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ABSTRACT

The theory of compressed sensing (CS) predicts that structured im-
ages can be sampled in a compressive manner with very few non-
adaptive linear measurements, made in a proper adjacent domain.
However, is such a recovery still possible with non-linear measure-
ments, such as optical-based Fourier modulus?

In this paper, we study the problem of Fourier phase retrieval
required for optical Fourier CS imaging. We propose an algorithm
to solve this problem, exploiting a specific TV-based regularization
constraint. We demonstrate the performance of the proposed method
on synthetic and real test sequences, in the context of microscopy
video reconstructions.

Index Terms— Phase retrieval, sparsity, video reconstruction,
Fourier measurements, total variation.

1. INTRODUCTION

1.1. Compressed sensing background

The inverse problem tackled by CS can be formulated as follows:
given a signal of interest x ∈ RN measured through a random linear
operator Φ that outputs a vector y ∈ RM of observations withM �
N , can x be recovered from y? The randomness of the measurement
operator Φ should not be understood in strict meaning, but rather as
the fact that Φ should spread the information contained in x over
the whole vector y. Examples of such operators include random
Gaussian or Bernouilli matrices [1], randomly subsampled Fourier
or Hadamard transforms [2], or dedicated unitary matrices [3].

Previous results (see [4, 5]) establish that, up to some technical
details, x can be recovered from y if it has a sparse decomposition on
some known basis or dictionary. In that case, recovery is performed
by solving a convex optimization program which typically involves
a l1 constraint on the coefficients representing x in this dedicated
sparsifying domain.

1.2. Optical Fourier measurements

In this paper, we focus on the case where the sensing operator mea-
sures only the magnitude of the Fourier transform, with a uniform
random selection of the sampled Fourier coefficients. The motiva-
tion to focus on this type of operator is that Fourier magnitude can be
sensed using optical devices. This property can be used to design ac-
quisition set ups performing an optical Fourier transform upstream
from the actual photo-electric sensors, allowing a simplification of
the whole device with a CS-like acquisition strategy.

Indeed, measuring the complex Fourier transform of a scene can
be implemented optically, but remains challenging as photo-electric
transducers such as a CCD or CMOS array return output signals that

correspond to a measure of the energy of the incident photons, which
is independent of the phase of the corresponding electro-magnetic
wave. Measuring this phase relies on more complex optical set-ups
which are not always compatible with the experimental arrangement.

As a workaround, the present work studies whether image recon-
struction is still possible without measuring the phase of the Fourier
samples, while relying on computational strategies to recover the
missing phase information. Formally, this problem can be stated as
follows: given a signal of interest x (here a 2D image), is it possible
to recover this signal from a measurement vector y defined as:

y = |Φx|+ noise (1)

Here, Φ represents a Fourier transform followed by a selection of a
random subset of coefficients, and |·| stands for the pointwise modu-
lus. The difference with standard CS lies in the lack of Fourier phase
information, calling for dedicated phase retrieval strategy.

1.3. Phase retrieval background

The problem of recovering a signal from the modulus of its Fourier
transform, known as the phase retrieval problem, has been studied
for a long time: this reconstruction technique is used for instance
for X-ray microscopy applications in crystallography (see [6, 7]). To
recover a signal x ∈ RN from a measurement vector y defined as
(1), the algorithm proposed in [6] defines two subsets of RN :

• the data set Dy,ε, that contains all the signals x that corre-
spond to the measured samples, with a certain tolerance ε that
depends on the noise that affects these measurements:

Dy,ε =
{
x ∈ RN s.t. ‖y − |Φx|‖2 ≤ ε

}
(2)

• a regularization set R that corresponds to all the signals that
meet certain prior conditions which are known to be true for
the actual solution. For crystallography applications, R typ-
ically consists in all the 2D images that are supported on a
given subset of pixels.

Then, an estimator x̂ of the solution is obtained as a limit of alter-
nated projections over the two sets Dy,ε andR:

x̂ =
(
ΠR ◦ΠDy,ε ◦ΠR ◦ · · · ◦ΠDy,ε

)
(x0) (3)

where ◦ is the composition operator, x0 is an initial guess of the
solution, and ΠDy,ε and ΠR stand respectively for the projection
operators over Dy,ε andR:

ΠDy,ε (x) = arg min
z∈Dy,ε

‖z − x‖2 (4)

and similarly for ΠR. It was shown in [6] that the sequence of esti-
mators (3) converges toward the intersection of Dy,ε andR.
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It is important to note that, although the set Dy,ε is not con-
vex, (4) can be solved explicitly1. Consequently, the evaluation of
ΠDy,ε (x) is exact and low-cost in terms of computation time2.

Other works have refined the algorithm (3), mostly to improve
the convergence rate (see e.g. [8] and references therein). However,
to the best of our knowledge, all existing phase retrieval algorithms
rely on the construction of a sequence of estimators that converges
toward the intersection of two sets, one characterizing the valid sig-
nals with respect to the measurements, and the other one the prior
information available on the solution.

In our case, the prior information is quite different from the one
available in crystallography applications (i.e. support constraints).
We therefore introduce in the next section a general reconstruction
approach suited for microscopic video reconstruction which exploits
a similar alternated projection iteration scheme as the one used in
phase retrieval, but allows different a priori information to be used.

2. PHASE RETRIEVAL APPLIED TO VIDEO
RECONSTRUCTION

2.1. Problem formulation

We formulate our video reconstruction problem as follows: how to
recover a 2D frame x ∈ RN from a video sequence, knowing both
a vector y ∈ RM+ of Fourier modulus measurements obtained from
this frame (as in (1)) and the previous frame a ∈ RN in the video?

Iteratively solving this problem on consecutive frames will per-
mit to recover a full video sequence from a subset of Fourier modulus
measurements and an initial key-frame, which is required to start the
reconstruction process. In practice, propagation and amplification
of reconstruction errors are likely to limit the number of frames that
can be recovered starting from a single key-frame.

2.2. Hybrid total variation

To solve our problem using the phase retrieval framework presented
in Sec. 1.3, we have to define the regularization set R that contains
all the admissible solutions, based on an a priori regularity model.
In the context of microscopy video reconstruction, similarly to what
was proposed in [9], we assume that the following properties hold
for the image frame x to be reconstructed:

• the 2D gradient map∇x is sparse,
• the difference map (x− a) between the reconstructed frame
x and its predecessor a is sparse,

• the non-zeros coefficients in∇x, which mainly correspond to
edges in the frame x, are located close to the non-zero coeffi-
cients in (x− a), i.e. the displacement fronts.

To enforce these properties, we introduce a weighted hybrid total
variation energy over the space RN of 2D images, defined as:

‖x‖TV,w,a =
∑
P

w (P )
√
‖∇x (P )‖2

2 + |x (P )− a (P )|2 (5)

where P visits every pixel, and w ∈ RN is a weight map with 0 <
w (P ) < +∞ and tuned such that w (P ) is small on pixels P where
we expect to reconstruct edges. Tuning of w is discussed in Sec. 3.3.

1For ε = 0, ΠDy,ε (x) is computed as follows: 1st) take the Fourier
transform X of x; 2nd) for all the spatial frequencies k for which a measure
y (k) is available, replace the obtained modulus |X (k)| with y (k); 3rd)
finally, inverse the Fourier transform. For ε > 0, the second step is slightly
more complex, but can still be run in O (N) operations.

2O (N logN) operations.

This hybrid TV is similar to the mixed l1,2 norms used in CS
problems to favor block-sparse solutions (see e.g. [10, 11]): the
spatial correspondence of non-zero coefficients in ∇x and (x− a)
is enforced by the fact that the coefficients corresponding to a given
pixel P in these maps are grouped inside the same l2 block in (5).

Finally, we define the regularization set R as a level set of the
hybrid TV (5): Rw,a,τ =

{
x ∈ RN s.t. ‖x‖TV,w,a ≤ τ

}
. The

newly introduced parameter τ > 0 becomes an input prior to the
reconstruction problem or can be set adaptively during the recon-
struction process, as proposed below.

2.3. Projection operator ΠRw,a,τ
Using Rw,a,τ as a regularization set for the reconstruction requires
to be able to evaluate efficiently the projection operator ΠRw,a,τ ,
which implies to solve several instances of the following problem:

ΠRw,a,τ (x) = arg min
z

‖z − x‖2 s.t. ‖z‖TV,w,a ≤ τ (6)

To solve this convex optimization problem, we use an algorithm
derived from the total variation projection method presented in [12].
The main idea behind this algorithm is to recast the constrained prob-
lem (6) into the following unconstrained one:

arg min
u

τ ‖u‖∞, 1
w

+
〈
u(1), a

〉
+ 1

2
∥∥x− u(1) + Div u(2,3)∥∥2

2
(7)

Here, u represents a 3D vector field (i.e. a 3-channel image) over
the same domain than x, u(1) and u(2,3) denote respectively the first
and the concatenation of the second and third components of u, Div
is the adjoint operator of −∇, and ‖u‖∞, 1

w
= max

P

1
w(P ) ‖u (P )‖2

where P visits every pixel. Without going into details, it can be
shown that (6) and (7) are equivalent, and that the corresponding
optimal variables z? and u? are related through the equation z? =
x−u?(1) +Divu?(2,3). Problem (7) is then solved using a Nesterov
accelerated gradient descent scheme (see [12, 13, 14]).

This leads to an iterative scheme to evaluate the projection op-
erator ΠRw,a,τ : each iteration is performed in O (N logN) opera-
tions, and the Nesterov acceleration ensures a quadratic convergence
rate. This approach is much slower than what is needed to compute
the other projection operator ΠDy,ε , but we observed that a careful
initialization of the gradient descent provides significant speed up of
the convergence.

2.4. Reconstruction algorithm

The proposed reconstruction algorithm is based on alternated pro-
jections of the iterated reconstructions over the data setDy,ε and the
regularization set Rw,a,τ , involving two parameters ε and τ . ε con-
trols the size of the data set Dy,ε, and is set proportional to the noise
level that affects the measurements. Setting τ is not straightforward,
and we developed an adaptive heuristic to dynamically adjust this
parameter during the iterative reconstruction process.

This dynamic adjustment process relies on the following obser-
vation. The alternated projection scheme (3) produces a sequence of
estimators that converge to the intersection Rw,a,τ ∩ Dy,ε, but this
intersection is empty when τ is below a certain threshold τ? (if the
image a is not constant, the setRw,a,τ itself is empty when τ = 0):
therefore, the algorithm becomes non-convergent if τ < τ?.

Based on this remark, we propose a reconstruction algorithm
where τ is initialized at an arbitrary high value τ0, and then reduced
until the algorithm becomes non-convergent (see the pseudo-code
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function FRAME RECONSTRUCTION(x0, τ0,∆tolvar, α)
k ← 0
τ ← τ0
loop

k ← k + 1
xk ← Πw,a,τ ◦Πy,ε (xk−1)
δk ← ‖xk − xk−1‖2 / ‖xk−1‖2
if δk < ∆tolvar then

xcandidate ← xk
τ ← ατ

else if detect non-convergence then
return xcandidate

end if
end loop

end function

Fig. 1. Pseudo-code of the iterative reconstruction algorithm. The
algorithm takes 4 arguments as input: x0 and τ0, which are the initial
values for the reconstructed frame and the partial 3D TV bound, and
∆tolvar and α, that controls the general behavior of the algorithm.
When the relative variation between successive iterates goes below
∆tolvar, the bound τ is reduced by a factor α (0 < α < 1), until the
algorithm becomes non-convergent.

in Fig. 1). The algorithm returns the result (denoted as xcandidate)
obtained with the smallest value of τ that leads to convergence.

However, detecting that the sequence of estimators does not con-
verge for a given value of τ is a challenging issue, as we do not have
any result on the theoretical convergence rate of this sequence of
estimators. We developed an empirical approach based on the prop-
erties of the sequence (δk), which measures the relative variations
between two successive iterates. More precisely, to detect whether
the algorithm should be stopped at a given iteration k?, we perform
the following test:

1. linear regression over the truncated sequence of values of
(log δk) for k? − ∆k + 1 ≤ k ≤ k?, where ∆k is a fixed
parameter, returning a slope of evolution s;

2. stop if s is above a certain threshold smax.

The proposed non-convergence test evaluates the mean variation of
the sequence (log δk) over a window of ∆k samples: if this se-
quence increases at a rate higher than smax, then we assume that the
algorithm is diverging. Typical parameter values for this test are
∆k = 100 iterations and smax = −10−4 per iteration. Finally, to
improve computation speed, we typically perform this test only ev-
ery 25 iterations: as the linear regression is performed over a sliding
window, the value of the resulting slope is not likely to change much
from one iteration to the next, which justifies this approach.

3. RESULTS

3.1. Test sequences

We present here some preliminary results obtained with two test
video sequences, both of size 256× 256 with 80 frames:

• Disks: synthetic sequence representing disk shapes of random
intensity levels and sizes (5 to 25 pixels diameter), and mov-
ing with random directions and speeds. The typical distance
travelled by disks between two frames is about 1 to 3 pixels.

• Amiba: real microscopy video of moving and stretching cells
having similar sizes and speeds than in Disks.
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Fig. 2. Reconstruction result for the sequence Disks with a uniform
weight map (w = 1).
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Fig. 3. Reconstruction result for the sequence Amiba with a uniform
weight map (w = 1).

Simulations were conducted on the Disks sequence using 15% of
magnitude Fourier measurements; on Amiba, we increased the sam-
pling rate to 25% of Fourier samples to handle the more complex
nature of the signal. In both cases, we used the first frame of the
sequence as an input to initialize the process, and then we progres-
sively recovered all the following frames (as described in Sec. 2.1).

3.2. Qualitative and quantitative results

Reconstructions obtained for the sequences Disks and Amiba are pre-
sented on Fig. 2 and Fig. 3. These results were obtained with a uni-
form weight map w for the regularization function ‖·‖TV,w,a. Fig. 4
presents the evolution of the frame-wise reconstruction error (mea-
sured as the mean squared error (MSE) between the original and
reconstructed frames) as a function of frame index t (i.e. time).

These results show that the distortions introduced by the recon-
struction method increase with time, i.e. distance to the initial key-
frame: while in both sequences the reconstructed frames for t < 10
are quite similar to the original ones, errors become significant close
to the end of the sequences, but exhibit different characteristics:
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Fig. 4. Frame-wise MSE of the reconstructed video sequences Disks
and Amiba versus time.
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Fig. 5. Frame t = 70 of the sequence Amiba reconstructed with
different spatially varying weight maps w.

• For Amiba, the MSE increases progressively and quite regu-
larly with time t, which is characteristic of error accumula-
tion. Visually, this results in an increasing blurring effect.

• For Disks, the MSE increases sharply at time t = 22, and then
continues to grow over the next 10 frames, leading to a recon-
struction that is completely inconsistent with the original se-
quence for t > 30. This behavior is due to the fact that the al-
gorithm outputs an erroneous reconstruction at t = 22 which
is then propagated. On the contrary, frames corresponding to
t < 22 were almost perfectly recovered.

3.3. Weight map w

Results presented in Sec. 3.2 were obtained with the weighting pa-
rameter w set to a uniform value (w (P ) = 1 for all pixels P ). How-
ever, as mentioned in Sec. 2.2, using a spatially varying weight map
designed such that w (P ) is small on pixels where edges are ex-
pected in the reconstruction should improve the results.

Different maps were tested with w (P ) = e−κ‖∇a(P )‖2 where
κ > 0 is a parameter and a represents the frame that precedes the
one being reconstructed. The underlying assumption guiding this
choice is that edges in the reconstructed frames are expected to be
located close to the edges in a.

Results presented on Fig. 5 for Amiba show that a careful choice
of the weight map can indeed reduce the reconstruction artifacts,
although this improvement is not observable in terms of MSE. In
particular, in the sequence obtained with κ = 100, we were able to
remove the blurring effect. However, automatic calibration of the
parameter κ remains challenging: for instance, all our attempts to
reconstruct Disks using a non-uniform weight map (i.e. κ > 0)
resulted in a degradation of the reconstructed sequence, compared to
what we obtained with w = 1.

Other forms of weight maps w were also tested, such as
w (P ) =

(
η + ‖∇a (P )‖2

)−1
with η > 0 a regularization pa-

rameter, but led to unsatisfactory results and numerical instability.

4. CONCLUSION

In this paper, we presented a new CS imaging framework for video
reconstruction from partial Fourier modulus measurements, as re-
quired for Optical Fourier sensing. The proposed reconstruction
scheme is inspired by previous variational phase retrieval tech-
niques, and introduces a novel regularization set exploiting an
original weighted hybrid TV regularization energy. Preliminary re-
sults demonstrate the feasibility of video reconstruction from partial
Fourier measurements deprived of phase information. Some issues
remain with the setting of the specialized parameters involved in
the introduced regularization constraint, to ensure robustness of the
iterative temporal estimation process. Their tuning seems to require
more supervision for injection of prior image-content information,
which might be an issue for practical implementation of such CS
imaging paradigm into a real scanning device.
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