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Abstract— The cross-dependency of noise level and photobleaching

in microscopy was discussed in a previous work and an efficient

compressed sensing (CS) method was proposed to simultaneously

reduce the noise level and the photobleaching. Here we present an
improved CS denoising framework for fluorescence microscopy images,

exploiting Non-Local means filtering to merge multiple reconstructions.

This framework enables high-quality reconstruction of low exposed
microscopy images based on random Fourier sampling schemes and

multiple CS reconstructions. Practical experiments on fluorescence

images demonstrate that even performing 10% of the measurements,

the signal-to-noise ratio can be significantly improved while keeping
reduced exposure time, preserving edges and the image sharpness.

Index Terms— Compressed sensing, denoising, fluorescence mi-
croscopy, NL-means filtering.

I. INTRODUCTION

In biological fluorescence microscopy, cellular components of

interest in the specimen such as proteins are typically labeled with a

fluorescent molecule called a fluorophore (green fluorescent protein

(GFP), dyes, inorganic molecules) and can therefore be imaged

with high specificity. Fluorophores lose their ability to fluoresce as

they are illuminated through a process called photobleaching [1]. In

microscopy, observation of fluorescent molecules is challenged by

the photobleaching, as these molecules are slowly destroyed by the

light exposure necessary to stimulate them into fluorescence. Loss

of emission activity caused by photobleaching can be controlled

by reducing the intensity or time-span of light exposure. Unfor-

tunately, reducing the exposure time or intensity of the excitation

also reduces the emission intensity but not the noise acquisition

components, leading to a decrease of the signal-to-noise ratio SNR.

A host of denoising methods, well suited for piecewise smooth

images, have been developed such as Non-Local Means (NL-means)

[2], Total Variation Filtering (TV) [3], non-linear isotropic and

anisotropic diffusion [4]. There are also methods which exploit the

decomposition of the data onto wavelets, ridglets or curvelets basis

functions and shrink the coefficients to eliminate noise components

[5], [6]. Recently, efficient denoising methods were also devel-

oped based on sparsity and redundant representations over learned

dictionaries [7], denoising image while simultaneously training a

dictionary using the K-SVD algorithm [8], or based on sparse

code shrinkage and maximum likelihood estimation of nongaussian

variables [9]. However, most are post-processing techniques and

require full data acquisition.

In this paper we propose an improved technique, based on

compressed sensing (CS) that simultaneously enables reduction of

exposure time or excitation light level and improvement of image

SNR. Our CS-based method can simultaneously acquire and de-

noise data, based on random Fourier sampling, noise reconstruction
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characteristics and signal modeling applied to microscopy images

with low SNR. Here, we propose a non-local merging scheme to

combine the multiple CS reconstructions.

Recent results from the field of compressed sensing (CS) [10],

[11] have demonstrated that it is possible to reconstruct a compress-

ible signal (redundant or sparse in some domain) from a small set of

measurements. The main idea is that if the signal of interest x ∈ R
N

has a S-sparse representation Ψx (i.e. S non-zero coefficients) for

a particular spatial transform Ψ, then x can be reconstructed from

M ≪ N indirect linear projections y = Φx onto a more general

basis, such as the Fourier domain. The almost exact solution x̂ to

this problem is achieved by solving the convex problem:

x̂ = arg min
x∈RN

‖ Ψx ‖
ℓ1

subject to Ax = y (1)

where Ψx is a sparsifying transform |Ψx| ≪ |x|, with | · |
corresponding to the cardinality. Indeed, the number of projections

needed to solve this problem is approximately proportional to the

sparsity S = ‖ Ψx ‖
ℓ0

and ‖ Ψx ‖
ℓ1

≈ ‖ Ψx ‖
ℓ0

. Considering

noisy measurements y = Φx+n, a relaxed version of the problem

(1) was also introduced in [12],

x̂ = arg min
x∈RN

‖ Ψx ‖ℓ1 s.t. ‖ y − Φx ‖ℓ2 ≤ δ (2)

for some δ tuned to match the noise level contaminating the

observations x. In this case, the solution x̂ is an estimation of x
and the noise discrimination will basically depend on the sampling

scheme and the sparsity prior.

A multiple CS reconstruction was introduced in a previous work

[13], allowing to simultaneously reduce the noise level and photo-

bleaching. Averaging multiple CS reconstructions with uncorrelated

noise-based patterns enables to generate a high-quality denoised

image. In the previous work, the combination was performed via

simple averaging. Here an improved CS-based denoising framework

for microscopy images is proposed. The improvement results from

the optimization of the combination process, we investigate the use

of NL means filtering, better exploiting the high level of redundancy

within the spatial domain and across the set of CS-reconstructed

images. The paper is organized as follows: in Section II we recall

the general CS reconstruction framework for noisy measurements.

In Section III we recall our previous framework. In Section IV

we introduce an improved CS-based denoising framework and in

Section V we present experimental results and comparison.

II. COMPRESSED SENSING BACKGROUND

Compressed sensing offers a theoretical framework to remove

non-sparse random noise components from a corrupted signal by

optimally reconstructing a signal with explicit sparsity constraints

[14]. Indeed, the performance on removing noise from x+ n will

rely on the efficacy of Ψ at representing the signal x sparsely

and the inefficacy at representing the noise n. Considering that the

sparsity measure is the Total Variation (TV) ‖ x ‖
TV

:= ‖ ∇x ‖
ℓ1

,

then this corresponds to assuming that ∇x is very sparse and
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that ∇n is non-sparse. In terms of measurements, we will have

‖ ∇(x+ n) ‖
ℓ1

≫ ‖ ∇x ‖
ℓ1

.

As demonstrated in [15], if such a sparsifying transform exists in

the spatial domain, it is possible to reconstruct an image x ∈ R
N

from partial knowledge of its Fourier spectrum y = F |Γ. Now

suppose a noise corrupted subset of Fourier coefficients F |Γ + n.

The image reconstruction consists in solving a convex optimization

problem that finds the image candidate x̂ of minimal complexity

satisfying ‖ F̂ |Γ − F |Γ ‖
ℓ2

≤ δ, where F |Γ ⊆ F is a partial

subset of Fourier coefficients in the set Γ. Considering that the

noise energy has a known bounded norm ||n||
ℓ2

≤ ǫ the convex

optimization corresponds to solve the following problem

x̂ = arg min
x∈RN

‖ ∇x ‖
ℓ1

s.t. ‖ F̂ |Γ − F |Γ ‖
ℓ2

≤ δ (3)

where δ is related to the norm of the noise.

We note here that the TV-based spatial sparsity constraint, will

lead to sharp edges and removal of noise components, resulting in

an error:

‖ x̂− x ‖
ℓ2

≤ α+ β (4)

where α reflects the desired error (responsible for noise removal)

from the relaxation of the constrain δ in (3) and β reflects the

undesired error from Fourier undersampling of the signal. If TV

represents x efficiently and n inefficiently, the term β vanishes and

α → Cδ.

III. OVERVIEW OF OUR PREVIOUS WORK

A CS-based denoising scheme was proposed in a previous work

[13] allowing to limit the scanning time and to avoid photobleaching

effects. The proposed method consists in acquiring a single image

with a short exposition time. Then multiple sampling matrices Φi

are created and each sampling matrix chooses a different and unique

set of random frequencies in the Fourier domain. Using different

random sampling matrices exploit the fact that the estimation of

the fluorescence signal x should be strongly correlated for all

sampling matrices Φi, while the noise estimation n should not.

Then, we perform multiple CS reconstructions of a single noisy

image acquisition x + n, using different sampling matrices Φi,

solving the following problem:

x̂i = arg min
x∈RN

‖ ∇x ‖
ℓ1

s.t. ‖ yi − Φix ‖
ℓ2

≤ δ (5)

for i = 1...K and Φix = F |Γi
. The value of K is an empirical

estimation of the number of reconstructions for which the image

SNR becomes constant.

The last step of the denoising algorithm involves the combination

of the set of reconstructed images x̂i. In our initial work we

proposed to average the set of xi images to generate a single

denoised image x̂,

x̂ =
1

K

K
∑

i=1

xi (6)

Each single reconstruction xi is slightly different due to the

differences in the sampling matrices Φi. Because of the random

distribution of frequencies in Φi, the global frequency content of

the xi is similar and the images only differ in terms of details.

Indeed, since ‖ ∇x ‖ℓ1 is sparse and ‖ ∇n ‖ℓ1 is non-sparse, noisy

reconstructed patterns are uncorrelated for reconstructions using

different set of measures. Nevertheless, averaging the set of images

x̂i exploits the signal redundancy locally but it does not exploits the

similarity of patches in the same image. In this work we propose a

different combination of the set of reconstructed images, described

in Section IV, which exploits the non-local redundancy to achieve

better denoising results.

IV. METHODS AND CONTRIBUTIONS

A. The Sampling Pattern for Denoising

In this section we deal with the Fourier sampling pattern adopted

for the CS reconstruction. Since the goal is to perform an optimal

denoising, the sampling pattern is of central importance. The design

of the sampling matrix Φ can be based on different distributions,

such as a independent and identically-distributed random distribu-

tion, or a line-based radial distribution, which are illustrated in

Figure 1.
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Fig. 1: Spatial distributions in the Fourier domain with M = 0.1N (a)

Random, (c) Radial and (b,d) corresponding frequency histogram.

The optimal sampling scheme would be the one which maximizes

the incoherence between the sampling basis Φ and the sparsity

basis Ψ. A fully random sampling often results in a high degree of

incoherence and near-optimal solution. Indeed random distributions

present some advantages such as simple mathematical proofs and

satisfaction of the RIP conditions [10].

The Figure 1(b)-(d) displays the histograms of the spatial density

of frequency measurements, characterized by the number of sam-

pling points at a given distance from the (0, 0) center frequency in

Figure 1(a)-(c). The histogram (b) shows that for random spatial

distributions on a square, there are a majority of intermediate

frequencies. On the other hand, the histogram (d) shows that for

the radial distributions on a square, there are equal levels of low

and intermediate frequencies while high frequencies have a minor

density.

One interesting fact from Figure 1 is that when the sampling

process is random, extreme high and low frequencies have the

same low probabilities. These histograms can be modeled with

the number of sample points contained on a circle of radius r
(0 ≤ r ≤

√
2N/2) and centered at (0, 0). We then distinguish

two different behaviors for r below and above N/2, as observed in

Figure 1(b)-(d). For a random distribution, we define a probability

law of occurrences,

P (r) =
(2π − 4θ)r

N2
(7)

where θ corresponds to the angle of one of the four external parts

of the circle (illustrated in Figure 2). When the radius of the circle

is smaller than N/2, the circle is completely inside the image, then

θ = 0 and P (r) = 2πr

N2 , otherwise θ > 0 and can be computed as:

θ = 2arctan

(
√
r2 − n2

n

)

(8)

and r is the distance to the center of the image, N2 is the total

number of pixels and n = N/2. For r ≤ N/2 the probability

of all possible pixels increases linearly with r. For r > N/2 the

probability starts decreasing since the perimeter is not completely

inside the image, as illustrated in Figure 1 and 2. For the radial
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Fig. 2: Circle of probability.

distribution, the number of occurrences in a circle is constant for

r ≤ N/2 and depends on the number of lines nl,

P (r) =
(2π − 4θ)

2π

nl

N2
(9)

To perform our denoising we have the option to work with a set

of random distributions or a set of rotated radial distributions. From

(9) we can conclude that for a set of rotated radial distributions, low

frequency samples are the same and the measurements are therefore

redundant. Moreover, the small number of high frequency samples

in the radial case constrains very loosely the CS reconstruction

of high frequency details and noise. This does not mean that

we want to reconstruct the noise but only that uncorrelated noise

reconstruction is necessary to achieve a better denoising perfor-

mance. Indeed, if sampling too few high-frequency components,

there is a risk with CS to create pattern on the reconstructed image.

Conversely, fully random sampling guarantees a better coverage

of the high frequencies as illustrated in Figure 1(b). Therefore,

random sampling combined with the known property of Non-Local

means (NL-means) to better preserve high-frequency structures of

an image [2], offers a very efficient framework for denoising.

B. The Improved Denoising Approach

In this subsection we describe the method based on the NL-means

introduced above (section IV-A) to combine the set of images x̂i

obtained in Equation (5). The main difference between this method

and the original NL-means is that the noisy image is not a single

image but a vector of similar images. Here we exploit the idea

that images present a high degree of spatial redundancy in terms of

objects appearance and shapes, and consequently, the set of images

x̂i should present even more redundancy. As discussed before, the

reconstructed images x̂i are slightly different, and most difference

are high-frequency components.

The method does not make regularity assumptions on the original

image, allowing noise reduction and preserving fine structures,

details, and texture. The basic assumption is that small patches on

objects from an image have many similar patches in the same image

and averaging similar patches should correct the noisy component.

The algorithm estimates the value of an image x as an average of

the values of all the pixels whose Gaussian neighborhood looks like

the neighborhood of x.

Consider a noisy image v = {v(i)|i ∈ Ω} defined on a discrete

bounded domain Ω ⊂ R
2. Consider also a patch domain of fixed

size Pi ⊂ Ω where v(Pi) denotes a square patch centered at a pixel

i. The estimated denoised image vNL corresponds to a weighted

average of all the pixels in the image:

vNL(i) =
∑

j∈Ω

w(i, j) · v(j) (10)

where the weights w(i, j) depend on the similarity between pixels

i and j and are defined as:

w(i, j) =
1

C(i)
e
−

‖v(Pi)−v(Pj )‖2
2

h2 , (11)

where ‖ v(Pi)− v(Pj) ‖22 is the Euclidean distance between pixels

from the patches v(Pi) and v(Pj) and C(i) is a normalizing

constant

C(i) =
∑

j

e
−

‖v(Pi)−v(Pj )‖2
2,a

h2 ,

with two conditions (i) 0 ≤ w(i, j) ≤ 1, (ii)
∑

j
w(i, j) = 1.

However, the search of similar patches in Equation (11) is

performed only for the first image x̂1 and used for the entire vector.

Then, if the noisy image v is not a single image but a vector of

similar images the final image is computed as a weighted average

of all the pixels in the vector of images

x̂NL(i) =
1

K

K
∑

k=1

∑

j∈Ω

w(i, j) · x̂k(j), (12)

with the condition 1

K

∑

jk
w(i, j) = 1. This method provides a

much more discriminative combination of the set of images xi than

simple averaging, as initially proposed.

The simple averaging of x̂i in (6) exploit only the local redun-

dancy from the set of images but not from the different patches

of one single image. Solving our proposed method in (12) allows

to exploit the redundancy locally beyond all images x̂i and also

non-locally using similar patches from the same image.

V. RESULTS

We apply our approach to a fluorescence microscopy image

of hair follicle. The specimen is labeled with a green and a red

marker. The total acquisition time is 15 seconds per image and

the 3-dimensional stack has 65 frames (each channel). The results

illustrated here concern the frame 31 of each channel taken from

the 3D volume. Then each channel (red and green) is reconstructed

independently such as grayscale image.

In Figure 3 we show some reconstruction results of the noisy

images from the green and red channels in Figures 3(a) and 3(f),

with size 400×400 pixels. The Figures 3(b) and 3(g) correspond

to one single CS reconstruction with 10% of measurements in the

Fourier domain, such as described in (3). In Figures 3(c) and 3(h)

we display the denoised images by our previous work, solving the

problem described in (6) and in 3(e) and 3(j) the denoised images

with the improved method described in (12). For both methods,

described in (6) and (12) with K = 10, we used the same sampling

matrices with 10% of measurements in the Fourier domain. For

comparison, Figures 3(d) and 3(i) display the noisy images denoised

by the NL-means algorithm [2], with variance σ2 = 20.4 (28 gray

levels). We note that the results for NL-means present many artifacts

due to the noise characteristics.

Since there is no ground-truth such as a perfect noise-free

image, the denoising performances were evaluated via signal-to-

noise ratio (SNR) and contrast-to-noise ratio (CNR) measurements.

However, the noise statistics corresponds to a mixture of Poisson

and Gaussian noise, then the SNR of the images can be estimated

from the noise model as:

SNR =
ζA

√

ζ2(A+ λB) + σ2

where ζ is the overall gain of the detector, A is the object intensity,

λB is the mean intensity of the background, λi models the photon

counting of a Poisson variable P(λi) and µ is the mean intensity
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Fig. 3: Green and red channels; fluorescence microscopy image of hair follicle. (a)(f) Original noisy image. (b)(g) One single CS

reconstruction. (c)(h) Multiple CS with averaging (6). (d)(i) NL-means filtering of the noisy image. (e)(j) Multiple CS with NL-means 12.

of a normal distribution N (µ, σ2) with standard deviation σ. The

mixed Poisson-Gaussian noise parameters (ζ, λB , µ, σ) are esti-

mated using the cumulant method, matching the first four cumulants

of I with the k-statistics of the samples in a uniform image region

[16]. This follows from the property that the k-statistics are the

minimum variance unbiased estimators for cumulants. Finally, the

CNR is estimated as:

CNR =
|Iℜ1 − Iℜ2 |

σ

where Iℜ1 and Iℜ2 are the mean intensity on the region ℜ1 and

ℜ2, and σ is the standard deviation of the noise distribution. The

SNR and CNR measures are given for all methods in Table I.

Image
SNR (dB) CNR

green red green red

Original 3.62 4.53 13.97 9.51
CS 1 10.45 5.14 89.42 10.89
CS-mean 18.32 7.74 106.71 20.72
NL-means 18.80 19.96 103.72 71.81
CS NL-means 20.29 22.37 121.78 71.09

TABLE I: SNR, CNR measures for the green and red channel.

VI. CONCLUSION

This paper proposes an improved approach of a CS-based de-

noising method exploiting a non-local filtering scheme to merge

multiple reconstructions with random Fourier projections and TV

spatial constraints. The approach presents several advantages over

traditional denoising methods by combining a reduced number

of measurements and spatial regularization constraints in a single

framework. Experiments on fluorescence microscopy images of

hair follicle demonstrate improvements of SNR and CNR values

even with a very limited number of measurements. Our proposed

method leads to a denoising performance equivalent or better than

the NL-means method with the advantage of taking only 10% of

measurements.
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