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ABSTRACT 

 
Due to high scattering effects inside lumen, detection of 
luminal borders in intravascular ultrasound (IVUS) images 
becomes challenging when high frequency transducers are 
employed. In this paper, we further study previously 
developed three-dimensional (3D) multiscale overcomplete 
brushlet-driven harmonic analysis, motivated by what 
experts visually do, to trace the lumen borders by exploiting 
spatial frame incoherence within blood speckle patterns. 
Two-dimensional (2D) brushlet coefficient clustering was 
designed to isolate blood pool and estimate the lumen 
borders with the surface function active (SFA) framework. 
We evaluated our proposed algorithm on phantom with 
flowing fluid and 1081 clinical IVUS images acquired from 
six patients with single-element 40 MHz and 45 MHz 
transducers. We quantified and compared the results with a 
threshold-based algorithm and a 2D shape-driven technique 
driven by non-parametric probabilistic energy functions. We 
highlight the advantages of each approach and discuss the 
robustness of proposed algorithm. 
 

Index Terms— Brushlet, IVUS, Border Detection, 
Lumen, Multiscale analysis. 

 

 

1. INTRODUCTION 
 

In interventional radiology, the ultimate goal is to provide 
the cardiologists with reliable clinical tools to identify 
vulnerable plaques [1], choose the most appropriate drugs or 
implant devices (i.e. stent) to stabilize the plaques during 
catheterization procedures, with minimal risk. Intravascular 
ultrasound (IVUS) is a screening modality of particular 
interest to guide such intervention since it provides useful 
information about tissue microstructures and images with 
sufficient penetration as well as acceptable resolution.  
     Among morphological and structural markers associated 
with vulnerable plaques, thin cap fiberatheroma (TCFA
< 65µm ) is still not directly detectable due to inadequate 
spatial resolution ( > 100µm ), but inferable, from IVUS 
images. Newly developed high-frequency IVUS transducers 
are now being used to prevail this limitation and obtain rich 
spatiotemporal IVUS image data. As a drawback, detection 
of lumen borders becomes more challenging due to high 
scattering effects of red blood cells inside the lumen, which 

makes blood-tissue interface less contrasted, as illustrated in 
Figure 1.  
    To tackle the segmentation problem, researchers have 
developed several algorithms, employing different 
techniques such as edge tracking and gradient-based 
techniques [2] active contours [3], statistical- and 
probabilistic-based methods [4-6], and multiscale 
approaches [7]. For example, Taki et al. [6] employed an 
affine invariant anisotropic filter for despeckling and 
enhancing borders and used two different threshold values 
to detect both vessel wall and lumen borders. Alternatively, 
Unal et. al [5] presented a 2D algorithm, implemented in the 
polar domain, which built a statistical shape space through 
principle component analysis (PCA). Once the shape space 
was built, an initialized contour evolved from the surface of 
the transducer (catheter marker) in polar coordinates by 
minimization of a region-based non-parametric probabilistic 
energy function. They estimated the probability distribution 
inside and outside the lumen using intensity profiles and 
constructed a training dataset to delineate the lumen borders 
automatically.   
     Despite the large amount of segmentation methods 
having been proposed, clinical applications of automated 
segmentation methods have seen limited success due to 
intrinsic challenges (presence of a guide wire, of calcified 
plaque, of side branches, motion of the catheter and the 
heart) and extrinsic challenges (IVUS system parameter 
specifications such as time gain compensation, compression 
of the vessel wall) associated with IVUS data acquisition 
setup. For example, variability among IVUS system 
specifications or change of acquisition parameters by 
experts would lead to inconsistency among data sets so that 
supervised techniques, knowledge based methods [2], or 
those that rely on statistical models of gray level intensities 
[5,6] may not perform efficiently.  
     The proposed method tackles these limitations by 
exploiting frequency-based harmonic information, via 
brushlet expansion. It is based upon a previously developed 
algorithm [12], which showed that tissue-specific 
backscattered magnitude and phase information, contained 
in brushlet coefficients, could discriminate different tissues 
on US images. This property was used to establish a 
framework able to generate binary masks corresponding to 
blood and non-blood regions, which ultimately made lumen 



borders regularization easier. Unlike existing techniques, 
our proposed algorithm relies on directional sensitive 
spectral features and does not require any parameter tuning, 
specific initialization, or manual annotation. The proposed 
segmentation method also exploits surface function actives 
(SFA) [8] to finely detect lumen borders with specific 
geometric constraints. Segmentation results are compared to 
two existing state of the art segmentation techniques. 
 
 

2. METHODOLOGY 
 

2.1.   Rational for harmonic analysis of US images 

Interventional cardiologists often go back and forth among 
consecutive IVUS frames to visually locate the lumen 
border on a single frame. By doing so, blood speckle and 
plaque respectively embody visually incoherent and 
coherent spatial textural patterns, suggesting 3-D harmonic 
analysis to discriminate these two tissues. Brushlet analysis 
enables to perform spatially-localized harmonic expansion 
of images. . Clustering of brushlet coefficients enables to 
discern the textural patterns corresponding to blood and 
non-blood regions. One of the major advantages of 
expansion of IVUS sub-volumes onto brushlet basis 
functions is that it is invariant to intensity, depending only 
on the frequency content of the IVUS signals. In addition, 
the brushlet expansion provides an orthogonal transform of 
the Fourier domain, which is Hermitian-symmetric 
(enabling separate manipulation of individual coefficients 
and reduction of the analysis dimension space by one half). 
We show in this work that the phase as well as the 
magnitude information of brushlet coefficients can be used 
to discriminate tissues in IVUS images and eventually to 
detect lumen borders. 
 
2.2.   Overview of brushlet expansion 

The main advantage of brushlet analysis [9] functions over 
wavelet packets, steerable filters, and directionally oriented 
filter banks, is their computational efficiency and unique 
representation of features in Fourier space along with 
arbitrary tiling. More specifically, rich angular resolution is 
obtained through brushlet analysis by expansion of the 
Fourier transform (FT) space onto windowed Fourier bases. 
Given any one-dimensional signal f ∈ L

2 R( ) , its Fourier 
transform f̂  can be projected onto brushlet basis as: 

 f̂ = λn , j un , j
j
∑

n
∑ 1( )

 
where λn , j  and un , j  represent brushlet coefficients and 
basis functions, respectively [9]. The parameters n and j 
encode respectively the subintervals of the frequency 
domain (of size ln) and the index of the frequencies being 
analyzed, centered on this interval and on its extremities. By 
doing so, the FT of the signal is divided into subintervals. 
Each interval, indexed by n, and of size ln is projected onto 
un,j, with j=0,1/ln,..,(ln-1)/l. Full details on the 
implementation of the decomposition can be found in [10]. 
It has been shown that the projection of f̂  onto the brushlet 
basis can be implemented in an efficient fashion using a 
folding technique and fast Fourier transform (FFT) [9]. 
Separable tensor products of 1D basis functions are used to 
expand sub-volumes of IVUS images onto 3D brushlet 
bases. In Figure 2, we illustrate the schematic of the 
proposed brushlet extraction procedure, and the selection of 
features, from brushlet coefficients, along an arbitrary 
number of directions, encoded by positions of the centers of 
the cube.  
 
 

2.3.  Brushlet-based lumen border segmentation 
framework 

Working on radial line measurements of an IVUS 
transducer during pullback, we rely on the assumption that 
the blood speckle pattern can be discriminated from the 
structural patterns of tissue layers, with homogeneous 
echogeneity, in the spectral Fourier domain. We speculate 
that in radial IVUS images, organized in textured layers of 
blood and tissues, different tissue echogeneities arise and 
scattering properties can be encoded in the brushlet 
coefficient magnitudes. We also speculate that blood and 
non-blood tissues generate backscattered signals with 
different incoherence, encoded in the phase of the brushlet 
coefficients. We therefore hypothesize that the magnitudes 
and phases of brushlet coefficients provide discriminative 
features for high-echogeneity and coherent (non-blood) 
versus low-echogeneity and incoherent (blood) patterns so 
that we can estimate the lumen border in the transformed 
domain via selection of specific clusters of phases-
magnitudes combinations. Such approach is superior to 
simple magnitude coefficient thresholding for selective 
reconstruction of tissue layers.  
     The proposed method takes advantages of properties 
associated with brushlet expansion to establish a 
segmentation framework by clustering coefficients 
corresponding to blood and non-blood regions. First, we 
know that blood speckle resembles noise-like patterns 
within contingent sets of IVUS frames, which correspond to 
high frequency components localized in the outermost cubes 
of the brushlet space. Secondly, brushlet expansion is 
performed with overcomplete representations to guarantee a 
bi-jection within and among each expansion sub-volumes 

            (a)                          (b)                         (c)                          (d) 
Fig. 1. Four distinct IVUS frames acquired with 20 MHz (a), 30 MHz 
(b), 40 MHz (c), and 45 MHz (d) transducers. Red contours represent 
lumen borders. 



and a one-to-one correspondence of the coefficients across 
sub-spaces of the expansion, as illustrated in Figure 2. 
Moreover, there is a homomorphism between the original 
domain of acquisition (spatial domain) and the brushlet 
space (i.e. unique correspondence between IVUS voxels and 
brushlet coefficients). This allows us to construct joint 
magnitude-phase histograms of summed coefficients in the 
innermost cubes that represent low frequency components 
and retain the most informative spatial features 
corresponding to each peak as illustrated in Figures 3. From 
joint magnitude-phase histograms of coefficients, we 
identify clusters of magnitude-phase joint values that are 
used to generate binary masks corresponding to each 
regional peak of the joint-histogram as described in [12,13]. 
Thirdly, spatial regularization of the binary mask with 
Markovian constraints is performed prior to the detection of 
the lumen border with the SFA framework [9] manipulating 
1D sine and cosine shape bases as follows: 

g ak , bk ,θ( ) =
a0
2

+ ak cos
2kπθ

Nθ

⎛
⎝⎜

⎞
⎠⎟ + bk sin

2kπθ

Nθ

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟K =1

M

∑ 2( )  
 

where Nθ  is number of angles that span 360o in Cartesian 
space or the width (x) of the image in polar coordinates. The 
height (y) of the polar mask-images encodes the radial 
position of the lumen border. The weight coefficients (ak, bk) 
are optimized through an iterative process so that the SFA 
function g(ak, bk,θ) converges to 0.   
 

3. RESULTS 

We processed IVUS sub-volumes of size 512 × 512 × 8  
voxels to ensure adequate spatial resolution in the pullback 
direction (i.e. 8 slices depth). Longer depth degraded the 
performance of the brushlet coefficient clustering due to the 
effects of the motion of the catheter and the heart.  The 
Fourier domain was tilled using 4 × 4 × 2( )  cubes in x, y, z( )  
directions ( z = pullback direction). In this case, the 
brushstroke orientation was degrees in the x, y, z( )
directions. 

     Previously, we investigated the feasibility of proposed 
technique, employing IVUS data acquired from a phantom 
cylinder made of shrink-wrap material with circulating 
blood-mimicking fluid [12]. We demonstrated that the 
histogram exhibited three peaks corresponding to coherent 
(cylinder wall material and the background) and incoherent 
(fluid) patterns. This experiment confirmed the ability of 
joint magnitude-phase clustering of brushlet coefficients to 
discriminate between a flowing fluid and a scattering 
material.  
     In this study, we evaluate the proposed clustering and 
segmentation algorithm performance on 1081 IVUS frames 
acquired from six patients during catheterization procedure 
employing single-element 40MHz and 45 MHz transducers.  
As shown in Figure 3, the joint histogram peaks were not as 
well separated as in the case of the phantom data [12] but 
they still provided good estimates of relative magnitudes 
and phases for blood and non-blood regions, enabling 
detection of lumen borders. 
     Performance of our proposed segmentation framework 
(Method 1) was compared with two existing techniques 
[5,6]: Unal et. al [5] (Method 2) who proposed a 2D 
segmentation method implemented in the polar domain, 
building a statistical shape model via principle component 
analysis (PCA). The position of the shape model is 
optimized by minimization of a region-based non-
parametric probabilistic energy function. They estimated the 
probability distribution function (pdf) inside and outside the 
lumen area using intensity profiles learned on a training 
dataset. A second method from Taki et. al (Method 3) [6] 
was tested, preprocessing the IVUS images using affine-
invariant anisotropic filtering in combination with hard 
thresholding and employing a geometric deformable model 
to estimate the lumen border.  Results from the Method 3, 
illustrated in Figure 4, revealed that a unique threshold 
value was not well suited for all IVUS cases so that we had 
to rely on an empirical selection of the thresholds on 
individual cases to achieve optimal segmentation 
performance. We can also see that the separation between 
the histograms of the inside and outside regions vanishes as 
the transducer center frequency increases from 20MHz to 

Fig. 2. Schematic expansion of IVUS sub-volumes onto brushlet basis 
functions, tiling the frequency domain with (4x4x2) blocks and 
performing selective feature extraction along eight directions 
corresponding to low-frequency components. Bi-jection within and 
among each expansion sub-volume and a one-to-one correspondence 
of the coefficients across sub-spaces of the expansion are illustrated by 
the green arrows for individual pixels within and across sub-volumes.  

           (a)                                            (b)                                                             (c) 
Fig. 3. Constructed 2.5-D magnitude-phase histogram (top), generated 
binary masks corresponding to individual histogram peaks (a,b), 
detected lumen border (red) imposed on the IVUS grayscale image (c) 
along with manual traced border (green) by expert.  



45MHz, making segmentation more challenging for pdf- 
and threshold-based techniques.  
     Quantitative comparisons of lumen borders for all three 
methods over the six cases are reported in Table 1, with the 
following accuracy measures: true positive (TP), false 
positive (FP) overlaps, and root mean squared error 
(RMSE), comparing to manual tracing by an expert. Figure 
5 illustrates the automated detected lumen borders identified 
on six distinct IVUS images with our proposed technique 
(red), Method 2 (yellow) and Method 3 (cyan) along with 
manually traced borders (green) from an expert.  From the 
results, we observe that the other two techniques completely 
failed in one case, which was correctly segmented with the 
proposed method. Method 2 outperformed our proposed 
method in 2 cases for TP/FP measures but not for RMSE 
measures. Overall, the proposed method ranked the 1st on 4 
over 6 cases. 
 

5. CONCLUSION 

This paper describes a novel technique, based on harmonic 
analysis of polar IVUS images, acquired with 40MHz and 
45MHz transducers, to cluster brushlet coefficients and 
reliably detect lumen borders. The proposed technique, was 
evaluated on a reasonable number of in vivo collected 

images (1081 frames from 6 cases).It outperformed two 
other state of the art methods, based on pdf intensity 
modeling or intensity thresholding. The thresholding 
method was parameterized empirically for each individual 
case, to optimize its performance versus the use of a single 
fixed threshold.  One of the main challenge with IVUS 
images is that the appearance of images may vary depending 
on the selected parameters during acquisition (e.g. due to 
TGC manipulation), normalization/saturation, or 
reconstruction (i.e. non-linear transformation). This leads to 
variations among intensity profiles, which seem to increase 
with transducer frequency, and are only robust to spectral 
analysis, which is the main advantages of our proposed 
framework. 
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Fig. 4. Probability density distribution inside (red) and outside (blue) 
derived from images acquired with 20 MHz (a), 40 MHz (b), and 45 
MHz (c) transducers. The probability distributions were computed 
from two datasets (solid and dashed lines) in images acquired with 40 
MHz and 45 MHz transducers. 
 

Fig. 5. Resulting automated lumen border detected in images acquired 
with 45MHz (top row) and 40 MHz (bottom row) single-element 
transducers with the proposed technique (red), Method 2 (yellow), and 
Method 3 (cyan), along with manually traced contours (green), collected 
from six in vivo cases. 

Table 1. Quantification of automated lumen borders detection with three 
different methods compared to manually traced borders. The 1st, 2nd, and 
3rd ranked methods are highlighted in green, orange, and red colors, 
respectively. 


