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ABSTRACT

In this paper, we present and study two local features for the track-
ing of vascular structures on 3D angiograms. The first one, Flux,
measures the inward gradient flux through circular cross-sections.
The second one, MFlux, introduces a non-linear penalization of
asymmetric flux contributions to reduce false positive responses.

Through a series of experiments on synthetic and real cardiac CT
data, we discuss the properties of these features with respect to their
parameters. We compare them to a selection of published vessel-
dedicated features. We show that MFlux induces a particularly dis-
criminative response landscape, which is a desirable property for
tracking purposes on such large search spaces.

A key characteristic of the proposed features is their simplicity
of implementation and their high computational efficiency, enabling
their practical use for advanced tracking strategies.

Index Terms— Vascular features, gradient flux, vessel tracking

1. INTRODUCTION

3D angiographic acquisitions raise numerous challenges for vascular
segmentation algorithms. In complex applications, vessels of inter-
est are thin, branching structures of varying radius and curvature,
embedded in large volumes and surrounded by non-vascular struc-
tures of similar luminance. Intricate models and extraction schemes
are often required to ensure sufficient robustness, to the detriment
of computational cost. Tracking strategies are appealing for the ef-
ficient exploration of such large search spaces. Recent works pro-
posed multi-hypotheses schemes to alleviate limitations of the local
optimization process [1, 2, 3, 4]. The combination of all these fac-
tors exacerbates the need for selective and computationally efficient
features to evaluate shape and appearance hypotheses on the image.

In this paper, we propose and study two local vascular features.
The first one, Flux, is formulated as the evaluation of the inward
gradient flux through a 3D circular cross-section. The second one,
MFlux, introduces a non-linear modification to reduce particular
shortcomings of Flux. These features are designed for the local
evaluation of generalized cylinder models [5] with variable radius r
and orientation d (left of Fig. 1). Cross-sections are modeled as cir-
cular, a reasonable approximation for small scale vessels. The local
centerline position p completes the description of the 7D parameter
space. Tracking schemes typically evolve such a model sequentially,
adapting the parameters at discrete steps and evaluating them on the
image through features such as Flux and MFlux.

For both features, we highlight the links with existing works, dis-
cuss their computational efficiency and study their properties with
respect to their parameters, in comparison to other selected features.
Finally, we illustrate their behavior on 3D coronary CT data.
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Fig. 1. Geometric and appearance models. Left: generalized cylin-
der model and feature parameterization. Right: views of a synthetic
image generated from a bar-convolved model of radius 4 voxels and
standard deviation σm = 1 voxel.

2. FLUX-BASED FEATURES

2.1. Definitions

Flux-based segmentation methods exploit the orientation of the gra-
dient vectors by computing the gradient flux through the surface of
the extracted object. As demonstrated in [6] with a level-set evo-
lution, such approaches are well adapted to the extraction of thin,
low-contrast vessels. The inward1 flux is maximized when the sur-
face is aligned with the gradient vector field. In [6], flux measures
are approximated through local spheres. An efficient implementa-
tion for such spherical flux can be found in [7]. For our parametric
model (Fig. 1, left), we can alleviate that approximation by consid-
ering circular cross-sections as local surface patches. For slowly nar-
rowing or widening vessels, radial directions give a reasonable ap-
proximation of the local normals to the surface. After equi-angular
discretization of the cross-section into N points xi, we obtain our
first feature measuring the local, cross-sectional flux contribution:

Flux(p, r, d) =
1

N

N∑

i=1

〈∇I(xi), ui〉

with ∇I(xi) the gradient vector at point xi and ui = p−xi
|p−xi| the

inward radial direction (Fig. 1). As a linear feature, Flux(p, r, d)
is prone to step-edge responses [8]. This effect is especially visible
at the surface of large scale hyper-intense structures such as heart
chambers in cardiac CT data (Fig. 5). It is characterized by asym-
metric contributions to the flux along the cross-section. Following
the seminal idea of non-linear combination from [8] in 2D, we pro-
pose to pair diametrically opposed points (xi, x

π
i ) (Fig. 1) and retain

the minimal flux contribution per pair. We obtain our second feature:

MFlux(p, r, d) =
2

N

N
2∑

i=1

min(〈∇I(xi), ui〉, 〈∇I(xπ
i ), uπ

i 〉)

with xπ
i = x N

2 +i for an even number N of cross-sectional points.

In [8], the geometric mean is proposed as a more tolerant alterna-
tive to the min operator. The 3D extension of [8] tests only two

1We assume hyper-intense vessels.
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cross-sectional pairs and again combines responses with a min. In
contrast, we test more points (4 pairs, for N = 8 points) and find
averaging pair responses to be a more adequate, less strict tradeoff
between robustness and suppression of step-edge responses.

2.2. Gradient Field Regularization and Related Work

It is preferable to pre-regularize the gradient field for increased ro-
bustness. We integrate regularization by isotropic Gaussian smooth-
ing in the numerical scheme for gradient vector computation (Sec.
2.3). We use a standard deviation σs of the order of the image reso-
lution, so as to preserve the smallest vessels.

By design, Flux and MFlux are closely related to other cross-
section–based features sharing the seminal ideas from [8]. In [9, 10],
Gaussian-smoothed gradient vectors are also projected on radial di-
rections. The core feature from [11] computes Gaussian derivatives
oriented along radial rays, which is theoretically equivalent to the
projection method from a continuous point of view. In fact, the main
difference between Flux and the features from [9, 11] lies in the
use of regularization. From the flux point of view, regularization is
considered as preprocessing of the gradient vector field and is not
necessarily performed by Gaussian filtering. In [8, 9, 10, 11], the
Gaussian standard deviation varies with the targeted vessel radius,
following principles of Gaussian linear scale-space theory. Regular-
ization induces a tradeoff between detection robustness and discrim-
inative power [11]. Stronger regularization may be desirable for ac-
quisitions with high noise levels or dealing with large-scale vessels,
requiring some tolerance to deviations from circular cross-sections.
Increased robustness comes however at the detriment of accuracy, as
discussed in [11, 12]. Using fixed, limited regularization induces a
more discriminative behavior over parameters (see Sec. 3), which
is particularly desirable for tracking tasks. It also leads to important
computational benefits, as discussed thereafter.

From their oriented flux formulation, our features are also related
to the optimally oriented flux feature from [13], which can be seen
as a flux-based anisotropy descriptor. Differences lie mainly in ap-
plicative scopes. Flux and MFlux are designed to explicitly test
given parameters (position, scale, orientation) and explore the data
sparsely and efficiently, in tracking setups. On the other hand, the
frequency domain implementation of [13] is well adapted to the fil-
tering of whole volumes, using a limited set of pre-selected scales.

2.3. Implementation Details and Computational Performance

The straightforward, naive implementation can be optimized in a
number of ways. The 3D gradient field can be jointly computed and
regularized using an efficient, recursive implementation of Gaussian
derivatives [14]. For a discrete set of orientations and radiuses, off-
sets to tested cross-sectional points can be pre-computed. We use
N = 8 points as a tradeoff between speed and robustness. Core
computations then reduce to dot products. With our C++ imple-
mentation, the evaluation of a cross-section takes on average less
than 350 clock cycles, for both Flux and MFlux, on a 2.16GHz
Core Duo processor. This corresponds to more than 6 million cross-
sections per second. In fact, the main bottleneck on large datasets
is memory access. This cost can be alleviated by a cache-friendly
organization of the gradient maps.

3. EXPERIMENTS

We now present experiments illustrating the properties of our fea-
tures with respect to the parameters. We compare Flux and MFlux

to the Hessian-based Vesselness measure from [15] (with α =
β = 0.5), the Ribbon measure from [1] and the Core tubular fea-
ture from [11]. The Ribbon feature measures the local contrast as
the difference of mean intensity between a 2D cross-section and an
outer annulus. We restrict ourselves to circular cross-sectional ar-
eas, where [1] also considered ellipsoids. For the Core feature, the
standard deviation of the Gaussian used for derivations is set propor-
tionally to the radius as σ = 0.25r, with the restriction that σ ≥ 1
voxel, as in [11]. For Ribbon, Core, Flux and MFlux, negative
responses are set to zero2. Vesselness is positive by design. All
responses are normalized between 0 and 1 to ease comparisons.

Synthetic images are generated from a bar-convolved model [9]
with a Gaussian standard deviation σm = 1 voxel. This model, il-
lustrated in Fig. 1, is faithful to the appearance of vessels and typical
point-spread function of our application of choice, CT coronary seg-
mentation, for which illustrations on real datasets are also presented.

3.1. Scale Parameter vs. Theoretical Radius

All the features of our comparative study have scale-related param-
eters, linked but not necessarily equal to the theoretical radius of
the vessel. For each feature, we numerically derived the mapping
between the theoretical radius (from the bar-convolved model) and
the optimally responding parameter value, as done in [9]. Besides
a more accurate estimation of the vessel radius, this allows fairer
comparisons between the different features in our experiments.

3.2. Localization

The first experiment (Fig. 2) illustrates the sensitivity to location ec-
centricity. Scale and orientation parameters are kept fixed to their
optimal values. As expected, all feature responses are maximum
at central positions and drop to zero about or slightly outside the
vessel wall. More interesting are the differences of behaviors as a
function of the target vessel radius. Vesselness shows a consis-
tent, scale-independent behavior, a desirable property for its seminal
purpose, vessel enhancement [15]. In contrast, the decrease rate of
Fluxmainly depends on the contour blur (σm for the bar-convolved
model) and on the scale-independent regularization of the gradient
field. As a result, Flux appears as increasingly discriminative rela-
tive to the vessel size. MFlux magnifies this advantage by penaliz-
ing asymmetric flux contributions arising with eccentricity.

3.3. Radius and Orientation

The top left of Fig. 3 illustrates responses over tested radiuses for
central positions and fixed orientation. In such symmetric situations,
Flux and MFlux behave identically. Their responses are roughly
symmetric about the correct radius. Because of their contour-based
scheme and their scale-independent regularization, they drop faster
than the other features for tested radiuses larger than the true value.

Responses for varying orientation are given on the top right of
Fig. 3, for central positions and fixed tested radius. Vesselness
is left out of this experiment for its lack of an orientation parameter3.
Flux and MFlux seem marginally more sensitive to orientation
changes than Ribbon or Core, although none shows a high dis-
criminative power. Sensitivity to orientation could be increased by

2For data such as cardiac CTA, negative responses happen only sparsely,
for particular geometric configurations.

3One could imagine a modified Vesselnessmeasure to explicitly test a
given orientation by orientating the Hessian computation. In its classical im-
plementation, the Hessian basis is fixed by the volume axes and estimations
of the principal vessel orientations are given by the matrix inversion.
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Fig. 2. Responses over positions.From left to right: bar-convolved straight cylinder of radius 2, 4 and 8 voxels, respectively. Please note the
differences in x-axis scales.
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Fig. 3. Responses over radiuses and orientations. Bar-convolved
straight cylinder of radius 4. Top left: response over radiuses. Top
right: response over orientations (angle deviation). Bottom row:
joint variations of radiuses and orientations.

testing several successive cross-sections instead of a single one, i.e.,
by exploiting the local elongation of the vessel. However, such a lo-
cal cylindrical pattern deviates from the generalized cylinder model
of Fig. 1 and can cause drops of response for highly curved vessels.

Joint variations of scale and orientation are depicted in the bottom
of Fig. 3. Besides further illustration of the higher selectivity of
Flux and MFlux, one can note the trend of increasing scale and
increasing angle deviation compensating each other.

3.4. Joint Variations of Radius and Position

Fig. 4 shows the response landscapes obtained when jointly varying
the tested radius and the tested position. Of particular interest, this
experiment illustrates the step-edge issue previously mentioned. It
arises for small scales and eccentric positions and is particularly vis-
ible for Core and Flux. A similar effect is found for large scales
and eccentric positions, more markedly for Ribbon and Core. The
non-linear component introduced by MFlux dramatically reduces
these issues, resulting in a much tighter response landscape.

3.5. Illustrations on Real Data

In Fig. 5, we present results on subvolumes from real cardiac CT
data. For each voxel of the result images, the intensity encodes
the maximum response over tested radiuses and orientations (just
radiuses for Vesselness). This corresponds to a projection of
the response landscape, equivalent to the filtering setup in which
Vesselness is classically used. We emphasize that we do not ad-
vocate the use of our features for enhancement filtering. The method
of [13] would be more adapted. Our purpose here is simply to il-
lustrate the selective behavior of the features. We use 10 radiuses,
equally spaced between 1 and 10 voxels, corresponding to the typical
radius range of the coronary arteries in CT data4. 500 test orienta-

4With intra-slice resolutions of 0.3× 0.3mm, average coronary branches
typically exhibit radiuses around 1.2mm/4 voxels.

tions are pseudo-uniformly distributed on the unit hemisphere.
As expected, Vesselness produces the smoothest result, as its

Hessian-based, Gaussian scale-space design is well adapted to filter-
ing applications. One can note nonetheless the well-known drops of
response at branchings and the weak response for smallest branches.
For cross-sectional features, drops at branchings are more limited
and smaller branches are better preserved. High responses are more
tightly concentrated around the vessel centerlines, confirming the ex-
periments on synthetic data and their increased potential for track-
ing tasks. Responses of Ribbon and Core appear smoother and
less concentrated than those of Flux and MFlux. This is due, for
Ribbon, to its region-based and averaging nature, and for Core, to
its use of increased regularization for larger radiuses. This correlates
with their generally lower sensitivity over positions (Fig. 2) and over
tested radiuses (Fig. 3). The row corresponding to multi-planar ref-
ormation views (MPR 1) clearly exhibits the step-edge issue arising
for Ribbon, Core and Flux at the surface of heart chambers. For
MFlux, this effect is dramatically reduced while the response at true
vessel locations is nearly unaffected. MFlux still responds in some
non-vascular areas, especially at elongated tips of ventricles.

Noise robustness depends mostly on the regularization of the gra-
dient field. Experimentally, we found σs = 1 voxel to be satisfactory
until an additive Gaussian noise level of 200 H.U., about 4 times the
typical level of our data. From the tracking point of view, it is also
worth noting that noise is essentially an issue for very small vessels.

4. CONCLUSION AND PERSPECTIVES

In this paper, we have presented two features for 3D vascular track-
ing. The first one, Flux, is formulated as the measure of inward
gradient flux through a local circular cross-section. The second one,
MFlux, introduces a non-linear component to reduce false positive
responses in situations such as step-edges. We discussed the links
and differences of these features with existing designs and illustrated
their properties on both synthetic and real cardiac CT data. We no-
tably showed that MFlux dramatically reduces false positives and
compares favorably to a selection of existing works in terms of dis-
criminative behavior over the parameter space.

The implementation of these features is straightforward and
highly efficient. This key characteristic opens very interesting per-
spectives for the design of advanced, massively multi-hypotheses yet
practical tracking strategies, which we are currently investigating.
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[8] T. Koller, G. Gerig, G. Székely, and D. Dettwiler, “Multiscale
detection of curvilinear structures in 2D and 3D image data.,”
in Proc. IEEE Int. Conf. Comput. Vision, 1995, pp. 864–869.

[9] K. Krissian, G. Malandain, N. Ayache, R. Vaillant, and
Y. Trousset, “Model-based detection of tubular structures in
3D images,” Comput. Vision and Image Underst., vol. 80, no.
2, pp. 130–171, 2000.

[10] O. Wink, W. J. Niessen, and M. A. Viergever, “Fast delineation
and visualization of vessels in 3D angiographic images.,” IEEE
Trans. Med. Imaging, vol. 19, no. 4, pp. 337–346, 2000.

[11] Y. Fridman, Extracting Branching Object Geometry via Cores,
Ph.D. thesis, University of North Carolina, 2004.

[12] M. A. Gulsun and H. Tek, “Robust vessel tree modeling.,” in
Med. Image Comput. Assist. Interv., 2008.

[13] M.W.K. Law and A.C.S. Chung, “Three dimensional curvilin-
ear structure detection using optimally oriented flux,” in Eur.
Conf. Comput. Vision, 2008, pp. 368–382.

[14] R. Deriche, “Recursively implementing the Gaussian and its
derivatives,” in Proc. IEEE Int. Conf. Image Process., 1992,
pp. 263–267.

[15] A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A.
Viergever, “Multiscale vessel enhancement filtering,” in Med.
Image Comput. Assist. Interv., 1998, vol. 1496, pp. 130–137.

289


