
  

  

Abstract—Cross-correlation based 3D speckle tracking 
algorithm can be used to automatically track myocardial 
motion on three dimensional real-time (RT3D) 
echocardiography. The goal of this study was to experimentally 
investigate the effects of different parameters associated with 
such algorithm to ensure accurate cardiac strain 
measurements. The investigation was performed on 10 chronic 
obstructive pulmonary disease RT3DE cardiac ultrasound 
images. The following two parameters were investigated: 1) the 
gradient threshold of the anisotropic diffusion pre-filtering and 
2) the window size of the cross correlation template matching in 
the speckle tracking. Results suggest that the optimal gradient 
threshold of the anisotropic filter depends on the average 
gradient of the background speckle noise, and that an optimal 
pair of template size and search window size can be identified 
determines the cross-correlation level and computational cost. 

I. INTRODUCTION 
ARDIOVASCULAR diseases such as myocardial 
infarction (MI or heart attack) are the current leading 
causes  of mortality, morbidity and rising healthcare costs 

in the United States [1]. Advances in imaging technologies such 
as the development of real-time three-dimensional (RT3D) 
echocardiography are expected to improve the clinical 
assessment and management of these cardiovascular 
pathologies. Several venders have recently released RT3D 
ultrasound systems, including GE’s Vivid 7 and E9, Siemens’ 
SC2000, Toshiba’s Artida, Philips’ SONOS 7500 and iE33 
Systems.  However, few of these machines currently provide 
image analysis tools that fully leverage the true potential of 
RT3DE data.  For example, many of the machines continue to 
calculate strain measurements using 2D computations. 
 Quantitative evaluation of 3D regional motion enables to 
assess regional strain and dyssynchrony that are currently 
impossible to estimate non-invasively. A number of studies 
have used 3D speckle tracking algorithms to extract myocardial 
strain measurements using RT3D ultrasound data [2-5].  
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In previous studies from our group, a speckle tracking 
algorithm was validated on open chest dog hearts acquired with 
the Philips iE33 system against strain measurements acquired 
via sonomicrometry [6-8]. In this study, we investigate this 
speckle tracking framework on RT3DE data acquired from 10 
chronic obstructive pulmonary disease (COPD) patients. This 
study evaluates the effect of two main parameters in the 
analysis framework, (1) the non-linear diffusion filtering 
threshold and (2) the cross-correlation based speckle tracking 
window and search sizes. 

II. METHODS 

A. Data and Computational Framework 
COPD patient recruitment was performed as part of an 

ongoing MESA study (R01 HL075476) at the Columbia 
University Medical Center (IRB-AAAD9509). 56 sets of 4D 
ultrasound datasets were acquired using a Siemens ACUSON 
SC2000™ with a matrix phased-array called 4Z1c transducer 
(Siemens, Mountain View, CA). Only the 10 best quality 
images, selected by the cardiologists, were analyzed in this 
paper. The acquisitions were ECG gated with the focus depth 
ranging from 140 to 160 mm and the temporal resolutions 
ranging from 12 to 15 frames per cardiac cycle.  

Using proprietary software tools provided by Siemens AG, 
we were able to access the raw ultrasound line data in spherical 
coordinates.  The line data was then converted into Cartesian 
coordinates and interpolated using a fast tri-cubic interpolation 
algorithm [9]. The reconstructed volumes had spatial 
resolutions of approximately 0.42-0.77 mm per voxel and a 
matrix size 330 × 330 × 230 voxels and intensity range [0, 255].  
The reconstructed volumes were analyzed using our cardiac 
analysis computational framework (Fig. 1).  

The left ventricular (LV) myocardial borders were first 
manually traced on the short axis views at end diastole and then 
interpolated to generate a binary volume mask.  The volumetric 
images were smoothed by anisotropic diffusion [10], and 3D 
speckle tracking was then performed to estimate myocardial 
displacements and consequently compute the local strains. 

 
Fig. 1 : Cardiac analysis computational framework for measuring 4D 
echocardiographic strain. 

B. Parameterization of Anisotropic Diffusion 
Anisotropic diffusion, using non-linear 3D filtering, was used 

to reduce speckle noise and increase image homogeneity before 
performing motion estimation by speckle tracking [11]. 

Parameterization of Real-Time 3D Speckle Tracking Framework for 
Cardiac Strain Assessment 

Auranuch Lorsakul, Student Member, IEEE, Qi Duan, Member, IEEE, Ming Jack Po, Student 
Member, IEEE, Elsa Angelini, Member, IEEE, Shunichi Homma, and Andrew F. Laine, Fellow, IEEE 

C

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 2654

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011



 

(a)   

Fig. 2 : (a) Examples of the tracking results at the 4th

threshold  λ0 = 3, 6 and 15, (b) 3D model of radial s
regions in the systolic phase (contraction) without deno
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C. Parameterization of 3D Speckle Tracking 
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D. Cardiac Strain Assessment 
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each dataset was computed and compared
threshold value λ0. The results reported in 
these two values are always very similar. 

B. 3D Speckle Tracking 
1) Cross-Correlation Coefficient: We inve

correlation values during speckle tracking
template size and the spanned search size, as
I.  The resultant cross-correlation values are
blue curve in Fig. 4(a). Computational time 
one frame using speckle tracking versus tem
sizes are reported in Table I and Fig. 4(b)
increasing the window size leads to higher com

We also investigated the effects of changin
while fixing the template size (3 and 5 vox
correlation coefficients were not significantly 
in Fig. 4(a) (red and green curves). 
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correlation computation. 10 COPD images we
anisotropic diffusion as reported in Table II. 
motion was estimated via 3D speckle track
above using two experimental setups: 1) the 
fixed at 5 voxels while varying the search w
and 11 voxels and 2) the template size was 
while varying the search window size: 9, 11 a
5 shows the temporal profiles of the radial stra
denoising parameter, λ0 = 10, and varying tem
sizes. Mean radial strains in the anterior-septu
10 data sets in Table II, illustrating the fact t
template size results in higher and fairly 
measurements. 
 

Fig. 3 : Relationship between the optimal threshold va
and the average magnitudes of the gradient in the back
of  the 10 data sets. 
 

(a)                                                
Fig. 4 : (a) Cross-correlation coefficient (CC) as a fun
size: 3,5,9 with search size:5,7,9,11 (blue), template si
7, 9,11 (green), and template size: 5 with search size
Computational time versus window size from Table I. 
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IV. DISCUSSI

A. Anisotropic Diffusion 

Anisotropic diffusion smoothes an
the myocardial regions before 3
performed.  As shown in Fig. 2(c)
underestimated without denoising. A
strain when we increased the λ0 par
largest smoothing parameter value λ0 
the strain was overestimated in the
line).  Its strain values approach 30%
from the other segments. This is like
speckle tracking is no longer tracking
on over-smoothed data with initial low
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is consistent with the theoretical inve
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the background speckle noise. The 
values were in the range 6-10 for o
reported in Table II.  

B. 3D Speckle Tracking  
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displacements robust to noise. With sm
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the speckle tracking was not able to 
of the myocardium (top row) in Fig. 5
larger template sizes, which resulted
longer computation times, tracked 
accurately and thus returned more c
profiles as displayed in (bottom row F
example of the tracking motion illu
views in Fig. 5(c) confirmed that th
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TABLE II 
MEAN RADIAL STRAIN OF ANTERIO

ID 
Volume 

(ml) λ0 
Iteration 

of Filtering 
AP0007 108.16 6 6 
AP0020 89.53 10 10 
AP0093 141.83 10 10 
AP0216 160.12 10 10 

AP0224 93.60 6 6 
AP0280 82.60 6 6 
AP0490 77.84 10 10 
AP0562 109.64 8 8 
AP0574 89.77 10 10 
AP0575 141.79 10 10 

Set 1: Template size: 5 voxels, Search 
Set 2: Template size: 7 voxels, Search 

TABLE I 
CROSS-CORRELATION COEFFICIE

Template size 
(voxels) 

Search size 
(voxels) 

M
C

3 5 0.9
5 7 0.9
7 9 0.9
9 11 0.9
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(a). On the other hand, the 

d in lower CC values and 
the myocardium more 

consistent strain temporal 
Fig. 5(a)). Furthermore, the 
ustrated in the short axis 
he tracking motions from 

OR-SEPTUM SEGMENT 
Set 1 

Mean (%) 
Set 2 

Mean (%) 

4.90±0.02 8.76±0.02 
4.75±0.01 8.43±0.01 
4.99±0.02 6.73±0.03 
4.91±0.03 6.65±0.05 
2.16±0.01 3.91±0.03 
12.83±0.05 14.99±0.07 
3.57±0.03 4.55±0.04 
4.98±0.03 6.29±0.03 
3.90±0.03 6.95±0.03 
5.88±0.03 6.40±0.03 

size: 7 voxels 
size: 9 voxels 

ENT (CC) VALUES 
Mean  
CC 

Computational 
Cost (mins) 

9992 0.2857 
9968 3.3988 
9941 18.9051 
9910 72.7439 
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                                                                     (a)                                                                                      (b)                                  (c) 

Fig. 5 :  Examples of the temporal profiles of the radial strains (a) for fixed pre-processing parameters, λ0 = 10, and with varying template and search sizes. 
(top row) Template size: 5 voxels with search size: 7, 9 and 11 voxels. (bottom row) Template size: 7 voxels with search size: 9, 11 and 13 voxels. (b) 
Largest window size: 9-voxel template and 11-voxel search. Short axis views (c) of the tracking motion for 5-voxel template with 7-voxel search (top) and 
7-voxel template with 9-voxels search. 

small template sizes (5 voxels) were less uniform than with 
larger template sizes (9 voxels). 

In summary, small template windows are not effective for the 
myocardial motion tracking.  Large window sizes suffer from 
higher computational costs and can introduce false positive 
matches. In our experimental investigation, the optimal 
template size was around 7 voxels and the optimal search size 
was around 9 voxels for the example data set in Fig. 5 (voxel 
size around 0.42-0.77 mm). 

V. CONCLUSION 
Automated cardiac analysis on real-time volumetric 

ultrasound images has been increasingly required to improve 
and expand diagnostic abilities for cardiac functions. In our 
framework, we have developed the semi-automated LV strain 
analysis system using anisotropic diffusion to smooth images in 
the pre-processing stage, and we applied the 3D speckle 
tracking to extract the wall motion deformations. In this study, 
the influence of key parameters in the framework were 
investigated on the RT3D ultrasound images of 10 COPD 
patients. The findings in this study can serve as a guideline for 
the future application of our framework in 4D myocardial 
motion analyses. 
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