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ABSTRACT

Incorporating the point spread function (PSF) into the itera-
tive MLEM reconstruction of PET images introduces contrast
and size dependent ringing and over enhancement artifacts.
We previously developed a new method, called TV-PSF-
MLEM, to suppress these artifacts based on the introduction
of a locally-weighted total variation regularization within the
MLEM reconstruction algorithm. On non-noisy PET mea-
sures, we proposed to compute the TV spatial weights based
on the point-wise convergence rate of a preliminary MLEM
reconstruction, for each voxel. In this work we extend the TV-
PSF-MLEM weighting scheme to noisy measures introducing
a noise-independent weighting scheme. We compare its per-
formance to a state of the art PET denoising method. Results
on numerical phantoms show that the TV-PSF-MLEM offers
substantial advantages in the recovery of small cylinders and
gains in contrast recovery of larger cylinders.

Index Terms— PET, image reconstruction, point spread
function, MLEM, Total Variation

1. INTRODUCTION

Iterative reconstruction techniques, such as the maximum
likelihood expectation maximization (MLEM), provide a
flexible framework in positron emission tomography (PET)
imaging for modeling the physics and the scanner geome-
try, yielding greater image contrast, visual quality and noise
robustness than analytical reconstruction methods. Incorpo-
rating the point spread function (PSF) of the scanner into the
iterative MLEM reconstruction process (called PSF-MLEM)
improves spatial resolution but introduces significant contrast
and size dependent over-enhancement and ringing artifacts
[1, 2]. The over-enhancement artifacts might be explained by
the mismatch between the true and the measured PSF, while
the ringing artifacts are related to object sizes [3]. Most ap-
proaches previously proposed to compensate ringing artifacts
tend to blur the PET data which undermines the benefits of
including the PSF in the reconstruction [3].

A promising approach was recently proposed by Rapis-
arda et al. for artifact suppression by incorporating a new reg-
ularization prior into the reconstruction process that locally

modifies the image estimate at each iteration in an attempt
to locally control edge enhancement [4]. This method pro-
vides excellent ringing suppression in the image, especially
for large structures, but also tends to suppress the benefits of
PSF modeling in smaller objects.

We previously developed a new method (called TV-PSF-
MLEM) to suppress PSF-MLEM artifacts based on a locally
weighted total variation regularization applied at each itera-
tion [5]. Amplitude of the weights specify the amount of TV
regularization at each voxel. These local weights can be pre-
calculated based on the convergence rate of MLEM at each
voxel since we established that the convergence rate is di-
rectly related to the object size and contrast and that artifact
magnitudes are directly proportional to this convergence rate.
Using noiseless simulations, we showed that TV-PSF-MLEM
suppress ringing artifact while providing edge and contrast
recovery, beyond that of standard MLEM, especially in small
cylinders. In this paper we extend the TV-PSF-MLEM for-
malism to simulations corrupted with Poisson noise. A new
weighting scheme is introduced robust to noise and results
are presented, comparing to the Rapisarda method that is also
based on a regularization prior.

2. METHODOLOGY

2.1. Iterative image reconstruction: MLEM algorithm

The ML estimate of the PET image is computed using the
MLEM algorithm, and following the notation from [4], leads
to the following iterative update equation:

λk+1
b =

λkb
BPb1

BPb
yd

Pdλkb′
= λkbu

k
b (1)

where λkb represents the intensity of the voxel b within the im-
age λ at iteration k, yd is the sinogram measure, equal to the
number of counts along the line of response (LOR) d, and 1
is a unit matrix of the same size as yd. Following the method-
ology introduced in [4], incorporating the PSF model into Eq.
(1) is achieved by modifying the projector P and backprojec-
tor BP as follows:

Pd(·)b =
∑

((·) ∗ PSF )bpbd

BPb(·)d = PSFT
∑

(·)dpbd (2)
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Fig. 1: (top) Middle portion of the simulated cylindrical phantom
object with inset cylinders of various diameters. (bottom) Center
profiles (along the dashed line above) of reconstructions with MLEM
(blue line), PSF-MLEM (red line), and ideal phantom (black line).

where PSF represents the PSF kernel and ∗ is a dis-
cretized convolution operator as defined in Appendix of [6].
For a symmetric kernel, PSF = PSFT . Hereafter PSF-
MLEM shall refer to the situation when PSF is a non-zero
matrix, and MLEM when PSF = 1.

2.2. Simulation framework: software and phantom

All methodological developments were performed using sim-
ulated sinograms. PET image reconstructions were per-
formed using the STIR open source C++ software (v2.2)
[6]. The modified projectors in Eq. (2) were implemented
in C++ within the STIR source code. A 200mm diameter
cylindrical phantom object was simulated, with a background
intensity equal to 10, and containing three hot spots of diam-
eter 25mm, 16mm, 12mm with a 1.5:1 contrast ratio (CR),
as well as three 8mm diameter hot spots with CR of 1.25:1,
1.5:1 and 2:1, respectively. The phantom was blurred with
a symmetrical 4.5mm FWHM Gaussian kernel [5] to sim-
ulate the resolution loss inherent to the ECAT HR+ scanner
(Siemens/CTI) at use in our facility. Figure 1 illustrates the
phantom image with resolution and contrast loss due to blur-
ring, as well as the ringing and over-enhancement artifacts
of PSF-MLEM. Poisson noise was added to the sinogram
measures yd using the STIR poisson noise command with
scaling factor = 1.

2.3. TV regularization prior (Rapisarda method)

A Bayesian formulation of the iterative reconstruction algo-
rithm can be used, leading to a maximum a posteriori (MAP)
estimate that includes an a priori probability term. Rapisarda

proposed the following iterative MAP estimate [4]:

λk+1
b =

λkb
BPb[1− αDbλkb ]

BPb
yd

Pdλkb′
(3)

where α > 0 weights the contribution of the valueDb at pixel
b of a regularization prior D defined as:

D[λ] = ∇ ·
(
φ′(|∇λ|) ∇λ

|∇λ|

)
(4)

The term φ′(x) is called the variational prior and is based on
a modification of the generalized p-Gaussian kernel:

φ′(x) =

{
x(p−1) x < δ

1− d(d+δ)
d+x x ≥ δ

(5)

where d = (1− δp−1), with δ being a gradient threshold.

2.4. TV-PSF-MLEM: algorithm

We introduced in [5] a locally-weighted total variation reg-
ularization scheme for PSF-MLEM reconstruction. We out-
line its components briefly here. Using previous notations, at
each iteration of Eq. (1) the total variation problem amounts
to finding an estimate image λ̂k that satisfies:

λ̂k = min
θ

1

2

∥∥λk − θ∥∥2
+ β |∇θ| (6)

where || · || and | · | are the l2 and l1 norms, respectively,
and β is a positive scalar regularization weight. The classical
framework given by Eq. (6) minimizes TV over the whole
image. Instead, local weights wb were introduced for each
individual pixels b as follows:
We define λ̇kb as the locally weighted TV estimate:

λ̇kb = λkb + wb∆λ̂
k
b (7)

where wb is a spatially-varying weight imposed on the net
change of each voxel and ∆λ̂kb is defined as:

λ̂kb = λkb + (λ̂kb − λkb ) = λkb + ∆λ̂kb (8)

Note that if wb = 1 then λ̇b = λ̂b, corresponding to the classi-
cal solution to Eq. (6).

We proposed to use the convergence rate, derived from the
value of ub in Eq. (1), for the definition of the spatial weights
wb, as detailed in [5], using the following values:

cb = min
k
|1− ukb | ≤ ε

wb = 1− cb −min(c)

max(c−min(c))
(9)

where cb is defined as the earliest MLEM iteration k at which
voxel b converges (in practice when ukb ≈ 1 ),wb is derived by
normalizing cb such that 0 ≤ wb ≤ 1, and ε is a convergence
threshold (ε = 1×10−4 in [5]). Figure 2 illustrates the spatial
TV-weights wb obtained with this approach for noiseless and
noisy measures. PSF-MLEM with TV denoising method (TV-
PSF-MLEM) is summarized in Algorithm 1.
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Fig. 2: Local TV weights calculated using Eq. (9) with noiseless
data (black line) and using Eq. (10) with noisy data (red line). The
profile of the noiseless MLEM reconstruction (blue line) is shown
as a reference. Left and right y-axes correspond to MLEM pixel
intensities and weights wb, respectively.

Algorithm 1 TV-PSF-MLEM algorithm
Data: N , λ0, k = 0, Result: λNb , Initialize: λ0

b = λ0

while k ≤ N do
λk+1
b ← λkb from Eq. (1)
λ̂k+1
b ← λk+1

b from Eq. (6)
λ̇k+1
b ← λ̂k+1

b from Eq. (7)
λk+1
b ← λ̇k+1

b , k ← k + 1

2.5. TV-PSF-MLEM: TV spatial weights for noisy data

From Eq. (9) it can be seen that weights depend on the conver-
gence rate of individual voxels b and will therefore be highly
affected by the presence of noise. To adapt our approach to
noisy data, we first studied the oracle approach where ideal
weights (derived from the noiseless case) were applied to TV-
PSF-MLEM reconstruction of the noisy sinograms, corrupted
with Poisson noise. Results, illustrated in Figure 2, show that
reconstructions after N=500 iterations were similar with and
without noise, with good suppression of noise and ringing
artifact, but with some over enhancement of the 8mm cylin-
ders in both cases. To approximate these oracle weights using
the iterative MLEM reconstructions from the noisy data, we
propose to use a local spatial aggregation of the convergence
rates estimates ukb from Eq. (1), using the average kernel of
size n × n with n = 3, along with a modified value for ε:
ε = 5× 10−4. Results illustrated in Figure 2, show that such
approach leads to a profile of the local weights that mimics
well the general shape of the oracle weights although local
differences in magnitude exist. Thus, the calculation of the
parameter cb used in Eq. (9), on noisy data becomes:

ûkb =
∑
b∈Nb

ukb (10)

where Nb is the 3x3 neighborhood around voxel b, and ûkb
replaces ukb in Eq. (9) for noisy data.

3. RESULTS

3.1. Experimental setup using synthetic phantom data

Performance of MLEM, PSF-MLEM, TV-PSF-MLEM, and
the Rapisarda method was quantitatively assessed using the
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(b) with Poisson noise

Fig. 3: TV-PSF-MLEM reconstruction with oracle weights for sim-
ulated phantom without (a) and with (b) added Poisson noise to the
sinogram. Horizontal profile lines through the center of the image
are shown for ideal phantom (black line), 200 iterations of MLEM
using Eq. (1) (blue line), and 500 iterations of TV-PSF-MLEM with
oracle weights (red line) initialized with 200 iterations of MLEM.

recovery coefficient defined in Eq. (11). For TV-PSF–MLEM
the regularization weight β = 0.02 was used as in [5], and for
the Rapisarda method parameters were set as recommended
by the authors in [4]: p = 1.33, δ = 0.3, and α = 0.002. In
an attempt to suppress over-enhancement in the 8mm cylin-
ders, as observed in Figure 3, we set a minimum cutoff value
for the wb values (stemming from the observation that wb in
those cylinders were lower than anywhere else in the image).
By increasing wb values we enforce more TV regularization
to prevent overshooting. Experiments were run until conver-
gence, corresponding to: N=200 for MLEM and N=500 for
TV-PSF-MLEM and Rapisarda.

RC =
∑

b∈ΩROI

λreconb

/ ∑
b∈ΩROI

λtrueb (11)

3.2. Evaluation of artifact suppression

Visually TV-PSF-MLEM and Rapisarda reconstructions pro-
vide very comparable results in large cylinders (≥ 12mm), as
seen in Figure 4. In smaller cylinders, the Rapisarda method
underestimates while the TV-PSF-MLEM overestimates the
activity. TV-PSF-MLEM appears more homogenous in the
background and in larger cylinders. At the outer edges of the
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Fig. 4: Reconstruction results on simulated phantom with Poisson
noise. Center profile is shown for: (black line) ideal phantom, (blue
line) 500 iterations of Rapisarda using Eq. (3) , and (red line) 500
iterations of TV-PSF-MLEM with average weights calculated using
Eq. (10). Reconstructions were initialized with 200 MLEM itera-
tions.

phantoms artifacts in the TV-PSF-MLEM reconstruction are
due to the non regularization with local weights wb there. The
overshoot in small cylinders and background edges is largely
remedied by applying a simple cutoff, as shown in Figure 5.

The performance characteristic of the two methods is bet-
ter understood in terms of RC values, reported in Figure 6 for
the different cylinders. The Rapisarda method yields RCs for
all cylinders that closely track the noiseless MLEM estimate,
with slightly higher RCs for cylinder diameters ≥ 12mm,
and outperforming standard MLEM on noisy data. Hence this
method provides excellent noise suppression but greatly lim-
its the contrast enhancement gained from PSF modeling as
it does not recover contrast loss due to blurring effects. In
contrast, TV-PSF-MLEM (with or without cutoff on the wb)
yields higher RC values for all cylinders. For the 24mm and
8mm cylinders the recovery level on noisy data approaches
the recovery level of PSF-MLEM without noise. When a cut-
off value is applied on the wb, all RC values are higher than
with the Rapisarda method, especially in the highest contrast
8mm cylinder.

4. CONCLUSIONS

We compared two ML iterative PET reconstruction algo-
rithms that both exploit local regularization of the image
data: our proposed TV-PSF-MLEM method and the Rapis-
arda method described in [4]. Our simulation results demon-
strate that in the presence of noise, our proposed method is
robust and provides advantages in terms of visual quality and
contrast recovery, especially in small structures. Further test-
ing with varying levels of noise, higher contrast ratios, real
phantom objects and clinical data is planned.
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Fig. 5: Reconstruction results on simulated phantom with Poisson
noise and wb cutoff value. Center profile is shown for: (black line)
ideal phantom, (blue line) 500 iterations of Rapisarda Eq. (3), and
(red line) 500 iterations of TV-PSF-MLEM with average weights,
Eq. (10), and wb cutoff=0.2. Reconstructions were initialized with
200 MLEM iterations.
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