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ABSTRACT

In fluorescence microscopy the noise level and the photobleaching
are cross-dependent problems since reducing exposure time to re-
duce photobleaching degrades image quality while increasing noise
level. These two problems cannot be solved independently as a post-
processing task, hence the most important contribution in this work
is to a-priori denoise and reduce photobleaching simultaneously by
using the Compressed Sensing framework (CS). In this paper, we
propose a CS-based denoising framework, based on statistical prop-
erties of the CS optimality, noise reconstruction characteristics and
signal modeling applied to microscopy images with low signal-to-
noise ratio (SNR). Our approach has several advantages over tra-
ditional denoising methods, since it can under-sample, recover and
denoise images simultaneously. We demonstrate with simulated and
practical experiments on fluorescence image data that thanks to CS
denoising we can obtain images with similar or increased SNRwhile
still being able to reduce exposition times.

Index Terms— Compressed Sensing, denoising, multi-scale,
biological microscopy, photobleaching

1. INTRODUCTION

In this paper we propose an application of Compressed Sensing on
fluorescence microscopic images, as a powerful denoising method,
enabling the reduction of photobleaching on images under reduced
exposition times. Our denoising framework is based on the property
of CS to efficiently reconstruct sparse signals with under-sampled
acquisition rates, significantly below the Shannon/Nyquist theoret-
ical bound. Similarly to recent experiments for MRI CS-based re-
construction [1], the acquisition protocol consists in measuring the
image signal onto a random set of Fourier vectors [2], which is in-
coherent to the domain where the image is sparse. Indeed, the CS
framework introduced by Candès [3] provides theoretical results and
shows that if a signal is sparse (i.e. has a small number of non-zero
coefficients) in some basis, then with high probability, uniform ran-
dom projections of this signal onto an unstructured domain, where
the signal is not sparse, contains enough information to optimally
reconstruct this signal [3]. The incoherence property between the
sparsity basis Ψ and the sampling basis Φ ensures that signals hav-
ing sparse representations inΨmust have a large support in the mea-
surement domain described by Φ [4]. Random selections of basis
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functions in Φ are typically suitable since random vectors are, with
very high probability, incoherent with any sparsity-encoding basis
functions fromΨ, defining orthogonal domains [5].

In fluorescence microscopy, cellular components of interest
in specimens such as proteins are typically labeled with a fluo-
rescent molecule called a fluorophore such as green fluorescent
protein (GFP) and can therefore be imaged with high specificity.
Fluorophores lose their ability to fluoresce as they are illuminated
through a process called photobleaching [6, 7]. In microscopy,
observation of fluorescent molecules is challenged by the photo-
bleaching, as these molecules are slowly destroyed by the light
exposure necessary to stimulate them into fluorescence. Loss of
emission activity caused by photobleaching can be controlled by
reducing the intensity or time-span of light exposure. At the same
time, reducing the exposure time or intensity of the excitation also
reduces the emission intensity but not the noisy acquisition com-
ponents, leading to a decrease of the SNR. We propose to use the
CS sampling and reconstruction framework to denoise and improve
the SNR of microscopic fluorescence images acquired with shorter
exposure times to reduce photobleaching.

2. METHODS

2.1. Reconstruction from noisy measurements

Considering that a signal x has a sparse representation in some basis
Ψ, we want to recover the signal x ∈ R

N from noisy measurements
y = Φ(x + n) | y ∈ R

M , the sampling matrix being defined by
M vectors in Φ, with M � N . The presence of noise in the ac-
quired signal might alter its sparsity in the domain Ψ. By optimally
reconstructing a signal with explicit sparsity constraints, CS offers
a theoretical framework to remove non-sparse random noise compo-
nents from a corrupted signal. Indeed, removing noise from x + n
will rely on the efficacy of Ψ on representing the signal x sparsely
and the inefficacy on representing the noise n [8]. The choice of
the basis function Ψ is very important and depends directly on the
kind of signal (or image) we want to recover and denoise using CS.
If we make the assumption that the noise energy is bounded by a
known constant ‖ n ‖

�2
≤ ε, the transformed signal Ψx is sparse,

and Φ ∈ R
MN is a random matrix sampling x in the Fourier do-

main, the spatial signal x can be recovered nearly exactly using the
following convex optimization:

x̂ = arg min
x∈RN

‖ Ψx ‖
�1
s.t. ‖ y − Φx ‖

�2
≤ δ (1)

for some small δ > ε, where the operatorΨ is equivalent to compute
the gradient, and hence the �1 norm of Ψx corresponds to the Total
Variation (TV) of x, ‖ Ψx ‖

�1
⇔ ‖ ∇x ‖

�1
= ‖ x ‖

TV
. In [9] it
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was shown that the solution x̂ is guaranteed to be within Cδ (C ∈
R

+) of the original signal x.

‖ x̂− x ‖
�2
≤ Cδ (2)

We note here that this CS-based estimation framework, with
noisy observations and TV spatial constraints [10], guarantees that
no false component of x + n with significant energy is created as it
minimizes the �1 norm of x̂, which is particularly high for the ad-
ditive random noise components. More specifically, the TV-based
spatial sparsity constraint, will lead to sharp edges and removal of
noise components, resulting in an error:

‖ x̂− x ‖
�2
≤ α + β (3)

where α reflects the desired error (responsible for noise removal)
from the relaxation of the constrain δ in (1) and β reflects the unde-
sired error from Fourier undersampling of the signal. If TV rep-
resents x efficiently and n inefficiently, the term β vanishes and
α→ Cδ.

In the context of microscopic images, noise models usually com-
bine Poisson and Gaussian components, and the observation model
commonly adopted is the following:

I(x, y) = ζUi(A(x, y) + λB) + Vi,

Ui ∼ P(λi), Vi ∼ N (μ, σ
2) (4)

where ζ is the overall gain of the detector, A(x, y) is the object in-
tensity, λB is the mean intensity of the background, Ui is a Poisson
variable modeling the photon counting and Vi is a normal distribu-
tion with mean intensity μ and standard deviation σ, Ui and Vi are
assumed mutually independent.

2.2. The recovery algorithm

As an alternative to image sampling and acquisition problems we
focus on utilizing dual sparse and redundant representations in the
CS framework for fluorescence microscopic image denoising.

The proposed CS-based denoising scheme consists in determin-
ing the shorter exposition time X necessary to obtain, with a set of
combined CS restorations associated to a set of sampling matrices
Φi, a target SNR level, corresponding to the SNR measured on the
image exposed T ms. This scheme provides the potential advan-
tage of requiring a single shorter acquisition time, limiting degra-
dation of the biological material through photo-damage and photo-
bleaching. We also exploit the fact that fluorescence signal Φix
should be strongly correlated for all sampling matrixΦi, while noisy
sampling Φin should not be.

Combining CS reconstructions of a single noisy image acquisi-
tion x + n, using different sampling matrices Φi, is performed as
described below:

x̂i = arg min
x∈RN

‖ Ψx ‖
�1
s.t. ‖ yi − Φix ‖�2

≤ δ (5)

for i = 1...K.
The last step of the algorithm involves the combination of x̂i

by averaging to generate a final denoised image x̂. The number of
images combined will introduce a regularization on the final image.
We show that averaging grater number of images recovered with CS
reduces exponentially the TV, as illustrated in Figure 1.
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Fig. 1. TV versus number of images (Lymphocytes) recovered and
combined for the 10 scales represented in Figure 2.
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Fig. 2. TV versus scales for recovered images of Lymphocytes.
Scales vary from a compression ratio exponentially increasing from
M = 30% toM = 0.3%.

3. CS AND SCALABILITY

With our working assumptions on the additive noise components,
we propose to derive a series of CS reconstructions that will enable
to separate noisy components from fluorescence signal reconstruc-
tions. The degree of freedom in this series of CS experiments in the
choice of the sampling matrix Φ. Since the sparsity operator, TV,
operates on the spatial domain, we chose to work with the orthogo-
nal basis functions of random sampling in the Fourier domain. The
degree of freedom for the choice of the Φ matrix, then becomes the
number of random measurements M that is used. The CS theoreti-
cal framework states that the more measurements are used in the Φ
domain, the closer is the reconstructed signal to the original mea-
sured signal. In the context of denoising (rather than estimation) we
have a dual constraint on the noisy nature of the measurement and
the risk to reconstruct these noisy components. Indeed, for a sin-
gle CS experiment, the fluorescence signal will generate, from a set
of random measures of structured Fourier values, a restored image
with high values depicting a good estimation of the true signal. At
the same time, purely random noisy component will be interpreted,
from a set of undifferentiated Fourier values, as a structured combi-
nation of oscillating components, extrapolated over the spatial do-
main into patches, under the regularizing TV effect. Noise patches
and fluorescence spatial localization will be directly related to M ,
the number of CS measurements acquired by Φ. We illustrate in
Figure 3 and 4 how this number of measurements can be naturally
viewed as a scale parameter, and in Figure 2 how the TV decrease
beyond scales. For Figure 4, we cropped a background area from
a fluorescence microscopic image, with pure noise signal, and per-
formed CS reconstructions across scales (i.e. different numbers of
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Fig. 3. Fluorescence microscopic image of Lymphocytes. Results
from the same image recovered with six different numbers of mea-
surements (i.e. 6 scales). Scales vary from a compression ratio ex-
ponentially increasing fromM = 30% toM = 0.3%.

Fig. 5. Left: Pure noise image extracted from a microscopic image
background. Right: Result obtained averaging 20 images recovered
with different sets of measurements Φi for (i = 1...20).

measurements).
In the experiment on Figures 3 and 4, we observe that noise com-

ponent is more uncorrelated than signal across scales while the spa-
tial resolution of the signal component decreases. Increasing scale
leads to a more difficult discrimination of signal and noise compo-
nents.

We can make a connection here to the notion of multi-scale
transforms which is discussed in [11]. These transforms were theo-
retically defined as linear transforms with a scale parameter control-
ling the ability of the transform to simplify the signal. We know from
the sparsity constraint that strong true signals recovered by the CS
framework will correspond to strong underlying components in the
context of noise estimation from a small set of measurements. There-
fore, CS does not introduce false signal components and fits well in
the framework of multi-scale transforms, as illustrated in Figure 3.

Relaxing the constrain δ, which corresponds to the error allowed
in (1), enables noise removal, or the appearance of patches which can
present smooth edges. The difference between Figure 4 top and bot-
tom comes from the relaxation of the constraint δbottom > δtop, in-
creasing smoothness of the reconstructed images. The good news is
that in both cases, if results from CS reconstructions of a pure noise
signal are combined at different scales, the mean intensity returns a
nearly homogeneous signal, as seen in Figure 5. This observation
clearly justifies the averaging operator introduced in section 2.2 to
remove noise from images.
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Fig. 6. Fluorescein images. Top: Six samples from the sequence
of 200 images tagged with fluorescein. These images were acquired
at t = {0, 500, 1000, 1500, 2000} ms. Bottom: Supposed photo-
bleaching resulted from 200 image acquisitions using CS denoising.

4. PHOTOBLEACHING

Photobleaching is a process in which fluorochrome molecules un-
dergo photo-induced chemical destruction upon exposure to light
excitation and loose their fluorescence ability. Benson et al. in [7]
carried out an extensive study on the heterogeneous photobleach-
ing rates, describing their experimental bleaching curve by a three-
parameter exponential:

I(x,y,t) = A(x,y) + B(x,y)e
−kt (6)

for each pixel in an image. Where I(x,y,t) is the fluorescence in-
tensity at pixel (x, y) at time t, the offset A(x,y) is attributed to the
background fluorescence, B(x,y) is the fluorescence intensity which
decays exponentially and k is the rate of photon absorption (s−1).

To verify the real photobleaching effect we have acquired 200
fluorescein images exposed 20 ms, with a negligible time transition
between two consecutive image acquisitions, resulting in a total ex-
position time of 2000 ms. In this experiment we can clearly observe
the fluorescence intensity decreasing exponentially as described by
(6) and confirmed in the experience illustrated in Figure 6 and 8. As
a consequence of the fluorescence intensity decreases, the SNR also
decreases as show in Figure 7. Applying our CS-based method for
denoising, we show that SNR can be highly improved while reduc-
ing photobleaching. Results on Figure 7 show that the rate between
original SNR and CS-recovered images SNR is ∼160%. Which
means that still reaching an equivalent SNR, microscopic images
could be acquired with a shorter exposition time, reducing photo-
bleaching. The estimated final photobleaching improvement is il-
lustrated in Figure 8 by the green curve, computed from the model
described in Equation 6, fitting B and k values on the original im-
ages. Estimating the reduction of the exposition time necessary to
achieve the same SNR as in the original data using the CS-based de-
noising scheme, we illustrate in Figure 8 with the green curve that
photobleaching can be highly reduced. The same result can also be
visualized in Figure 6.

5. CONCLUSION

In this paper we introduce a CS-based image acquisition and denois-
ing method exploiting multiple reconstructions with random Fourier
projections. Our approach presents several advantages over tradi-
tional denoising methods, joining image acquisition, CS advantages
and denoising in one framework. Through some practical experi-
ments, we have shown that our method can significantly improve
the SNR on fluorescent microscopic images and that photobleaching
can be highly reduced with shorter exposition times. Such results
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Fig. 4. Top: Pure noise signal extracted from a background patch of a microscopic image, recovered with six scales, (i.e. six different sizes
of sample measurements). Scales vary exponentially fromM = 30% toM = 0.3%. Bottom: relaxing the constrain δbottom > δtop.
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Fig. 7. SNR curves, we use a set of 150 fluorescein images acquired
each 10 ms. The green line correspond to the SNR of images recov-
ered with CS using the scheme proposed in Section 2.2 and the blue
line correspond to the SNR of the original set of images.
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Fig. 8. Photobleaching curves, represented by the mean fluorescence
intensity vs. time for original images of fluorescein (blue) and for
images denoised with our proposed scheme (green). The red line
corresponds to the exponential model fitted to the original data, set-
ting specific values of B and k in Equation (6).

open the gate to new mathematical imaging protocols, offering the
opportunity to reduce exposition time along with photo-damage and
photo-bleaching and help biological applications based on fluores-
cence microscopy.
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