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In this paper, we propose a method to extend the multi-phase piecewise-constant segmentation method
of Mumford and Shah to the multi-channel case. To this effect, we show that it is crucial to find an agree-
ment between the syntactic constraint of obtaining regions that form a partition of the image space and
the semantic constraint that attributes a formal meaning to the segmented regions. We elaborate from
the work of Sandberg et al. that addresses the same problem in the binary (2-phase) case and we show
that the agreement principle presented there, based on De Morgan’s law, cannot be generalized to the
multi-phase case. Therefore, we base the agreement between syntactic and semantic constraints on
another mathematical principle, namely the fundamental theorem of equivalence relation. After we give
some details regarding the implementation of the method, we show results on brain MR T1-weighted and
T2-weighted images, which illustrate the good behavior of our method, leading to robust joint segmen-
tation of brain structures and tumors.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

One of the most striking feature of today’s practice of data
acquisition is the possibility to produce images of a given scene
with several different devices, associated with the detection of a
variety of physical properties. In medical imaging for example, it
is common to acquire relatively low-resolution functional images
together with higher resolution morphological images that provide
structural information in which objects can serve as landmarks.
Another example is the use of photographs (in the visible domain)
in combination with infrared images which often show different
objects (‘‘hot’’ objects typically). Similar examples can be found
in aerial and satellite imaging.

Once registered to correct for possible mis-alignments, defor-
mations and differences in resolution, these multi-protocol images
can be seen as several channels of a vector-valued image to be seg-
mented. The different channels are then images of the same scene,
at the same time. And because they show various properties of the
scene, these images also show objects differently. An illustration of
such situations is provided by multi-protocol magnetic resonance
(MR) images. In this paper, we address the question of how to find
objects in such multi-channel images, that is, we wish to propose a
ll rights reserved.
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method of multi-channel segmentation for multiple objects. We
refer to this problem as that of multi-phase and multi-channel
segmentation.

This problem however, derives from another, more fundamen-
tal, one, which is to define what a multi-channel object is. What
is it, exactly, that we wish to segment in multi-channel images?
In single-channel imaging, the answer is rather straightforward.
Depending on the type of image one considers, different segmenta-
tion models exist. One can use gradient-based methods that draw
closed contours along high values of the image gradient, thus
defining objects as that which are enclosed by a sudden change
in image intensity. Another class of segmentation methods relies
on the identification of objects with regular functions. For instance,
in the case of an MR image with strong field heterogeneity (that
has not been corrected for), objects may be mathematically de-
scribed by regions associated with linear functions or even more
general smooth functions. Yet, in a variety of applications, the so-
called piecewise-constant model is satisfying. It corresponds to
the situation where objects are identified with relatively homoge-
neous patches. The segmentation model therefore depends on the
choice of a formal semantics to determine what objects are. In this
paper, we will focus on the case where images show objects as rel-
atively homogeneous patches.

One popular segmentation model to detect homogeneous ob-
jects is the piecewise-constant model of Mumford–Shah, that aims
to partition an image into regions that are as homogeneous as pos-
sible. More specifically, in the particular case of the restriction of
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the general Mumford and Shah functional to piecewise constant
regions, for a given image u defined in X (a subset of R2 or R3),
the model consists in finding P regions Rj such that [P

j¼1Rj ¼ X, with
associated contours @Rj and real values cj, minimizing the energy:

EððRj; cjÞj¼1;...;PÞ ¼
XP

j¼1

Z
Rj
ðu� cjÞ2dxþ m � Lengthð[j¼1;...;P@RjÞ; ð1Þ

which is the functional associated with the ‘‘minimal partition
problem’’ proposed in [1] in the piecewise constant case, with u
being the image intensity function, and m being the regularization
parameter, tuning the influence of the length term with respect to
the data term. The minimization of this energy can be achieved
by many kinds of algorithms, based on different approaches which
will not be debated at length here. Our main goal will be to provide
a similar energy-based model of segmentation that adapts to the
vectorial case (i.e., for multi-channel image data).

An important feature of the Mumford and Shah segmentation
model is that the regions Rj are created according to two con-
straints that do not conflict:

(i) they form a partition of X (each point of X belongs to
exactly one such region). This is a structural or syntactic
constraint.

(ii) each Rj has a clear meaning. Formally, they are patches that
are relatively homogeneous and smooth to some extent
(depending on the parameter m). This is a semantic
constraint.

The only conflict that could occur in the single-channel case is
when the intensity of a point of the image u falls right in the mid-
dle between the mean values of two regions and can therefore be
associated with either one of them. However, taking the decision
to put this point in one of these equally distant regions is harmless,
because it does not significantly change the meaning of the
regions.

As it will appear in this paper, the generalization of the piece-
wise-constant model of Mumford and Shah to the multi-channel
case easily breaks the harmony between these two constraints.
Hence, we will focus on the problem of finding an agreement be-
tween them, so enforcing one does not work against the other. This
approach has been used in the logic framework for active contours
on multi-channel images of Sandberg et al. [2] in which multi-chan-
nel segmentation is considered, but only in a 2-phase framework.
The extension that we offer here parallels the approach taken by
these authors in that we give a principle to make the syntactic
and semantic constraints compatible, therefore avoiding what they
call conflictive objectives. This extension differs from the one re-
cently proposed in [3], where the authors guarantee the partition
constraint based on an ordering of the objects to be segmented
(but the result highly depends on this ordering).

In Section 2, we describe the syntactic and semantic aspects of a
segmentation and we present the problem of conflictive objectives
that is created when extending a segmentation method from sin-
gle- to multi-channel image data. In Section 3, we recall how the
problem is solved in the 2-phase case in [2] and we suggest that,
even if this solution does not apply for more than two phases, it
can be understood more generally as a demand for a compatibility
principle between syntactic and semantic constraints. Since we do
not wish to change the fact that the segmented regions form a par-
tition of the image, we rather study how to choose an interpreta-
tion for these regions that is compatible with the partition
constraint. In Section 4, we illustrate on a few examples the behav-
ior of our segmentation model, both with simulated and real
images and conclude in Section 5.
2. Syntactic and semantic aspects of segmentation

When we consider an energy-based model such as (1) for seg-
mentation, we actually try to combine two sets of constraints
which are equally important for our understanding of the result.
The first set, that we call syntactic constraints, aims to drive the
computed regions to take a certain form. Here, we define two of
them by setting the number of regions to P, which means that
our final segmentation will be composed of P regions or less, and
we want these regions to form a partition of the image domain
(i.e. be non-overlapping while entirely covering the image space
X). Let us call these two syntactic constraints the maximum number
of regions constraint and the partition constraint. To say that these
constraints are purely syntactic means that simply constructing
our regions according to them has no a priori reason to provide
us with a segmentation that is representative of the objects seen
in the image (since these constraints do not explicit any link be-
tween object features or image information and the P regions).
They only help clarifying the structure of a given segmentation
by reducing the number of gray levels to a small number of labels
(usually, P is significantly lower than the original number of gray
levels) and by placing each and every pixel in one of the regions
so as to avoid ambiguity: we generally do not want a set of non-
classified pixels in our segmentation and we do not want pixels
to be part of two or more regions at the same time either.

Thus, we need other constraints that link the segmented regions
to the actual content of the image, and we call this second set of
constraints semantic constraints. Our choice to focus on a region-
based segmentation method is guided by two considerations.
Firstly, it is a remarkably simple (and yet, in many cases, efficient)
model that is based on one single criterion (that the heterogeneity
measure between a point and the mean value of a region be low).
This permits us to remain with a rather light mathematical formu-
lation which helps generalizing to the multi-channel case. Sec-
ondly, because regions are associated with distinct mean values,
these values can be used as labels for the possibly many different
objects that will be segmented. The piecewise-constant model of
Mumford and Shah that we use thus accommodates well to (and
is actually designed for) the multi-phase case.

This distinction between syntactic and semantic constraints of a
segmentation, while commonly found in the large literature dedi-
cated to segmentation, rarely leads to discussions regarding the
mutual agreement between these constraints. As we suggested in
the introduction, this is because they do not really conflict in sin-
gle-channel segmentation. When constructing regions that are
characterized by a certain average value, deciding in what region
a pixel associated with a given value should be placed is rather
straightforward: we put it in the region associated with the closest
average value, provided that it does not dramatically increase the
regularization term. But the same procedure cannot be applied
for general multi-channel segmentation by simply considering a
vector of average values, as proposed in [4]. Suppose for example,
in a 2-channel situation, that we want to group together the pixels
that have a similar value in at least one channel. It it easy to think
of examples in which, for a given pixel p with value (p1, p2), two
distinct regions R1 and R2 already exist at a given iteration, with
average values v1

1;v1
2

� �
and v2

1;v2
2

� �
with the property: p1 ¼ v1

1

and p2 ¼ v2
2 (see Fig. 1). We are then left with two possibilities:

we can either choose to enforce the semantic constraint, and ac-
cept that the pixel p be placed in both R1 and R2, therefore breaking
the partition constraint, or we can decide to place p in one of these
two regions to enforce the partition constraint, but the resulting
segmentation will not be interpreted as ‘‘the set of regions com-
posed of pixels with similar value in at least one channel’’.



(a) (b) (c)
Fig. 1. Example of the use of multi-channel imaging. The two channels are shown in (a) and (b) with different appearances of the object. In (c), we show a synthetic view of
the different parts of the vectorial image: in black, what is in the object in both channels, in white, what is in the background in both channels and in gray, ‘‘conflictive parts’’.
If at some point during the iterations, two phases R1 and R2 represent approximately the background and the object, the point p taken in the conflictive part can legitimately
be placed in either R1 or R2 (see text).
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Sandberg et al. in [2] refer to this problem as a conflictive objec-
tive, that makes multi-channel segmentation harder to grasp, con-
ceptually, because the construction of segmented objects must be
understood with an additional dimension, that of the ‘‘depth’’ of
the multi-channel image. We will now turn to the solution adopted
by these authors in the 2-phase and multi-channel case to properly
define objects and extend it to the multi-phase case.

3. Agreement between syntactic and semantic constraints

Since we are now considering a multi-channel segmentation
model, the first question to be addressed is the selection of the
most relevant level for fusing information from different channels.
These possible levels of fusion can be classified into three catego-
ries: the data (fusion of the different channels), the segmentation
(fusion of segmentations obtained independently for the different
channels) and the fusion of a quantity that is used during the seg-
mentation process, typically an heterogeneity measure, evaluating
the distance between the grey level of a point and the average va-
lue of the region it belongs to. Arguments against the first two op-
tions can be found in [2], and it is therefore suggested to achieve
the fusion on the heterogeneity measures, which are defined for
each point x 2X as:

zj
iðxÞ ¼

uiðxÞ � cj
i

��� ���2
KðuiÞ2

; ð2Þ

where i = 1, . . ., M denotes the channel, ui the corresponding image
intensity function, and K(ui) = maxy2Xui(y) �miny2Xui(y) is the con-
trast of ui, while j denotes the phase. Note that other normalization
methods could be applied as well, and this is but one classical
example.2 Then Eq. (1) becomes:

E Rj; cj
i

� �
i¼1;...;M;j¼1;...;P

� �
¼
XP

j¼1

Z
Rj
F zj

iðxÞ; i ¼ 1; . . . ;M
� �

dx

þ m � Lengthð[j¼1;...;P@RjÞ; ð3Þ

where F denotes a fusion operator.

3.1. The 2-phase case

The logic framework of [2] was designed to segment an object
in a 2-phase framework, according to several possible set opera-
tions, expressing the fusion of heterogeneity measures, applied
on multiple channels. For two channels, if O1 and B1 are the object
2 Note also that this model does not require intensity standardization among the
channels since each ui is compared only to cj

i (in the same channel) and the fusion is
performed on the normalized heterogeneity measures, not directly on the intensities.
and the background as they appear in the first channel, and O2 and
B2 are the object and the background as they appear in the second
channel, the final region of the object O can be defined as O1 [ O2,
O1 \ O2 or other logic operations.

These combination rules of channel content translate into fu-
sion rules of heterogeneity measures. For instance, the fusion of
the zj

iðxÞ with respect to the different channels can be defined with
a union function, that considers that a point x belongs to a given
phase as long as the heterogeneity measure is low in at least one
channel. An example of such a union function, given in [2] and de-
noted by f[, is the following:

f[ zj
1ðxÞ; z

j
2ðxÞ

� �
¼ zj

1ðxÞ � z
j
2ðxÞ

� �1=2
; ð4Þ

which extends to the case of M channels as:

f[ zj
iðxÞ; i ¼ 1; . . . ;M

� �
¼ Pi¼1;...;Mzj

iðxÞ
� �1=M

:

Other fusion operators could also be used, and we could for instance
define f[ as the minimum of the heterogeneity measures over the
channels. An intersection function can be defined as well, that con-
siders that a point belongs to a given phase only when all heteroge-
neity measures are low. The intersection function f\ proposed in [2],
is as follows:

f\ zj
1ðxÞ; z

j
2ðxÞ

� �
¼ 1� 1� zj

1ðxÞ
� �

1� zj
2ðxÞ

� �� �1=2
; ð5Þ

and extends directly to M channels. We could also define f\ as the
maximum of the heterogeneity measures over the channels.

Note that according to the usual classifications of fusion opera-
tors [5–7], these examples are actually not a conjunction and a dis-
junction, respectively, but rather compromise (or mean) operators,
since for any zj

iðxÞ; i ¼ 1; . . . ;M and for any j it holds:

min zj
iðxÞ; i ¼ 1; . . . ;M

� �
6 f[ zj

iðxÞ; i ¼ 1; . . . ;M
� �

6max zj
iðxÞ; i ¼ 1; . . . ;M

� �

and

min zj
iðxÞ; i ¼ 1; . . . ;M

� �
6 f\ zj

iðxÞ; i ¼ 1; . . . ;M
� �

6max zj
iðxÞ; i ¼ 1; . . . ;M

� �
:

This means that the expected behavior of a conjunction or a dis-
junction is actually not achieved with these two operators, since
the combination of several heterogeneity measures always leads
to an intermediate value, and not to a lower or higher one. The
information fusion theory offers several operators that are better
suited. Typically t-norms and t-conorms are suitable conjunctive
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and disjunctive operators, with good theoretical properties, and
have been extensively studied within the fuzzy set theory.

Average fusion operators have also been implicitly used in early
work on color image segmentation (see e.g. [8,9] for methods rely-
ing on a similar framework). As shown below, such operators are
not suitable to match the considered constraints.

Applying the same fusion rule in both phases can provoke a
conflictive objective. For example, for every point taken in the
‘‘conflictive area’’ of Fig. 1, applying an intersection fusion rule in
both phases will result in the point being rejected from both
phases (its heterogeneity measure is large with respect to both of
them) while applying a union fusion rule in both phases will result
in the point being accepted in both phases (as its heterogeneity
measure is low with respect to both of them). But the partition
constraint forces the decision to place the point in one phase only.
This in turn results in an impossibility to interpret the final seg-
mentation results.

To solve this problem, the solution offered by Sandberg et al.
comes from a principle that combines the semantic constraints
(i.e., the interpretation given to the different phases) and the syn-
tactic ones (so that the two phases form a partition of the image).
Here, the different possibilities rely upon De Morgan’s law, which
states that for two sets A1 and A2; ðA1 \ A2Þc ¼ Ac

1 [ Ac
2. So within a

2-phase framework, if we wish to obtain the union of the appear-
ances of the object in one phase, the second phase must be its com-
plement (partition constraint) and therefore, must correspond to
the intersection of the appearances of the background, which gives
us the right semantics.

The energy of the minimization problem then takes the follow-
ing form:

E R1; c1
i ;R

2; c2
i

� �
i¼1...M

¼
Z

R1
f[ z1

i ðxÞ; i ¼ 1; . . . ;M
� �

dx

þ
Z

R2
f\ z2

i ðxÞ; i ¼ 1; . . . ;M
� �

dx

þ m � ðLengthð@R1Þ þ Lengthð@R2ÞÞ; ð6Þ

where zj
i are given in Eq. (2).

Other combinations can be derived to obtain the segmentation
of the intersection or union of all observations Ai of a given object
or other possible bitwise logic operations, such as A1 \ :A2. It is
also worth noticing that the De Morgan’s law generalizes for more
than two channels, and leads to the following prescription in our
context: if we choose a union fusion rule (over all the channels)
for one phase, an intersection fusion rule must be applied to the
other phase.

Therefore, this framework can handle the problem of multi-
channel segmentation in a 2-phase framework, in the sense that
conflictive objectives are avoided. Let us now see how we can ex-
tend this to the multi-phase case.

3.2. Multi-phase case: a new model

In most cases, two regions are not enough to represent all the
different salient objects that are present in an image. The multi-
phase framework provides us with the possibility to partition the
image into an arbitrary number of phases, according to what we
think is the right number of objects. Thus the constraint on the
maximum number of regions is somewhat relaxed, since we can al-
ways adapt this number to match our needs.

Let us start with a remark on the possible fusion rules. In the 2-
phase case, we only have considered the most obvious cases that
correspond to the union and intersection of the appearances of
an object over the different channels. However, other possibilities
exist. For example, we could attach a point to a phase, if its associ-
ated value is close to the average of this phase in at least half of the
channels. For the sake of simplicity, we do not wish to consider
these possibilities and therefore restrict the discussion to union
and intersection fusion rules.

Now that we consider a multi-phase framework, the De Mor-
gan’s law can no longer be used because it is binary by nature. It
permits us to consider one set and its complement which only
makes sense for two classes. So the only way that we could use
the 2-phase case directly in the multi-phase case would be to iter-
atively apply the 2-phase case in a hierarchical scheme that divides
an image into two parts, and then considers each of the two parts
as a new image domain. But this approach seems tedious to man-
age in practice, as it requires the user to determine which phase is
associated with the union fusion rule (the other being necessarily
associated to the intersection fusion rule) for the segmentation of
each subdomain. We will then consider the real multi-phase case
and compare the two most simple possibilities, namely applying
the same fusion rule in all the phases, i.e., either union or
intersection.

As mentioned before, the two considered interpretations and
channel combinations can be translated into a mathematical for-
mulation using a fusion operator. Semantically, if a phase has been
segmented with a union fusion rule, it means that ‘‘all the points it
contains are similar in at least one channel’’, while the intersection
fusion rule is associated with a phase such that ‘‘all the points it
contains are similar in all the channels’’. Similarity is of course a fuz-
zy relation, which is necessary to reduce the quantity of informa-
tion in the image. But it is built upon a crisp relation, that of
identity, and this will be our starting point for the analysis of the
two cases that are under consideration. The two rules of union
and intersection can be expressed as relations that write as
follows:

R[ ¼ fðx; yÞjx and y have a similar value in at least one channelg
ð7Þ

and

R\ ¼ fðx; yÞjx and y have a similar value in all the channelsg:
ð8Þ

These two relations are based on crisp relations that write as

Rc
[ ¼ fðx; yÞjx ¼ y in at least one channelg ð9Þ

and

Rc
\ ¼ fðx; yÞjx ¼ y in all the channelsg: ð10Þ

These two relations differ in an important aspect. The first one, Rc
[ is

reflexive, symmetric, but it is not transitive. Indeed, in a 2-channel
framework, we can have xRc

[y and yRc
[t if pixel x has values (u1(x),

u2(x)), pixel y has values (u1(y), u2(y)), pixel t has values (u1(t),
u2(t)) and we have for example u1(x) = u1(y) and u2(y) = u2(t). In this
case, there is no reason why u1(x) = u1(t) or u2(y) = u2(t) should hold,
and therefore, xRc

[y ^ yRc
[t;xRc

[t. On the other hand, Rc
\ is reflexive,

symmetric and transitive. It is therefore an equivalence relation.
The application of this to our context is obvious using the fun-

damental theorem of equivalence relation: the only way that we
can obtain a partition of the image space is to group its points
according to an equivalence relation. It is therefore this principle
that we use to establish a link between the syntactic and the
semantic constraints.

Concerning the union fusion rule of the heterogeneity measures
f[, we see that even its crisp version leads to a semantically irrele-
vant grouping of the points, since two points can be put in the
same phase, even if none of their values are identical. In practice,
this can result in the computation of phases that are not well inter-
pretable since they do not correspond to the desired characteriza-
tion of containing points that are all similar in at least one channel.
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The fact that the intersection fusion rule is associated with an
equivalence relation in the crisp case makes it a much better can-
didate for use in a multi-phase and multi-channel segmentation
method. However, we are left with two questions: (1) how does
this reasoning translate to the fuzzy case, when we replace the
identity with a similarity operator? and (2) what is the role of
the other syntactic constraint, namely, the number of phases?

We will not give a full answer to the first question here. A sim-
ilarity relation can be defined as a fuzzy equivalence relation. It can
be associated with a fuzzy partition of the space as shown in [10]
for example. However, since our algorithm will ultimately deliver a
crisp partition of the image space, what is needed here is a proof
that this partition can be computed from the fuzzy partition that
corresponds to the similarity relation, for example in the form of
a set of a-cuts.

The second question is related to the importance of the user’s
input for the practical use of the method. We said at the beginning
of the section that the multi-phase framework provided by the
Mumford and Shah model for example permits one to anticipate
the appropriate number of phases needed to catch the different ob-
jects of the scene. This possibility goes very well with the standard-
ization of imaging techniques and protocols, from which users can
generally predict what these different objects are. In multi-channel
imaging, this task is slightly more complicated, because the seman-
tics that we want to suggest implies that an object be defined by a
relative homogeneity in all the channels. This means that ‘‘conflic-
tive parts’’ should constitute objects on their own, even if they ap-
pear to be part of a well-defined object when considering one
single channel (e.g. the conflictive parts in Fig. 1). So the task of
the user is to predict, at least approximately, what the number of
vectorial objects is.

Finally, the present argument seems to contradict what is pro-
posed by Sandberg et al. in the 2-phase case, since their suggestion
is to combine two different rules in the two phases, while ours is to
apply an intersection fusion rule everywhere. But our respective ap-
proaches actually do not cover the same cases, since, as we just ob-
served, our multi-phase framework is aimed to detect conflictual
parts of the image, and to consider them as new objects. This means
that even in the most simple case of an image with one object and
background (e.g. Fig. 1), if the appearances of the object vary over
two channels (i.e., if there is a conflictive part between two chan-
nels), we will need at least three phases to apply our recommenda-
tion to use intersection fusion rules in all of them when the
principle that we rely on is the fundamental theorem of equivalence
relation (in the example shown in Fig. 1, four phases would be nec-
essary since the two components of the conflictive part have differ-
ent values in each channel). On the other hand, if we wish to work
with only two phases, then the principle that applies is the De Mor-
gan’s law and we will choose the approach described in Section 3.1.

Provided that we are able to decide for an appropriate number
of phases P > 2, we can finally formalize our energy-based model
for multi-phase and multi-channel segmentation, with phases Rj,
j = 1, . . ., P such that [P

j¼1Rj ¼ X.
The multi-phase segmentation model, posed as a minimization

problem in Eq. (1), can be straightforwardly extended to the multi-
channel case, by fusing heterogeneity measures with a disjunctive
fusion operator. Using the maximum as fusion operator, the energy
to minimize is the following:

E Rj; cj
i

� �
i¼1;...;M;j¼1;...;P

� �
¼
XP

j¼1

Z
Rj

max
i¼1;...;M

zj
iðxÞ

� �
dx

þ m � Lengthð[j¼1;...;P@RjÞ; ð11Þ

where @Rj denotes the contour of the phase Rj, M is the number of
channels, m is a non-negative real number and the heterogeneity
measure zj
i is given by Eq. (2) for each channel i with respect to

the phase j.
The form of this energy is very close to that of the single-chan-

nel model seen in Eq. (1), and this is due to the fact that we have
argued in favor of using the same fusion rule in all phases Rj. Hence
this energy contains fewer terms than the 2-phase model of Sand-
berg et al. who proposed to use different fusion rules associated
with the two phases. Extending this approach to the multi-phase
case by assigning different fusion rules to the different phases
would be possible (for example, by applying the 2-phase model
iteratively), but it would be very tedious for the user who would
have to supervise the fusion rules assignments, whether it be in
a hierarchical scheme based on the 2-phase model or in a truly
multi-phase formulation.

Even if our multi-channel segmentation model seems to be a
trivial extension of that of Mumford–Shah, replacing the measure
of heterogeneity of (1) by the maximum of the heterogeneity mea-
sures over all the channels, the reason why this model works – and
not other models that would make use of conjunctive fusion oper-
ators for example – is profound. Hence, it has been the main goal of
this section to exhibit a principle that connects the syntactic and
semantic constraints, and since the main syntactic constraint is
to obtain a partition of the image space, we have used the funda-
mental theorem of equivalence relation. We have then deduced
that only operators based on an equivalence relation could be used
for the fusion of the heterogeneity measures over the channels, an
example of which is the maximum operator.

Therefore, our multi-phase and multi-channel segmentation
model is neither a straightforward extension of that of Mum-
ford–Shah, nor of Sandberg et al. While we share with Sandberg
et al. the concern of finding an agreement between syntactic and
semantic constraints in our segmentation, there are two important
differences between our respective frameworks. The first one is
that the work of Sandberg et al. does not apply to multi-phase
partition. It is binary by nature and will therefore always lead to
the segmentation of an image into foreground and background.
The second one is that, in order to handle the multi-phase case,
we demonstrated the need to turn to a completely different agree-
ment principle between syntactic and semantic constraints, since
De Morgan’s law can only be used for binary partitions. The agreement
principle based on De Morgan’s law can only be straightforwardly
extended to deal with more than two channels, as was already
pointed out in Sandberg et al.’s paper, but not to handle more than
two phases, unless one decides to implement a hierarchical scheme
as was recently done in [3]. This strategy, however, must be asso-
ciated with an ordering of the objects to be segmented, and a sub-
sequent dependence of the result on this ordering. In order to treat
the multi-phase case directly (that is, not by successively applying
binary partitions), we formulated a new agreement principle,
based on the fundamental theorem of equivalence relation. Com-
pletely departing from the original agreement principle based on
De Morgan’s law, it remains mathematically supported by linking
the necessity to ultimately obtain a partition of the image with
the semantics of the regions.

In the next section, we provide details for a simple and fast
implementation and show some illustrations in medical imaging.
4. Segmentation implementation and illustration

4.1. ICM algorithm

The implementation of the minimization of E in Eq. (11) can be
performed in two different ways when working in a discrete space
(as for digital images).
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The first approach consists in deriving the Euler–Lagrange equa-
tions, which leads to partial differential equations (PDE) governing
the evolution of the cj

i; Rj and their contours, according to an arti-
ficial time t. Using a level set formulation leads to useful expres-
sions, avoiding a parameterization of the contours. In a second
step, these PDE are solved numerically, hence the discretization
of the image space and the temporal iterations are performed in
the very last step, after all formal derivations have been done in
the continuous domain. This approach is detailed in [4] for the
multi-phase case, and in [11] for the 2N-phase multi-channel case.

The second approach consists in first discretizing the energy to
be minimized, and performing all the computation and optimiza-
tion steps directly in the discrete domain. A standard discretization
scheme yields a discrete Markovian energy [12]. It has been shown
[9] that a discrete version of the piece-wise constant Mumford–
Shah model can be written in a Markovian framework. The data
fidelity term, depending on the heterogeneity measure, has the
same form, except that the integral over X is replaced by a sum
over all pixels or voxels (called sites in the Markovian terminol-
ogy). As for the regularization term, controlling the length of the
contours, it corresponds to a Potts model [12]. Hence the discrete
version of E can be written in this framework as the following:
EdiscrðvÞ ¼
XP

j¼1

X
s2X

max
i¼1;...;M

zj
iðsÞ

� �
þ m

2

X
ðs;tÞ2E

wstRðvðsÞ; vðtÞÞ; ð12Þ
where v denotes the labeled image, E defines the set of interactions
(point neighborhood system), the coefficients wst for any two sites s
and t are some non-negative coefficients, and
RðvðsÞ; vðtÞÞ ¼
0 if vðsÞ ¼ vðtÞ;
1 otherwise:

	

Fig. 2. T1-weighted (a) and T2-weighted (b) images of a brain with tumor and
edema (one slice of the 3D volume is shown). While the pathological area, defined
as the tumor and the edema, appears as one single region, very contrasted from the
other tissues in the T2-weighted image (in white), the same area decomposes in the
T1-weighted image into the tumor (dark gray) and the surrounding edema (lighter
gray, hardly distinguishable from gray matter).
The coefficient 1
2 comes from the fact that a discontinuity is counted

twice. The weighting factor m of the regularization term is as in Eq.
(1).

In this paper, the 8-connectivity, i.e., the nearest and second
nearest neighbors, is considered for the 2D case for defining the
interactions, and the weights wst are set to 1 for the nearest neigh-
bors and to 1ffiffi

2
p for the diagonal ones (second nearest ones). In 3D,

the 26-connectivity is considered and the weights wst are respec-
tively set to 1, 1=

ffiffiffi
2
p

and 1=
ffiffiffi
3
p

for the first, second and third near-
est neighbors. We also refer to [13] for other definitions of discrete
perimeter of discontinuities.

Numerous methods are available for minimizing this energy,
such as the Iterated Conditional Modes (ICM) [14], simulated
annealing [15], or graph cuts [16,17]. We have considered the
ICM algorithm because of its simplicity since the goal of this paper
is not to compare optimization algorithms.

In our method, we have used the second approach to minimize
E (i.e., Ediscr is actually minimized), using an ICM algorithm. The
ICM picks randomly a site s and then changes the label v(s) to
the one that minimizes Ediscr (note that only the terms in the
sum involving s need to be considered). This operation is iterated
until there is no possible label modification that decreases the en-
ergy. In our implementation, the values of the means are updated
after one sweep, i.e., after all pixels have been updated once, and
the ICM is relaunched again with these updated mean values.
The global process stops when the means values do not signifi-
cantly change over two consecutive runs, which takes about 20
iterations.

The ICM procedure decreases the energy at each iteration. It is
known that the obtained solution is not necessarily globally opti-
mal and depends on the initial guess.
4.2. Illustrative example: Brain MRI segmentation

The proposed method is a general framework that applies to all
sorts of multi-channel images, whether they be natural images,
medical images, astrophysical images etc., as soon as the piecewise
constant Mumford and Shah model is relevant for each channel. To
illustrate the behavior of the algorithm, we choose to apply it to
MRI pathological brain datasets. When a patient has a brain tumor,
two types of MR protocols can be used in order to gather important
information regarding the patient’s condition: T1-weighted images
(SPGR) and T2-weighted images (FLAIR). T2-weighted images will
present the tumor (here, a low-grade glioma) and surrounding ede-
ma as a single region, very contrasted from the rest of the brain.
Meanwhile, T1-weighted images also show this pathological area,
but not as distinctly from the other anatomical structures as with
T2-weighted images. Yet, T1 images are still worth using in combi-
nation with T2 images because they provide the observer with
valuable information regarding anatomical structures: white mat-
ter (WM), gray matter (GM), cerebrospinal fluid (CSF) and gray nu-
clei can be distinguished much better than with T2 images.
Therefore, if we are able to take the best out of those two types
of information, we can expect to obtain a segmentation that is
informative on both sides, anatomical and pathological. T1-
weighted and T2-weighted images are presented in Fig. 2. We as-
sume here that potential field heterogeneity has been corrected
in a pre-processing step.

If we run individual multi-phase segmentations of each proto-
col (T1 and T2) independently, we just get approximations of the
original datasets, which is useful because it is easier to interpret
the segmented images which only have seven (for T1) and five
(for T2) phases left, as opposed to the original 256 gray levels
images. But the results, shown in Fig. 3, are still unsatisfying. The
segmentation of the T1 dataset is especially good at showing ana-
tomical structures (WM, GM, CSF and gray nuclei) but the patho-
logical area is hard to separate from those structures, especially
from GM. On the other hand, the segmentation of the T2 dataset
shows the pathological area very clearly, but the other phases
are not meaningful. This is not due to the low number of phases
that we decided to work with, there just is not enough information
about anatomical structures in the original image. Note that we as-
sume that we have a high enough number of phases to guarantee
that all regions are assigned to objects. We do not deal with the



Fig. 3. MRI axial slice from the SPGR dataset (a) and FLAIR dataset (c) for Case 1. Multi-phase segmentation (ICM) of the SPGR data with seven phases (b) and of the FLAIR data
with five phases (d). Multi-phase and multi-channel segmentation with seven phases (e), obtained with our method. Note that the datasets are composed of the same brain
volume, acquired with different MRI protocols (SPGR and FLAIR) and that the two sets are registered. The information they provide is complementary, as FLAIR images show a
well contrasted region containing the tumor and edema, while SPGR images show contrasted brain tissues (WM, GM, CSF). The final segmentation result combines what is
best contrasted on each protocol, taking truly advantage of the multi-phase and multi-channel segmentation formulation. The same comment applies to Fig. 4.

Fig. 4. One slice of SPGR dataset (a) and FLAIR dataset for Case 2 (c). Multi-phase segmentation (ICM) of the SPGR data with seven phases (b) and of the FLAIR data with five
phases (d). Multi-phase and multi-channel segmentation with seven phases (e).
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case of unassigned regions. This case is handled in a recent paper
[3], with a different approach.
Applying our multi-phase and multi-channel segmentation
method, we obtain a partition of the image that combines the most
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relevant information from each channel: the pathological area is
mostly segmented from the T2 dataset while anatomical structures
are presented in a way that is very similar to the T1 segmentation
(see Fig. 3). The number of phases that we decided to work with
(seven) is of course critical, but by no means is it arbitrary or
unpredictable. It simply corresponds to the number of objects that
can be expected: background, WM, GM, CSF, gray nuclei and the
tumor and edema (that is, the pathological area). An extra phase
was added to slightly improve the results, since our semantics is
rather strict. Hence, the algorithm only accepts to put a pixel in a
given phase if the vectorial (multi-channel) values of this pixel
are all similar to the mean values of the phase, in all the channels.
Therefore, it can be useful to add an extra phase to what we predict
to be the number of detected objects, that permits to better enforce
the semantical constraint. But the point is that even if a little bit of
experimentation is required in order to optimize the number of
phases, this can be done quickly and rationally, by predicting the
number of objects and then trying out this number and perhaps
adding one or two phases. The rest of the parameters was set as
follows, all along: 20 iterations and m = 0.005 in Eq. (11). We refer
the reader to [11] for more numerical results.

We obtained essentially the same results on a second patient
and in the same conditions (SPGR and FLAIR images and same
parameters for the algorithm) (see [11] for more details on the re-
sults). Again, the multi-channel image combines the most relevant
information taken from T1-weighted and T2-weighted images,
leading to a segmentation that is accurate on both the tumoral re-
gion and the various anatomical structures (see Fig. 4).

We believe that such a behavior from the algorithm, that leads
to multi-channel segmentations that take the best out of the origi-
nal data, is due to the semantics chosen for all the phases. Hence,
our semantics (i.e., using intersection fusion rules in all the phases)
does not ignore large differences between objects, even when these
only occur in only one of the two (or more) channels. But while
such a choice for the semantics would seem illegitimate at first,
especially if we follow the prescription given by Sandberg et al.
to combine intersection fusion rules and union fusion rules, we
also have offered an argument in favor of it, namely that it is com-
patible with the syntactic constraint of ultimately obtaining a par-
tition of the image space.

While the proposed approach intrinsically sets limits regarding
the fusion rules that can be used, a different approach was pro-
posed recently in [3]. As mentioned before, it relies on a hierarchy
or ordering scheme between the objects to be segmented, and the
results highly depend on that. In contrast, our approach does not
require such ordering and it provides a systematic approach to
solve the problem of finding a compatibility principle between
the two constraints.

5. Conclusion

The goal of this paper was to explore the possibility to extend
multi-channel segmentation methods to the multi-phase case. In
order to do so, the critical part was to identify the core idea of
any such adaptation, which is that for segmented vectorial regions
to make sense, one has to find principles that relate their semantics
to the syntactic constraints that generally apply to such problems.
In particular, we identified one such principle in the work of Sand-
berg et al. (De Morgan’s law) but came to the conclusion that it was
not applicable when more than two phases were used. We thus
proposed another principle to be used instead, the fundamental
theorem of equivalence relation, which in our context imposes that
an equivalence relation be used to determine the content of the
different regions. One important remaining question is how ex-
actly this reasoning translates in the case of fuzzy relations, since
we were interested in using a similarity relation instead of the
crisp relation of equality. But in spite of not having fully answered
this theoretical question, we were able to support our new multi-
phase and multi-channel segmentation method with convincing
results obtained on brain MR images (T1-weighted and T2-
weighted images). These suggest that our adaptation of the piece-
wise constant Mumford–Shah model to the multi-channel case
(implemented using an ICM algorithm) works well. Indeed, we
could retrieve all of the relevant objects visible on the T1 and T2
original images in the result of the multi-channel segmentation,
achieving to take the best of the two images, all in one segmented
image, which can be extremely useful for practicians. In addition,
we believe that this new method has no reason to be limited in
scope to MR images or to any other imaging modality since we
have kept the model very general and simple.
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