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ABSTRACT
The theory of compressed sensing (CS) predicts that random (or
pseudo-random) linear measurements together with non-linear re-
construction can be used to sample and recover structured signals in
a compressive manner. Lots of previous results demonstrated the ef-
ficiency of CS in recovering 2D images acquired using dedicated CS
devices (single-pixel camera, accelerated MRI, etc...).

In this paper, we investigate how this framework can be extended
to perform an efficient joint reconstruction of a sequence of time-
correlated 2D images, using 3D total variation regularization. We
also evaluate the performances of this framework on test sequences
issued from the bio-imaging field.

Index Terms— Compressed sensing, total variation, video.

1. INTRODUCTION

1.1. CS background and notations

The inverse problem tackled by CS can be formulated as follows:
given a signal of interest x ∈ RN measured through a random linear
operator Φ that outputs a vector y ∈ RM of observations withM �
N , can x be recovered from y? The randomness of the measurement
operator Φ should not be understood in strict meaning, but rather as
the fact that Φ should spread the information contained in x over
the whole vector y. Examples of such operators include random
Gaussian or Bernouilli matrices [5], randomly subsampled Fourier
or Hadamard transforms [3], or dedicated unitary matrices [7].

Previous results (see [4, 8, 2]) establishes that x can be recovered
from y if it has a sparse representation in some known dictionary Ψ,
i.e. there exists a sparse vector γ ∈ RD such that x = Ψγ, and if Φ
behaves like an isometry for sparse linear combinations of columns
of Ψ; this idea is quantified using the notion of restricted isometry
property (see [2] for more details). Up to some technical hypothesis,
an estimator x̂ of x can be defined as a solution of the following
convex problem (known as l1-analysis problem):

x̂ = arg min
x∈RN

‖Ψ∗x‖1 s.t. ‖Φx− y‖2 ≤ ε (1)

where ε is a parameter tuned according to the level of noise that
corrupts the observations y. As an alternative to (1), x can also be
estimated through (2) (known as l1-synthesis problem):

x̂ = Ψγ̂ where γ̂ = arg min
γ∈RD

‖γ‖1 s.t. ‖ΦΨγ − y‖2 ≤ ε (2)

Although (1) and (2) are equivalent in the case when Ψ is an or-
thonormal basis, it is not the case for a general dictionary. Empirical
studies show that l1-synthesis can be effective in some situations in-
volving overcomplete dictionaries, but it also leads to practical diffi-
culties, such as working in higher dimensional spaces (see [9]).

1.2. Video reconstruction problem formulation

We focus on the following problem: a signal of interest x ∈ RN×T
composed of T successive frames xt ∈ RN (1 ≤ t ≤ T )1 is mea-
sured through a linear memoryless operator Φ, resulting in a vector
y ∈ RM of observations. Formally:
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The memoryless notion means that y is accumulated from T
sub-vectors yt ∈ RMt of observations, with each yt depending only
on a given frame xt; this measurement model corresponds to a 2D
CS measurement device that would image objects in motion, stack-
ing the consecutive 2D measurements. In such acquisition mode,
temporal redundancies between 2D frames enable to decrease the
sampling rate compared to what is necessary to reconstruct indi-
vidual 2D images; depending on the actual acquisition device, the
saved measurements could then be re-allocated in order to improve
the time resolution of the system.

The algebraic consequence of the memoryless measurement hy-
pothesis is that the operator Φ is block-diagonal. In [15], the authors
demonstrate that restricted isometry inequalities – which ensure that
the minimizer of either (1) or (2) is actually a good estimate of the
original signal – could be established for block-diagonal Φ operators
when the Φt are random matrices. To prove this result, they impose
an additional hypothesis on the class of signals x they are working
with, namely that the energy ‖xt‖22 of each frame is proportional
to the number of measurements Mt allocated to the corresponding
sensing operator Φt. Based on some empirical observations, we be-
lieve that such kind of result could also be established for other types
of blocks Φt, such as randomly subsampled Fourier transforms.

From a practical viewpoint, assuming that the frame energy is
almost constant over time (therefore using the same number of mea-
surements for each frame) leads to satisfactory results (see sec. 3).

1.3. Previous works on designing sparsifying transform adapted
to video signals

For 2D natural images, it is well-known that ‖Ψ ·‖1 with Ψ a 2D
wavelet transform, or the total variation ‖·‖TV can be used as the
regularization term in (1). Each energy term depends on the ac-
tual image model: total variation is best suited for piecewise con-
stant images (cartoon model), wavelets for piecewise regular images,

1In this paper, bold symbols denote 2D+T (or 2D+T related) entities,
while regular font is reserved to objects with no temporal dimension.



curvelets for piecewise regular images with discontinuities along
smooth edges, etc. In particular, for 2D data issued from biological
imaging set-ups, total variation was shown to be suitable for sparsity
enforcement and CS reconstruction in [12].

However, few results have been established so far for joint re-
constructions of time-correlated 2D images (2D+T data). In [17],
the authors propose to use a 3D wavelet basis for Ψ; although it
is a natural generalization of the 2D case, this approach does not
take into account the fact that the objects appearing in a given 2D+T
sequence might have very anisotropic spatio-temporal shape, while
wavelets are best suited for isotropic objects.

In [14], the authors introduce a multi-scale video reconstruction
framework, which relies on the idea of increasingly refining the spa-
tial scale of the estimated signal: at each step, the algorithm exploits
information obtained from coarser estimates to reduce the temporal
redundancies and to estimate motion. However, although present-
ing some promising results, this method requires to adapt the mea-
surement protocol in order to get some information about the coarse
versions of the signal. Such modification is possible with the single-
pixel camera, but cannot be extended to other CS acquisition device.

In [11], the authors propose to perform a joint reconstruction of
sequences of K-consecutive frames (where K ≥ 2 is a predefined
parameter) in the following way: given a basis Ψ ∈ RN in which
each frame has sparse or nearly sparse representation, they define the
following NK-square matrices:

BK =


Ψ
...

. . .
Ψ Ψ
Ψ Ψ

 CK =
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Ψ · · · Ψ
Ψ · · · Ψ Ψ

 (4)

Then, they propose to use either BK or CK as the dictionary in a
l1-synthesis scenario. The underlying idea is to exploit the tempo-
ral redundancy in the video sequence by reconstructing the differ-
ence between frames instead of the frames themselves; reconstruc-
tion artefacts induced by these methods will be discussed in sec. 3.

Other approaches using iterative reconstructions together with
motion estimation and motion compensation heuristics (see [13]) ex-
ist but were not evaluated here.

2. VIDEO RECONSTRUCTION THROUGH 3D-TV
MINIMIZATION

2.1. Three-dimensional total variation

As suggested by [11], considering frame-to-frame differences could
be an interesting starting point to exploit temporal redundancies.
However, one should notice that the significant coefficients are not
randomly distributed in a typical consecutive frame difference. In-
deed, if xt and xt+1 are two consecutive frames in a video sequence,
then the coefficients of xt+1 − xt with large magnitudes are mostly
located close to the edges of xt and xt+1.

To enforce this property, we propose to use the three dimensional
total variation as a regularization term in the reconstruction problem
(1). 3D total variation (3D-TV) is defined as:

‖x‖TV =
∑
P

√
(Dhx) (P )2 + (Dvx) (P )2 + (Dtx) (P )2

(5)
where P visits every pixels of every frames, and Dh, Dv and Dt

stand for the discrete derivative operators respectively in the horizon-
tal, vertical and temporal directions. The reason why ‖·‖TV favors

that the non-zero coefficients of the temporal difference map cluster
around the edges can be explained thanks to block sparsity.

Block sparsity is a notion introduced by [16, 10], to refine the
prior made on the sparse representation γ of a signal of interest x.
The idea proposed by the authors is to favor sparse representations
with clustered structures; more precisely, given a partition (Ωg)g∈G
of the set of index values of γ, the authors introduce the following
mixed l1,2-norm:

‖γ‖1,2 =
∑
g∈G

√∑
k∈Ωg

|γ (k)|2 (6)

Then, they demonstrate that replacing ‖·‖1 with ‖·‖1,2 in the CS re-
construction problems (1) or (2) results in block-sparse estimators,
meaning that the non-zero coefficients of the estimator γ̂ are clus-
tered within a few subsets Ωg .

Obviously, ‖x‖TV = ‖∇x‖1,2 where ∇ is the discrete gra-
dient operator, constructed by stacking Dh, Dv and Dt, and where
each underlying subsets ΩP contains the three directional derivatives
computed at a given 2D+T coordinate P : Dt computes the temporal
difference map, while Dh and Dv act as edge detectors; then, min-
imization of ‖x‖TV favors the clustering of non-zero coefficients
present in these three maps.

2.2. Mean background correction

There are some situations where the difference xt+1 − xt between
two consecutive frames is not sparse at all, even if xt and xt+1 are
well-correlated. This includes the case when the global illumination
of the observed scene changes over time.

To make 3D-TV regularization more robust with respect to this
problem, we reformulate the reconstruction problem as follows:

x̂ = arg min
x∈RN

‖x− b‖TV s.t. ‖Φx− y‖2 ≤ ε (7)

where b is a sequence in which every pixel of a given frame t is set
to the same value mt, equal to the mean value of the corresponding
frame xt in the original signal.

The sequence b, or equivalently the mean value mt of each
frame, has to be estimated prior to the resolution of (7) from the
vector of observations y. Obviously, mt = 1

N
〈a, xt〉 where a is the

constant vector
[
1 1 · · · 1

]
. Then, if the measurement opera-

tors Φt contains a row proportional to a, the values mt can directly
be read from the vector of observations y; this is for example the
case when the Φt are randomly subsampled Fourier transforms for
which the sampling pattern is designed such that the DC compo-
nent is always sampled. If Φt does not contain a row proportional
to a, mt can still be estimated using the framework developed in
[6]; according the results presented in this paper, mt, being a linear
function of the signal of interest, can be estimated by:

m̂t = 1
N
〈Φta, yt〉 ≈

1
N
〈a, xt〉 (8)

Finally, one should observe that the optimization scheme (7) is
actually equivalent to the usual CS optimization problem with TV
regularization, up to the variable change x′ = x − b. Therefore, it
can be solved in practice with the usual dedicated CS solvers.

3. SIMULATION RESULTS

3.1. Comparison with other methods

We compared the proposed 3D-TV based methods with other exist-
ing algorithms, including:



Reconstruction method PSNR (dB)
Amiba Foreman Disks

Frame-by-frame, TV regul. 42.5 16.1 26.6
Frame-by-frame, DB4 regul. 38.3 11.8 15.5
3D total variation 46.8 27.9 22.0
3D TV with background estim. 46.8 27.3 38.9
3D Haar regul. [17] 45.2 23.0 18.6
3D DB4 regul. [17] 45.3 21.3 15.4
B4 with DB4 regul. [11] 30.7 14.4 17.2
C4 with DB4 regul. [11] 43.8 17.7 18.1
B20 with DB4 regul. [11] 43.0 20.9 17.9
C20 with DB4 regul. [11] 45.8 23.6 18.2

Fig. 1. Mean square error (expressed as PSNR) between original
sequences amiba, foreman and disks, and their estimators.

• l1-analysis using a 3D-wavelet transform (see [17]), us-
ing the Haar wavelet (as suggested by the authors) and the
Dauchechies-4 orthogonal wavelet;

• l1-synthesis using the BK and CK dictionaries (see [11]),
using a block size of K = 4 or K = 20 frames, and a
Dauchechies-4 wavelet transform as the 2D dictionary.

To assess the improvement offered by 3D reconstruction meth-
ods thanks to temporal redundancies, we also provide the results
obtained with frame-by-frame reconstruction, using either TV or
Dauchechies-4 wavelet regularization.

For each video sequence, a vector y of observations was mea-
sured in the Fourier domain, using a random uniform sampling strat-
egy with Hermitian symmetry; the DC component was also always
measured. The noise parameter ε was tuned by hand, with the same
value for every reconstruction method. Simulations were run using
Matlab R© and the NESTA optimization toolbox [1]. We extended
this toolbox to deal with 3D total variation; such a modification is
quite straightforward as NESTA already supports 2D total variation
minimization.

We assessed the reconstruction fidelity of the algorithms for each
test sequence by measuring the peak signal-to-noise ratio (PSNR)
between the input and the reconstructions (fig. 1); visual qualitative
evaluation of the artefacts was also performed (figs. 2 to 4). We
present the results obtained for three test video sequences:

• Amiba, sized 256 × 256 × 802, which is a microscopy se-
quence of moving and deforming amiba cells;

• Foreman, sized 288 × 352 × 80, which represents a talking
person;

• Disks, sized 256 × 256 × 80, which is a synthetic sequence
representing moving disks with random gray levels, sizes and
speeds. We designed this synthetic sequence so that it breaks
the underlying model corresponding to 3D total variation reg-
ularization; in particular, the gray level of the background os-
cillates quickly between two values, simulating rapid varia-
tions of the global illumination.

For the simulation results presented here, we used a sampling rate of
10% for both Amiba and Disks, and 20% for Foreman.

3.2. Data fidelity and reconstruction artefacts

In terms of PSNR, the proposed methods obtain the best reconstruc-
tion results, although the improvement over the other best perform-
ing methods (C20 [11] or 3D-wavelet [17] regularizations) is not

2height × width × number of frames

Original sequence 3D DB4 regul. B20 with DB4 regul.

Frame-by-frame TV 3D total variation C20 with DB4 regul.

Fig. 2. Frame t = 50 in various estimators of the sequence amiba.

Original sequence 3D DB4 regul. B20 with DB4 regul.

Frame-by-frame TV 3D total variation C20 with DB4 regul.

Fig. 3. Frame t = 23 in various estimators of the sequence foreman.

Original sequence 3D total variation
3D TV with

background estim.

Fig. 4. Frame t = 17 (top row) and t = 44 (bottom row) obtained
with the two proposed methods for the sequence disks.
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Fig. 5. Trade-off curves between sampling rate and reconstruc-
tion error for the amiba sequence, depending on the reconstruction
method. To achieve reconstruction with a given error bound, the 3D
TV regularization method needs three to four times less measure-
ments than its 2D frame-by-frame counterpart.

dramatic in most cases (1.5 dB for amiba, about 4 dB for foreman).
However, this measurement does not reflect the gain in terms of vi-
sual perception brought by the two 3D-TV based methods.

Indeed, compared to the wavelet-based regularization methods,
3D-TV tends to produce sequences with very sharp edges, without
the oscillatory patterns typically present close to the edges in 3D
wavelet reconstructed sequences. 3D-TV reconstructions also do not
have the typical problems encountered with BK and CK estimators:

• BK dictionaries tend to produce estimators where all the K
frames belonging to a given block are very similar from one to
each other (the gray level of a given pixel is almost piecewise
constant over time), resulting in a jerky effect.

• CK reconstructed sequences display precognition and trail-
ing artefacts, meaning that the reconstructed frame corre-
sponding to time t contains some piece of data belonging to
the original frames t + 1, t − 1, t + 2, t − 2, etc. This is
particularly noticeable close to the moving objects.

Finally, for most sequences, the simple 3D total variation esti-
mator is very similar to its 3D-TV with background estimation coun-
terpart, both in terms of PSNR and visual quality. The only exception
is the disks sequence, which was designed on purpose to challenge
the 3D-TV reconstruction: since the difference between two con-
secutive frames is non-zero at almost every pixel, the hypothesis on
which the 3D-TV estimator3 relies does not hold. Using the 3D-TV
regularization term with background estimation tackles this issue,
leading to a result almost identical to the original in the case of the
disks sequence (cf. fig. 4).

3.3. Gain over frame-by-frame reconstruction

To quantify the gain provided by the 3D-TV reconstruction methods
over simple frame-by-frame reconstructions, we measured the evo-
lution of the reconstruction error as a fonction of the sampling rate
on our test sequences (see fig. 5). Then, we compared the sampling
rates corresponding to a given level of fidelity of the estimator to the
original data, measured as a mean square error (expressed as PSNR).

In the case of our test sequences, we observed that the sampling
rate corresponding to frame-by-frame TV reconstruction is generally

3as well as many other estimators, especially those using the BK and
CK dictionaries

3 to 4 times bigger than the one corresponding 3D-TV reconstruc-
tion for a given value of the PSNR; this ratio tends to decrease when
PSNR increases. One should mention also that this result does not
depend on whether 3D-TV reconstruction with background correc-
tion or 3D-TV alone is considered, except in the case of the disks
sequence, for which 3D-TV reconstruction alone completely fails.

4. CONCLUSION

In this paper, we presented a new framework for video reconstruction
from frame-by-frame 2D CS measurements, based on the use of 3D
total variation as the regularization function in the l1-reconstruction
problem. More precisely, we proposed two reconstruction schemes:
one based on 3D-TV alone, which succeeds in reconstructing most
signals, and one combining 3D-TV with estimation of the mean
background value in each frame, which produces better reconstruc-
tions in the case of difficult sequences.

We compared these schemes to existing reconstruction methods,
and showed that 3D-TV regularization outputs estimators with bet-
ter qualitative properties, especially sharper edges and fewer motion
artefacts. Finally, we demonstrated empirically that the number of
measurements needed to reach a given reconstruction fidelity with
our methods is 3 to 4 times smaller than what is required in the case
of frame-by-frame reconstruction.
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