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ABSTRACT
We consider the Chan and Vese multiphase segmentation
based on the partition of an image minimizing an energy
involving a region-based data fidelity term and a regulariza-
tion term. The common implementation of the continuous
optimization of this segmentation framework, with multiple
level set functions, raises some numerical issues which lead
to poor performance of the method when handling more than
two phases. We propose a general formulation of the multi-
phase model, and a permutation method, incorporated in the
level-set based implementation of the multi-phase approach
to handle in an original way the so-called hidden phase prob-
lem.

Index Terms— Segmentation, Optimization, Mumford-
Shah functional, Multi-phase level sets, Hidden phase

1. INTRODUCTION

The active contour without edges (ACWE) formulation of
Chan and Vese [1] is a popular variational segmentation
approach that consists in minimizing an energy that is a
weighted combination of a data fidelity term which measures
the homogeneity of the image partition regions (phases) and
a regularization term which forces the contours of the regions
to remain smooth. The ACWE was introduced as a simplified
version of the Mumford and Shah (MS) segmentation model
[2], which remains unsolved in its general form (see [3, 4]
for a detailed discussion on the MS conjecture). The sim-
plification relies on the use of a piecewise constant model
for the appearance of the objects in the image. Indeed for a
piece-wise constant segmentation model, a minimizer of the
simplified Mumford-Shah energy functional exists for any
finite number of regions.

The ACWE exploits a continuous formulation of the op-
timization process, and uses level-set functions [5] to en-
code the dynamic evolution of the partition interfaces toward
an optimal configuration. The use of level set functions en-
ables topological changes of the partition which lead to a very
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flexible numerical implementation: arbitrary configuration of
the initial partition (for example with multiple cylinders as
in [1]), straightforward implementation in N-dimensions and
straightforward extension of the formalism to more than two
phases [6]. Regarding level-set based multiphase segmen-
tation frameworks, related to the ACWE energy functional,
three families of approaches have been studied: (1) use of
multiple independent level set functions (i.e., N functions for
N phases) as in [7], [8], (2) use of joint level set functions
(i.e., N functions for 2N phases), as in [6], [9], and (3) use of
a single multilayer level set function (i.e., 1 level set function
for N phases) as in [10]. The multilayer approach benefits
from a smaller computational cost than when using multiple
level set functions but forces a nested structure of the seg-
mented regions. In this work we focus on the joint level set
formulation (cf. (2)) defining 2N phases as the intersection of
the positive and negative parts ofN level set functions leading
to a complete non-overlapping partition of the image.

The possibility to use a generic segmentation framework
with an arbitrary finite number of phases is very appealing in
multiple applications, including brain MRI segmentation as
in [11] where the ACWE performance was compared to other
segmentation methods and [12] where different homogeneity
measures were evaluated for the brain segmentation task. The
multi-phase and multi-channel case was recently addressed
in [13, 14].

On the other hand, the ACWE segmentation framework
has not been pursued as actively as discrete counterparts such
as the Markov Random Fields. We believe that the reason
lies in numerical difficulties encountered in the standard im-
plementation from [6] that can lead to too much sensitivity
of the algorithm with respect to the initialization and the pa-
rameterization and even failure of the segmentation process,
especially when manipulating more than two phases.

This paper proposes a generic re-writting of the Euler-
Lagrange dynamic equations, identifies a numerical problem
linked to the level-set implementation, which is called the hid-
den phase problem, and proposes a solution via a modification
of the numerical implementation, involving a new permuta-
tion method.
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2. REWRITTING OF THE MULTI-PHASE ACWE

The ACWE segmentation exploits a region-based energy
functional, which characterizes homogeneous regions through
their average intensity values, combined with a regularization
term to ensure smoothness of the contours. For a given image
u0 defined on Ω, the segmentation task consists in finding P
regions Rj such that ∪Pj=1Rj = Ω, with associated contours
∂Rj and average pixel intensities cj , minimizing the energy:

E =

P∑
j=1

[λ

∫
Rj

(u0(x)− cj)2dx+ ν · Length(∂Rj)], (1)

which is the functional associated to the “minimal partition
problem” proposed in [2], and is a restriction of the general
MS functional to the piecewise constant case. The first term is
the data fidelity term and will be called the homogeneity mea-
sure, while the second term is the regularization term. The
parameters λ and ν are positive scalar weights.

The multi-phase ACWE implementation introduced in [6]
encodes contours in level set functions and evolves N level
set functions that define up to 2N phases (or regions), by con-
sidering the possible intersections of all positive and negative
regions of each level set function. To segment four phases,
two level set functions Φ = (φ1, φ2) and the average values
c = ci,j for i, j = 0, 1 are defined, according to the sign of
φ1 and φ2, respectively. Then, the energy writes:

F (c,Φ) = λ1,1

∫∫
Ω

(u0(x)− c1,1)2H(φ1(x))H(φ2(x))dx

+λ1,0

∫∫
Ω

(u0(x)− c1,0)2H(φ1(x))(1−H(φ2(x)))dx

+λ0,1

∫∫
Ω

(u0(x)− c0,1)2(1−H(φ1(x)))H(φ2(x))dx

+λ0,0

∫∫
Ω

(u0(x)− c0,0)2(1−H(φ1(x)))(1−H(φ2(x)))dx

+ν
∫∫

Ω
(| ∇H(φ1(x)) | + | ∇H(φ2(x)) |) dx, (2)

where H is the Heaviside function. This level-set implemen-
tation shows several good properties: (1) it is computationally
more efficient than using 2N level set functions, (2) extension
from 2 to N phases is straightforward (which is useful for
segmenting a large number of objects), (3) it guarantees to
provide a partition of the image, with no vacuum nor overlap.
The drawback of defining phases implicitly, from the inter-
sections of level set functions, is twofold: (1) a change on any
of these functions may affect all phases. Reciprocally, chang-
ing one phase in a certain way may require to evolve multiple
level set functions; (2) the length of the region contours is
hard to compute, as pointed out in [1].

Formulation of the energy functional and the Euler-
Lagrange dynamic equations quickly become tedious to write
in the original form proposed in [6] when more than two
level set functions are used. In order to generalize these
formulas to the 2N -phase case (N > 2), we first introduce
new notations which can be used to implement a code in
which N can be chosen arbitrarily. These notations establish
a correspondence between the signs of the level set functions,

represented by 1 (positive) or 0 (negative) and a representa-
tion of the phases with binary numbers.

In the multi-phase model with N level set functions,
each phase j = 0, . . . , 2N − 1 is defined as the intersec-
tion between N sets of pixels, each of which corresponding
either to the positive or negative part of the level set func-
tions {φi}i=1,2,..,N . Defining the phases therefore amounts
to knowing the signs of each level set function anywhere in
the image domain Ω. For that matter, as well as to shorten the
notations, we introduce three definitions.

GivenN level set functions {φi}i=1,2,..,N , with φi : Ω 7→
R the first definition assigns an index j to a phase based on
the sign of the N level set functions, encoded in a N -digits
binary representation. For example for N = 3, the phase
j = 101 in binary notations includes all the pixels where:
φ1 > 0, φ2 < 0 and φ3 > 0, and is encoded with the scalar
index j = 5.

Definition 1 For a positive integer N , let the integer j ∈
[0, 2N − 1]. For each 1 ≤ m ≤ N , let Bj(m) be the mth

bit (binary digit) of j, so that the vector Bj encodes the bi-
nary representation of j. Reciprocally, given a binary vector
B of length N , we have j =

∑N−1
k=0 2kBj(k + 1).

We then define the characteristic function χj of the phase
j, according to the sign of each level set function Φl encoded
in the lth bit of the vector Bj .

Definition 2 Given a positive integer N , for all 0 ≤ j ≤
2N − 1, we define the vectors Bj in {0, 1}N according to
Definition 1. For all the level-set functions φl, 1 ≤ l ≤ N , we
define the scalar functions χjl as:

χjl =

{
H(φl) if Bj(l) = 1
1−H(φl) if Bj(l) = 0.

(3)

We define the characteristic function χj of the phase j as:

χj =
∏

1≤l≤N

χjl . (4)

Finally, we define the characteristic function χ̂l,h1,h2 to
be used in the dynamical equation that evolves the level set
function φl, based on the difference of the homogeneity mea-
sures inside and outside the set {x ∈ Ω | φl(x) = 0}, for
h1 = 1, . . . , l − 1 and h2 = l + 1, . . . , N .

Definition 3 Given a positive integer N , for all 1 ≤ p ≤ N ,
let hl ∈ [0, 2p−1 − 1] and hr ∈ [0, 2N−p − 1] and let the
vectorsBhl andBhr of length p−1 andN−p be defined from
Definition 1. For all the level-set functions φi, 1 ≤ i ≤ N and
i 6= p, we define the function χ̂h∗

i (with h∗ = hl or hr) via:

χ̂h∗
i =

{
H(φi) if Bh∗(i) = 1
1−H(φi) if Bh∗(i) = 0.

(5)
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Then we define the characteristic function of the phase de-
fined, without taking into account φp, through the binary rep-
resentation [Bhr , Bhl ], where [., .] is the concatenation oper-
ator, as the product :

χ̂p,hl,hr =
∏

1≤i≤N,i<p

χ̂hl
i

∏
1≤i≤N,i>p

χ̂hr
i . (6)

For a given level set function φp, each χ̂p,hl,hr
(with re-

spect to all possible hl and hr values) will be used to define
the positive phase defined with the binary number Bl,hl,hr

+ =
[Bhl , 1, Bh2 ] and the negative phase defined with the binary
number Bl,h

l,hr

− = [Bhl , 0, Bhr ]. These definitions there-
fore provide a generic formalism to implement the multiphase
ACWE functional minimization with an arbitrary finite num-
ber of level-set functions. The energy (1) to minimize is
rewritten as follows. Given N level set functions φl, 1 ≤ l ≤
N , let Φ = (φ1, . . . , φN ) and suppose that the homogeneity
measure associated with phase j (0 ≤ j ≤ 2N − 1) is defined
by:

zj(x) = λj(u0(x)− cj)2, (7)

where cj is the average pixel intensity within phase j. A
recommended setting for the weight parameter λj is λj =

1
K(u0)2 where K(u0) = maxy∈Ω u0(y) − miny∈Ω u0(y) is
the contrast of u0 (independent of j), so that zj ∈ [0, 1]. Let
now Z = (z1, . . . , z(2N−1)), then the energy writes:

F (Z,Φ) = ν

N∑
l=1

∫
Ω

| ∇H(φl(x)) | dx+

2N−1∑
j=0

∫
Ω

zj(x)χj(x)dx.

To minimize this expression, we embed the associated Euler-
Lagrange equations with respect to the level set functions
φi(x) in a dynamical scheme with artificial time t to evolve
φi(t, x). Given the initial functions φi(0, x) for 1 ≤ i ≤ N
and x ∈ Ω, we compute the values of the vector Z as the aver-
age intensity values inside each phase (characterized through
the χi) and update φi as follows:

∂φi
∂t

= δε

{
νdiv

(
∇φi
| ∇φi |

)
−∑

0≤hl≤2i−1−1

0≤hr≤2N−i−1

[
zB̂

i,hl,hr
+ − zB̂

i,hl,hr
−

]
χ̂i,hl,hr

}
, (8)

where δε corresponds to an approximation of the Dirac mass
as in [1].

3. HIDDEN-PHASE PROBLEM AND PROPOSED
SOLUTION

Problem statement. Now that we have rewritten the Euler-
Lagrange equations of individual level set functions φi in a
generic form, a close look at these evolution equations indi-
cates a problem that needs to be addressed: for each level

(1,0) (1,1)

(0,1)(0,0)

(1,0,0) (1,1,0)

(0,1,0)(0,0,0)

(1,0,1) (1,1,1)

(0,1,1)(0,0,1)

Fig. 1. Diagram of phase transition in the 4-phase model (left)
and 8-phase model (right).

Fig. 2. Segmentation of a brain MRI (top-left) into 8 phases
as initialized with 3 sets of cylinders (bottom-left), and an il-
lustration of the hidden phase problem (8 figures on the rigth)
preventing correct exploitation of 2 phases, marked with a
cross.

set function, the decision to increase or decrease its value at
a given pixel is taken under the assumption that the sign of
the other functions remains unchanged. Hence, for a pixel
that currently belongs to a given phase, only N transitions of
phases are explored (one per switch of the sign of the individ-
ual level set functions at the pixel location) out of the 2N − 1
possible phases. As a consequence, a pixel which is not cur-
rently classified in the optimal phase cannot always be moved
to the best phase (i.e., the phase whose associated mean value
is closer to the intensity value of the pixel). We call this prob-
lem the hidden-phase problem.

The diagram of Fig. 1 summarizes this limitation with re-
spect to the possible transitions that assign a given pixel from
one phase to the others. An arrow between two phases in-
dicates that a pixel can be swapped between the two phases,
as long as this decreases the global energy. In the 4-phase
case, each phase only “sees” two out of the three other phases
and 2-step transitions might be needed to correctly segment
a given pixel. The phase transition diagram for the 8-phase
model is provided in the same figure. The 8-phase model suf-
fers even more severely from this problem as the evolution
of a given level set function can only drive a pixel to three
other phases, leaving out four phases not directly accessible.
In this case, the correct segmentation of a pixel may require
up to three transitions, which must all successively decrease
the energy. The existence of such a path between the phases
becomes very unlikely and the final segmentation highly de-
pends on the initialization.
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The hidden phase problem can lead to the presence of pat-
terns in the final segmentation, created by pixels which could
not be moved to the appropriate phase, as illustrated in Fig. 2.
These patterns are typically reminiscent of the initial shapes.
Increasing the regularization parameter to get rid of those pat-
terns is not acceptable as it would likely erase small objects
from the segmentation. We now introduce an original algo-
rithmic solution to authorize more transitions between phases
and avoid the hidden phase problem.
Algorithmic solution to the hidden phase problem. Based
on the Euler-Lagrange optimization, a phase transition of a
pixel over a single iteration can only decrease the energy. We
propose to preserve this behavior while ensuring that a given
pixel “sees” all the phases over the course of the iterations, via
permutation of some selected phases, in specific sequences
described below. Permutation is performed via inversion of
the sign of some given level set function(s) φi in a region
where specific constraints on the sign of φj apply (i 6= j).
For example a permutation of the phases (1, 1) and (0, 1) is
performed via inverting the sign of φ1 where φ2 ≥ 0. In order
to preserve the smoothness of the contours, the permutation
requires a reinitialization of the level set functions involved.
Permutations only need to be applied after a fixed number of
iterations S, so that contours have evolved enough to let pat-
terns due to the hidden phase problem appear. This generally
took less than ten iterations in our experiments.

For the 4-phase implementation, we permute any couple
of phases which are in direct relation with each other (see
Fig. 1), e.g. (1, 1) and (0, 1). Hence, transitions from (1, 0)
to (0, 1) and from (1, 1) to (0, 0) now become possible.

The proposed permutation method can be implemented
for 8-phases as well, though it becomes a little more complex.
To enable each phase to “see” any other one in the course of
the iterations we optimize the inner and outer squares from
Fig. 1 separately, as in the 4-phase case, by permuting phases
(1, 1, 0) and (0, 1, 0) for the inner square and (1, 1, 1) and
(0, 1, 1) for the outer square. At this point, after S iterations
prior to the permutation and S iterations after, all the transi-
tions between phases (·, ·, 0) and between phases (·, ·, 1) have
been allowed and only the links between the first and second
set of phases (inner and outer squares) remain to be estab-
lished. For an inner-square phase, there is only one outer-
square phase that is currently accessible. Therefore, applying
a circular permutation on the inner-square phases will per-
mit all inner-square phases to be directly linked to a different
outer-square phase. If we apply the same circular permuta-
tion three times, all outer-square phases will have been “seen”
by any of the inner-square phases. Therefore, we need 3S
iterations to perform those three circular permutations lead-
ing to a total of 5S iterations. The proposed permutation
method could be generalized for N > 3 but we do not detail
it, since eight phases are generally sufficient for most multi-
object segmentation tasks, as in brain imaging.

The advantage of the proposed permutation method is that

Fig. 3. 2D segmentations on a T1-weighted brain MRI
(SPGR) with the 8-phase ACWE free of the hidden phase
problem, for different values of the regularization parameter
ν. Colormap corresponds to the mean intensity value rank of
each phase.

we remain in the exact same framework as the original multi-
phase ACWE, except that the solution obtained before per-
mutation can be considered as an initialization for the next
S iterations, which are computed after permutation and reini-
tialization. This implies that at each iteration, we are guaran-
teed to decrease the energy, and that a pixel can never be clas-
sified, even temporarily, in a phase whose associated mean
intensity value is worse than before. A reinitialization is only
performed every S iterations, which does not add significant
computation burdens, while ensuring numerical stability of
the evolution of the level-set functions evolution away from
the zero-levels.

4. EXPERIMENTS & DISCUSSION

We illustrate in Fig. 3 the robust behavior of the 8-phase
ACWE segmentation on the T1-weighted brain MRI image
of a patient with a brain tumor, from the Centre Hospitalier
Sainte Anne (Paris, France), illustrated in Fig. 2, for different
values of the regularization parameter ν. The initialization
consisted of N sets of cylinders which defined the zero-level
of each of the N level set functions as in [6]. The hidden
phase problem was clearly avoided and the influence of the
regularization parameter can be clearly appreciated visually
(similar results have been obtained on other images). The
8-phase ACWE used two cycles of permutations, and 2× 5S
iterations overall. This total number of iterations with the
proposed permutation method remains smaller than the num-
ber of iterations reported with the original implementation of
Chan and Vese that suffers from the hidden phase problem.
Nevertheless, the segmentation results in Fig. 3 reveal that
two phases can be used to represent a homogeneous tissue
or the background and that a single phase can include two
different structures (eg. white matter and enhanced vessels).
These limitations, which are not related to the hidden phase
problem, lead to the open question of the automated identifi-
cation and then enforcement of the number of phases to use
for a given segmentation task, which was recently discussed
in [16] or in [17].
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