sparse vector (see for example Candès, Romberg and Tao,1 Candès and Tao,5, 6 Candès
and Romberg,7 or Candès8 for more details).

Candès, Romberg and Tao9 also extended their framework so that it could handle weakly sparse signals (i.e.
signals that are not sparse, but that can be well approximated by sparse vectors) as well as noisy measurements
(y = Fx + b where b is a white Gaussian additive noise); in this case, they proposed to relax (P1) into the
following (P2) problem:

(P2) min
x∈CN

‖x‖l1 s.t. ‖y − Fx‖l2 ≤ ε (2)

where the regularization parameter ε is tuned according to the noise power. These more challenging hypothesis
are also closer to real-world conditions.



1.2 Randomly subsampled orthonormal transforms
Candès and Romberg7 studied the particular case of measurement matrixes F designed by randomly subsampling
orthonormal transform, meaning that F is build by randomly selecting some rows in a given unitary matrix U ;
the authors studied in particular the special case where U is the discrete Fourier transform.

Randomly subsampled orthonormal transforms are particularly worth of interest, as they can lead to practical
implementation of CS devices (see for example Duarte et al.,10 Lustig et al.,11 Marim et al.12). The use of such
measurement matrixes makes also possible to deal with large dimension signals, such as images (N ≈ 106),
while keeping a reasonable reconstruction time, thanks to the fact that those orthonormal transforms are often
associated with fast computation algorithms (see for example Le Montagner et al.13).

For the special case of measurement matrixes built by randomly subsampling orthonormal transforms, Candès
and Romberg7 derived the following theorem from previous results related to the restricted isometry property:
Theorem 1.1. Given an original signal x0 such that ‖x0‖l0 ≤ S and a measurement matrix F built by randomly
selecting M rows from a N ×N unitary matrix U , assuming that:

M ≥ C · µ (U)2 · S ·N log (N) (3)

where C is a (small) numerical constant, and µ (U) is defined as the largest magnitude among the entries ui,j of
the matrix U :

µ (U) := max
i,j
|ui,j | (4)

Then, the program (P1) instantiated with y ← Fx0 recovers x0 with an overwhelming probability.
This formulation assumes that the orthonormal matrix U is normalized such that UU∗ = Id; with this

normalization, µ (U) is valued between 1√
N

and 1. Please note that Candès and Romberg7 used a different
normalization.

When targeting some specific application, it can be more natural to interpret U as a product of two orthonor-
mal matrixes, in particular when the signal of interest is not sparse itself, but rather has a sparse representation in
some transformed domain. This case occurs for instance with natural images, that are not sparse by themselves
in general, but admit a sparse representation in a wavelet domain. To cope with this case, it is more convenient
to recover the signal of interest from the following optimization problem rather than (P1):

min
x∈CN

‖Ψx‖l1 s.t. Φx = y (5)

where Ψ is the orthonormal transform mapping the signal’s canonical domain to its sparse domain, and Φ is the
measurement matrix, built by randomly selecting the rows from a given orthonormal transform Φ̃. For example,
in the case of CS imaging applications, it is quite common to choose the Fourier transform for Φ̃, and a wavelet
transform for Ψ since natural images are known to be sparse or almost sparse in wavelet basis.

As Ψ is orthonormal, (5) is equivalent to the problem formulated in theorem 1.1, with F ← ΦΨ∗ and
U ← Φ̃Ψ∗; in that case, the coefficient µ (U) can be interpreted as follows:

µ (U) = µ
(
Φ̃∗,Ψ∗

)
= max

i,j

∣∣〈φ̃∗i , ψ∗j 〉∣∣ (6)

where the vectors
(
φ̃∗i

)
and

(
ψ∗j

)
represents the rows of respectively Φ̃ and Ψ. In (6), µ

(
Φ̃∗,Ψ∗

)
represents the

mutual incoherence between the two orthonormal basis Φ̃∗ and Ψ∗, which is a notion introduced by Donoho and
Huo:3 a small value for µ

(
Φ̃∗,Ψ∗

)
characterizes the fact that no nonzero signal can have a sparse representation

in both basis simultaneously.



τ = 30% τ = 5% τ = 1%Original

Zo
om

Fu
ll
im

ag
e

Sa
m
pl
in
g
lo
ca
tio

ns

Figure 1. A test image reconstructed from partial measurements in the Fourier space using the TV recovery scheme (7),
for different values of the sampling rate τ = M/N (where N is the number of pixels in the image and M the number of
measurements). As τ decreases, the fidelity of the reconstruction to the original image becomes poorer, but the major
features (such as the number and the position of the bacterias) can still be extracted even when working with a very low
number of measurements.

1.3 Evaluation and description of the reconstructed signals when acquired with few
measurements
Although results such as theorem 1.1 are useful to guarantee the theoretical approach used in the CS measurement
and reconstruction process, they fail to provide some practical guidelines to those who implements practical CS
devices or processes:

• as the hypothesis of these theorems involves knowledge about the original signal (such as the size of its
support), they cannot be used to ensure that a particular reconstructed signal is actually identical to the
original one;

• as these theorems express some sufficient conditions about the validity of the CS recovery schemes, they
are by nature pessimistic: the signal reconstruction can still succeed even if the theorem hypothesis are
not fulfilled;

• finally, these results fail to capture the fact that deciding whether the reconstructed signal obtained through
a CS recovery scheme is an acceptable estimation of the original signal is not an all or none issue; sometimes,
especially when working with fewer measurements than what would be necessary to achieve a perfect
recovery, a partial reconstruction of the original signal can still be obtained from this small set of available
measurements (see fig. 1).



The goal of this paper is to explore qualitatively how the CS reconstruction quality evolve when the number of
measurements varies, and to try to give some guidelines about how to choose a suitable number of measurements
for a particular input image. We will focus on image signals measured in the Fourier space and reconstructed
with a TV recovery scheme (instead of (P2)):

min ‖x‖TV s.t. ‖Fx− y‖ ≤ ε (7)

This recovery scheme enforces a gradient sparsity prior on the reconstructed image, which is suitable for CS
image reconstruction (see Candès, Romberg and Tao1).

2. TOWARDS A NUMERIC EVALUATION OF AN OPTIMAL BOUND FOR THE
SAMPLING RATE

2.1 Simulation process
To understand how the sampling rate τ (defined as τ = M

N where M is the number of measurements and N the
number of pixels in the image) affects the performances of the CS recovery scheme, we conducted the following
numerical simulations: from a given known original image x0, we created several sets of randomly sampled
Fourier measurements, each of these sets corresponding to a given value of the sampling rate τ . Then, from
each of these sets of measurements, we computed the solution x̂ of (7), and measured a reconstruction error as
follows:

RecErr =
‖x̂− x0‖l2
‖µ0 − x0‖l2

(8)

where µ0 is a constant signal, whose value is equal to the mean value of x0.
When building a set of measurements, we always sample the central Fourier coefficient, which otherwise

could not be recovered by the TV minimization scheme. Our sampling patterns also obeys a central symmetry
invariant, to be coherent with the Hermitian symmetry property exhibited by the Fourier transform of our real
image signals. With these settings, thanks to the normalisation factor ‖µ0 − x0‖l2 of the reconstruction error,
we ensure RecErr (τ)→ 1 when τ → 0.

2.2 Isotropic shapes
Our first simple experiment consists in reconstructing elementary images composed of a single circular white
object on a black background (this would represent for example a single cell visualized in microscopy). The
Fourier coefficients were selected with a uniform random scheme: the probability of selecting each coefficient
follows an independent Bernoulli law whose parameter is tuned according to the targeted sampling rate. We
studied the evolution of the reconstruction error between the CS reconstructed image x̂ and the original image x0
as a function of the sampling rate τ . As the reconstruction error for a given value of the sampling rate depends
on the actual location of the samples in the Fourier space, each reconstruction is re-run ten to twenty times with
different sampling patterns, and the median error value is reported.

We present some detailed results obtained for a one-disk image with a radius ρ = 22 pixels on figure 2 (the
image is sized 256× 256 pixels). The corresponding curve RecErr = f (τ) shows three distinct domains:

• for small values of τ , the reconstruction error is constant at a high level: in this domain, the number of
Fourier samples is too low to achieve a correct CS reconstruction, and the solution computed from (7) is
roughly unstructured;

• for high values of τ , the reconstruction error is also almost constant at a value close to zero: in this domain,
the sampling rate is sufficient to perform an exact reconstruction of the original image from the subset of
Fourier coefficients that are actually sampled∗;

∗The fact that there still remains a small gap between the image obtained out of (7) and the original image might be
due to the numerical algorithm that is used to solve this optimization problem. This algorithm (NESTA) is described in
Becker, Bobin and Candès.14
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Figure 2. Evolution of the reconstruction error of the same one-disk image with radius ρ = 22 pixels for a sampling rate
τ in the range

[
10−3, 10−1]

, and five reconstructed images obtained for different values of τ . Each reconstructed image
is presented with its associated Fourier sampling pattern. The reconstructed image obtained for τ = 2.2× 10−3 is almost
identical to the original image.
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Figure 3. Evolution of the reconstruction error for four one-disk images with various radius ρ, and the associated critical
sampling rates τ? computed from the curves.
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Figure 4. Transition sampling rate τ? for eight values of ρ. A linear regression on these data confirms that, for the
single-disk images, τ? obeys a linear increasing law with respect to ρ.

• between these two constant domains, there is a narrow area around a transition sampling rate τ? where
the reconstruction error decreases from high value to almost zero.

The value τ? of the sampling rate, as it somehow separates the domain where reconstruction is possible from
the domain where it is not, can be interpreted as an empirical measure of the sampling threshold that is defined
in a theoretical manner in (3). The fact that this threshold is drastically modified depending on the input image
reflects on the variation of the underlying sparsity coefficient S.

There are several ways to decide what the actual value τ? is from the curve RecErr = f (τ) : one could define
τ? such that RecErr (τ?) = 0.5 (0.5 being the mean value between the two constant domains of the curve), or
decide that τ? is the point where the first derivative of the function takes its maximal absolute value (as the
function seems to have an inflexion point in the transition area); however, as long as the transition domain is
sufficiently narrow, all these definitions are likely to be equivalent. For the sake of simplicity, we have defined τ?
such that RecErr (τ?) = 0.5 in our simulations (see fig. 3); this definition does not depend on the spread of the
transition area.

2.3 Optimal sampling rate and sparsity
When performing a CS reconstruction using the optimization problem (7), we know that the underlying a priori
hypothesis on the input image is that it has a sparse gradient. In the case of our simple binary images, the
number of non-zero gradient coefficients is roughly equal to the perimeter of the object. Then, together with
(3), we can make the assumption that the transitional sampling rate τ? is an increasing linear function of the
perimeter of the object. Therefore, in the case of our one-disk images, τ? should increase linearly with ρ.

In order to check this hypothesis, we computed the transition sampling rate τ? for eight values of the disk
radius ρ. Results in fig. 4 confirm that τ? obeys a linear increasing with respect to ρ, hence corroborating
empirically the theoretical relation (3).

2.4 Optimal sampling rate and shape factor
We have also investigate the dependency of the transitional sampling rate τ? with respect to the shape factor of
the imaged object. Equation (3) suggests that τ? depends only on the number S of non-zero gradient coefficients,
that is related to the perimeter of the object, but not to its the shape factor. Therefore, two objects with the
same perimeter should have the same transitional sampling rate, even if one is isotropic (for exemple, a disk)
and one has a spatial dimension much larger that the others (for exemple, a flat ellipse).
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Figure 5. Evolution of the reconstruction error for four ellipses of constant perimeter p = 250 pixels but various shape
factor γ, and position of the associated critical sampling rates τ?. The corresponding test images are presented on the
right.

To validate this hypothesis, we followed a similar approach than for the single-disk bench images, but we
replaced the disks with ellipses of constant perimeter and various eccentricities. By varying the ratio γ between
the half minor axis and the half major axis from 1 (circle) to almost 0 (flat shape), we tested shapes with different
spatial and frequency characteristics; on the other hand, by setting a constant perimeter, we have maintained a
constant TV-based sparsity measure for all the test images: then the observed τ? should be the same for all the
inputs. The results are presented on fig. 5.

Although the four curves do not perfectly overlap, the associated transitional sample rates are distributed
in a narrow domain, approximately

[
10−2, 1.7× 10−2]

. Moreover, this analysis neglects all the effects due to
the fact that our test shapes are drawn on a cartesian grid with a non-zero step parameter; in particular, our
hypothesis that the number of non-zero gradient coefficients is roughly equal to the perimeter of the object is
no longer valid for small disks or very flat ellipses. This explains why the four critical sampling rates are not
strictly identical.

2.5 Putting things together
Results presented in sections 2.3 and 2.4 prove that the critical sampling rate associated to a binary image
composed of one elliptical object is proportional to the perimeter of the object, but does not depend on its shape
factor. This has to do with the relation (3) stated by Candès and Romberg,7 which expresses that the minimal
number of measurements needed to reconstructed an image through a CS recovery scheme is proportional, for
a given number of pixels N , to its sparsity coefficient S; when TV regularization is used to reconstruct binary
images, this coefficient S is roughly equal to the length of the boundary between the two binary domains.

Going further, we can address the following issue: if the binary image is now composed of several elliptical
objects, can we still observe a linear dependency between the critical sampling rate and the size of the boundary
between the two binary domains in the image, which is equal to the sum of the perimeters of all the objects?
Then, is it possible to predict a suitable sampling rate for CS reconstruction from an a priori knowledge of some
geometric characteristics of the imaged objects, from which the size of the boundary between the two domains
could be computed? An application example where it would make sense to formulate such a knowledge can be
found in the biological imaging field: if we image a medium containing a fixed number of cells with a non-elastic
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Figure 6. Points (P, τ?) computed on random binary images composed of ellipses generated with and without enforcing
a non-overlapping constraint on them. Examples of such test images are presented on the right.

membrane, a reasonable prediction about the size of the interface between the cells and the medium can be
formulated, as this size would not change so much over time.

To answer this question, we carried out the following experiment: we generated some test images containing
a random number of ellipses, each of them having random perimeter, eccentricity and orientation. Then, for
each of these test images, we computed the associated critical sampling rate τ? as well as the total perimeter of
the objects P. Results are reported on figure 6.

We carried out two series of experiments:

• First, we prevent ellipses from overlapping and from touching the edges of the image; this constraint ensure
that the length of the boundary between the two binary domains of the image is actually equal to the sum
P of the perimeters of the ellipses. The result of a linear regression computed on the points (P, τ?) collected
from these experiments is presented on fig. 6: even if we can observe that some data (P, τ?) deviate from
the predicting model, the general trend of this linear model is relevant. The encountered deviations might
be due to the uncertainty in the measure of τ?.

• Then, we remove the non-overlapping and non-edge-touching constraint; without it, our simulation condi-
tions become closer to real environment that would be encountered in real-life applications. On the other
hand, we no longer ensure that the length of the boundary in the image is equal to P: actually, P will be
greater than the length of the boundary between the two binary domains of the image. Therefore, as shown
by data presented on fig. 6, the linear predicting model computed from the non-overlapping constrained
data gives an upper bound on the critical sampling rate of the unconstrained images.

Thus, from a practical point of view, given a prior knowledge on the geometric parameter P, we can pre-
dict which sampling rate is suitable for CS reconstruction, although this prediction will be pessimistic if some
overlapping events occur.
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Figure 7. Evolution of the reconstruction error for four one-disk images with various radius ρ, when sampled according to
a Gaussian sampling strategy. We presents also four zoomed reconstructions of the ρ = 5 one-disk test image, with their
associated sampling patterns. The reconstructed image obtained for τ = 2.3 × 10−1 is almost identical to the original
image.

3. FURTHER DEVELOPMENTS
3.1 Sampling strategy and filtering effects
The notion of transitional sampling rate is also related to the sampling strategy used to define the position of the
measurements in the Fourier space. In all previous simulations, we used a random uniform sampling strategy,
which means that the probability of selecting the Fourier coefficient corresponding to the spatial frequency k is
given by p (k) = τ , with τ the targeted sampling rate. In this case, no spatial frequency is privileged as p (k)
does not actually depend on k. However, alternative sampling strategies exist:

• Candès, Romberg and Tao1 used a star-shaped sampling pattern when demonstrating the practical recovery
capabilities of CS schemes applied to images;

• in a context of 3D MRI imaging, Kim, Narayanan and Nayak15 used a non-uniform sampling pattern
having a small fully sampled area closed to the k-space center;

• with the same modality, Vasanawala et al.16 proposed an original random sampling strategy (called Poisson-
disc sampling) which enforces a minimal distance constraint between to consecutive measurements in the
k-space;

• Wang and Arce17 studied several sampling strategies, including the star-shaped sampling pattern, spiral-
shaped sampling pattern, and non-uniform random strategies.

These sampling strategies take advantage of the fact that the energy of natural images tends to be concentrated
close to the center of the Fourier space. Therefore, allocating more measurements to the low frequencies somehow
increases the amount of information collected during the CS measurement process.

To understand the effects of these kind of low-frequency biased sampling strategies, we have reproduced
the one-disk test image experiments presented in section 2.2; however, instead of allocating measurements in a



random uniform manner, we chose to allocate them according to a Gaussian sampling strategy:

p (k) = e−
‖k‖2

l2
R2 (9)

where the parameter R is tuned according to the overall targeted sampling rate. This sampling strategy is also
the one used to generate the sampling patterns presented in fig. 1. The corresponding curves RecErr = f (τ) are
presented on fig. 7.

Compared to the results presented on fig. 3, the profile of these curves RecErr = f (τ) is dramatically
modified because of the shift in sampling strategy. Indeed, for the single-disk images with ρ = 3 and ρ = 5, we
can identify at least three domains where the reconstruction error is quite stable, and two transitional domains
in between. The two extremal stable domains (which correspond approximately to ρ < 10−3 and ρ > 10−1)
are similar to the stable domains that we observe in the case of random uniform sampling: they correspond
respectively to a complete failure of the CS recovery scheme, and to a perfect reconstruction of the original
image. On the contrary, the intermediate stable domain observed with Gaussian random sampling cannot be
related to phenomena observed with uniform random sampling; when working with sampling rates in this range,
the reconstructed images look very similar to the original one, but have smooth edges: for these reconstructions,
the CS recovery procedure works but induces a low-pass filtering effect on the reconstructed image. This low-
pass filtering effect is linked to the Gaussian sampling strategy which allows very few measurements in the high
frequency areas of the Fourier space.

Another particularity of the Gaussian sampling strategy is that small objects become harder to retrieve than
large ones (meaning that a higher sampling rate is required to reconstruct the small-disk images), which is the
inverse trend of what is observed with uniform random sampling. This is well understandable, as the Fourier
transform of big objects is concentrated closer to the center of the Fourier space. The fact that CS recovery
schemes perform better on input signal that have a larger sparsity coefficient S is however paradoxical.

As a consequence, it appears that defining a notion of critical sampling rate for Gaussian sampling strategy
is questionable. The link between such a notion and the sparsity coefficient S of the input signal is probably an
interesting question to address in detail.

3.2 Realistic image reconstructions
So far, simulations were carried out on simple test images, whose structure is very poor compared to what is
encountered in real ones. Real images have a rich textural content, they may contain details at various scales, and
they are often subject to degradation during the acquisition process, resulting in blurring and noise; compared
to what is observed on simplistic test images such as those in figures 2, 5 and 6, all these phenomena induce a
dramatic increase of the underlying sparsity level S. Actually, most of the real images are not even sparse at
all: whatever the reasonable basis used to represent such kind of images, an overwhelming percentage of their
coefficients are non-zero. Still, real images have a weakly sparse structure in some adapted basis (such as wavelets
basis), which allows the use of CS methods on these kind of signals.

We carried out reconstruction simulations on four realistic images, following the protocol described in sec-
tion 2.1. The four realistic test images are:

1. the well-known Shepp-Logan phantom image, with strictly piecewise constant regions and sharp edges;

2. the Shepp-Logan image degraded with a small Gaussian blur (using a standard deviation of 1 pixel length
for the filter, while the image is 256× 256 pixels);

3. a true fluorescence microscopy image of Shigella bacteria;

4. a microscopy image of Lymphocytes T cells, presenting a high level of noise.

Results of these simulations are presented on fig. 8.
For both Shepp-Logan images, the error curves look very similar to the one obtained for the disks and the

ellipses in figures 3 and 5: they present two stable domains where the CS reconstruction process respectively



10−2 10−1 1
0

1
2

1

τ
? p

h
an

to
m

=
5.

2
×

10
−

2

τ
? b

lu
rr

ed
=

1.
5
×

10
−

1

Sampling rate τ

R
ec
on

st
ru
ct
io
n
er
ro
r

Figure 8. Evolution of the reconstruction error for the four test images presented on the top of the figure, sampled
according to a random uniform sampling strategy. These images are, from left to right, the Shepp-Logan test image, a
blurred version of Shepp-Logan, and two real biological images, Shigella and Lymphocytes T.

fails and succeeds, and a narrow transition area between these domains where the relative reconstruction error
falls from almost 1 to almost 0 as τ increases. However:

• compared to what was observed with disks and ellipses, the transition between the failure and the success
domains occurs at a much higher sampling rate (approximately 10−1, instead of 10−2); moreover, the
spread of this transition area is larger;

• even if the two Shepp-Logan images are very similar (the blurring effect applied on the second image is
moderate as it does not lead to any loss of details), both the position and the spread of the transition area
are dramatically changed due to the blur.

Therefore, defining a critical sampling rate for these images still makes sense, even if the accuracy obtained on
the corresponding measured values is poorer than for the simple binary images. Together with the theoretical
relation (3), this can be explained by the fact that the Shepp-Logan images still have strict underlying sparse
structures (in terms of gradient), even if the corresponding sparsity level S becomes much larger as soon as a
blurring filter is applied.

On the contrary, in the case of the Shigella and Lymphocytes T images, the reconstruction error never reaches
a stable low level; the reconstruction error associated to the Lymphocytes T image does not even reach 0 (even
for τ = 100% fully sampled reconstructions), because of its high level of noise. As these images are not strictly



sparse, increasing the amount of available information (i.e. the number of measurements) always improves the
fidelity of the reconstruction; therefore, defining a critical sampling rate for these images is not as relevant as in
the case of binary sparse images.

4. CONCLUSION
In this paper, we proposed an experimental exploration of how these conditions apply in a context of image
reconstruction through TV minimization and Fourier undersampling. We examined the case of simple binary test
images, and established a linear relation between the minimal sampling rate ensuring perfect CS reconstruction
and the length of the boundary that separates the two binary domains in those input images. Finally, we
concluded by discussing the side effects induced by a low-frequency favoring sampling strategy (the Gaussian
sampling strategy), and presented some results obtained with realistic images.
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