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Adaptive Quantification and Longitudinal Analysis
of Pulmonary Emphysema With a Hidden

Markov Measure Field Model
Yrjö Häme*, Elsa D. Angelini, Eric A. Hoffman, R. Graham Barr, and Andrew F. Laine

Abstract—The extent of pulmonary emphysema is commonly
estimated from CT scans by computing the proportional area of
voxels below a predefined attenuation threshold. However, the
reliability of this approach is limited by several factors that affect
the CT intensity distributions in the lung. This work presents a
novel method for emphysema quantification, based on parametric
modeling of intensity distributions and a hidden Markov measure
field model to segment emphysematous regions. The framework
adapts to the characteristics of an image to ensure a robust quan-
tification of emphysema under varying CT imaging protocols, and
differences in parenchymal intensity distributions due to factors
such as inspiration level. Compared to standard approaches, the
presented model involves a larger number of parameters, most
of which can be estimated from data, to handle the variability
encountered in lung CT scans. The method was applied on a longi-
tudinal data set with 87 subjects and a total of 365 scans acquired
with varying imaging protocols. The resulting emphysema esti-
mates had very high intra-‐subject correlation values. By reducing
sensitivity to changes in imaging protocol, the method provides a
more robust estimate than standard approaches. The generated
emphysema delineations promise advantages for regional analysis
of emphysema extent and progression.

Index Terms—Computed tomography (CT), emphysema index,
image segmentation, lung, Markov random fields (MRFs).

I. INTRODUCTION

E MPHYSEMA is a condition involving alveolar wall de-
struction [1]. A mixture of emphysema and small airways

disease contributes to chronic airflow limitation, characteristic
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of chronic obstructive pulmonary disease (COPD), which is a
leading cause of morbidity and mortality worldwide [2].
Computed tomography (CT) is commonly used to identify

and quantify the extent of pulmonary emphysema. Generally,
an estimate of emphysema severity is obtained using a den-
sitometric measure, called percent emphysema (also
referred to as emphysema index or percent low attenuation
area), which quantifies the proportion of voxels with inten-
sity values below a fixed threshold within the lung region.
The measure was originally derived from the density
mask [3], and is commonly used in clinical studies, but there
is no consensus on the intensity threshold value that should
be used. The threshold values typically range from to

Hounsfield Units (HU) (see review by Hoffman et al.
[4]). Another commonly used measure, the percentile density
(PD) quantifies a predefined percentile of the intensity distribu-
tion, and this measure has been found to be preferable in longi-
tudinal studies [5], [6].
Standard measures are influenced by several factors that

cause variations in the intensity distributions present in lung
CT images, observed as different levels of noise, and variable
intensity levels and distribution shapes. These factors include
image reconstruction algorithm, slice thickness, scanner type
and calibration, radiation dose, gravity and inspiration level [1].
Adaptive smoothing for normalization of image data prior to

thresholding has been proposed as a solution for images with
different noise levels [7]. The study showed promise in ob-
taining similar values between low-dose and regular
CT scans. This approach, however, still requires thresholding
after the filtering operation, and may be susceptible to varia-
tions in intensity levels.
Recent studies have proposed solutions for the normaliza-

tion of measures to account for differences caused by
changes in reconstruction algorithms and slice thickness [8], [9].
Correction of based on lung volume has also been rec-
ommended [10], [11] to adjust for variations in inspiration level.
These approaches consider only a part of the sources of varia-
tion, and since they correct the final value, they do not
provide voxel labels that can be useful when assessing the spa-
tial distribution of emphysema.
Image texture analysis has been applied for supervised clas-

sification of emphysema [12]–[14]. These approaches require
labeled data to train classifiers, and have not been shown to be
robust to changes in imaging protocols.
Emphysema quantification methods that are robust to vari-

ations in image intensity distributions are required for two
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purposes: 1) analysis of large cohorts of patients from multiple
databases for population-wide analysis of emphysema, and 2)
longitudinal analysis of emphysema progression, which has
been recognized as an area where more research is currently
required [1].
We propose an approach for the quantification of emphysema

that uses a hidden Markov measure field (HMMF) model [15].
The HMMF model adds an intermediate continuous-valued la-
beling, called themeasure field, to the standard Markov random
field (MRF) models [16], [17]. MRF models have been used
extensively for many problems in image analysis (see [18]), as
they provide a convenient probabilistic framework for modeling
local interactions of image pixels and for including prior spatial
constraints to a segmentation process. In a preliminary version
of this work [19], we applied the HMMF model to segment em-
physematous regions in full-lung CT scans. The study showed
that the HMMF model is robust to changes in CT image recon-
struction algorithms. The application of the model requires pa-
rameterizing intensity distributions within the lung, and defining
a spatial regularization weight, but manually labeled training
data is not needed. The HMMF model has also been used in our
previous work for liver tumor segmentation [20].
Refining and expanding from our preliminary study [19],

this paper gives a fully detailed presentation of an improved
HMMF model for emphysema segmentation, and demon-
strates the performance of the model on a large longitudinal
data set of lung CT scans. The data set includes repeated
full-lung scans among participants in the Emphysema and
Cancer Action Project (EMCAP) [21] who were later re-
cruited into the Multi-ethnic Study of Atherosclerosis (MESA)
COPD Study [22]. The full-lung scans in the two studies
were acquired with different imaging protocols. We compared
the performance of the presented method to the standard

at and the fifteenth per-
centile density measure (denoted ). In addition,
at was evaluated with prior Gaussian filtering of
images .

II. METHODS AND DATA

A. Overview

The proposed HMMF model includes the following compo-
nents intended to improve the quantification of emphysema over
the standard measure.
1) Likelihood functions are defined bymodeling intensity dis-
tributions observed in the data. This approach accounts
for the variability in intensity distribution shapes, caused
by changes in imaging protocol, such as slice thickness,
scanner type and calibration, radiation dose, and recon-
struction algorithm.

2) The locations of the likelihood functions are allowed to
vary, to account for patient- and scan-specific variations,
due to differences in the inspiration level and average
parenchymal density.

3) An image voxel is assumed to belong more likely to the
same class as its neighboring voxels than to a different
class. This assumption takes the image structure into con-
sideration, an aspect that is entirely ignored in standard his-

togram-based emphysema measures. The aim is to reduce
classification errors due to overlapping likelihood func-
tions, i.e., when there is a high level of uncertainty in the
classification due to noise or poor contrast. Therefore, this
improvement also accounts for changes in imaging pro-
tocol.

Given a CT volume, the lungs were segmented in the prepro-
cessing step, as described in Section II-D2. Within the delin-
eated lung region, a two-class HMMF model was used to au-
tomatically segment emphysematous regions from the healthy
parenchyma. The segmentation was subsequently used to mea-
sure the extent of emphysema, by quantifying the proportional
volume of emphysematous regions with respect to the entire
lungs. The imaging protocol-dependent parameter values re-
quired by the model were learned from the CT image data, as
explained in Section II-E. We begin by presenting the core of
the segmentation method in the following sections.

B. Segmentation With the HMMF Model

Let denote the input image, represents the image domain,
and is an image voxel. The segmentation process involves
two steps. The first step computes a continuous-valued Markov
random vector field , where each corresponds to
the value for class . The second step then generates a binary
label field from . The vector field is constrained by

, , , where is the value at voxel , for
class .
The vector field represents an intermediate labeling and is

assigned a prior distribution that enforces spatial regularity

(1)

where are spatial cliques of a selected neighborhood system,
are potential functions associated with , and is a posi-

tive normalizing constant. Here, 3-D pairwise cliques in 26-con-
nected neighborhoods were used.
The potential functions are designed to measure the

smoothness of within the neighborhood defined by the clique
, at voxels and . In this work, the potential

between two values and was defined as
(similarly to [20])

(2)

where is the Euclidean distance between and ,
which takes voxel spacing into account, and are scalar
constants, and is a normalization term that scales the ex-
ponentials to sum to one within the 26-connected neighbor-
hood of any voxel (the value is constant for a single
image): . The parameter

controls how fast theMarkovweight decreases as a function
of voxel distance. This parameter is important for 3-D neighbor-
hoods in anisotropic volumes where the slice thickness is large
compared to the in-plane resolution.
The value of controls the weight of the Markovian prior

with respect to the likelihood function (described below), and
should be adapted to the image content and the targeted seg-
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Fig. 1. Example of the HMMF emphysema segmentation process with corresponding coronal views of: (a) original CT data in the range ,
(b) segmented lung region, (c) continuous-valued MAP estimate of the Markov measure field , which represents the emphysema class, and (d) final binary
segmentation result , with red corresponding to the emphysema class, found by maximizing , where and represent respective
MAP estimates of and , given image .

mentation task. When image data is noisy, individual likelihood
values are less reliable than for a less noisy case, and the model
should be forced towards the prior by increasing the value of .
In this study, the value of was assigned based on the image
reconstruction algorithm, as explained in Section II-E4.
For the segmentation process, the intensity distributions in an

image were modeled with parametric distributions (de-
tailed in Section II-C) where is the mean of the distribution
for class . The values have to be estimated simultaneously
with , and are assigned a prior distribution , defined in
Section II-E1.
For a given image , the posterior distribution for and the

associated parameter vector is obtained from the
Bayes rule

(3)

where is a positive normalizing constant.
The likelihood term in (3) is expressed as [15]

(4)

Combining (1), (3), and (4), the respective maximum a poste-
riori (MAP) estimates and for and are found by max-
imizing , where

(5)

Since the normalization term is constant and positive, the
MAP estimate is found by minimizing . The optimiza-
tion was performed with the gradient projection Newtonian de-
scent method, as formulated in [15].
Finally in the second step of the segmentation, a binary label

field was found by maximizing ,
which is simply done by finding the mode of each (see
[15]): , if , and , otherwise.
An example of the HMMF segmentation process is shown in
Fig. 1.

C. Parametric Functions for Intensity Distribution Modeling

To obtain the likelihood values in (4), we need to
define the parametric functions that model the intensity dis-
tributions for the two classes . Ideally, these parametric
distributions would have the same shape as the intensity distri-
bution histograms for the two classes in the image data.
The intensity distributions within the lung were parameter-

ized with skew-normal distributions

where is a skew parameter. The auxiliary variable is de-
fined as

where and represent the distribution location and scale,
respectively.
The probability density function (pdf) for class is defined

as [23]

(6)

where and are the standard normal density and distribution
function, respectively

and

The notation erf refers to the error function

The values for the parameters and were estimated
from training data. To make the model adaptive, as explained
in Section II-B, the parameter was allowed to vary for each
individual image, while controlled by , as in (5).
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TABLE I
NUMBER OF SCANS FOR EACH YEAR FOR THE 87 SUBJECTS IN THE

EVALUATION DATA SET. EACH SUBJECT HAD NO MORE THAN ONE SCAN
EACH YEAR. OF THE LAST EMCAP SCANS (2008-2009), 6 WERE ACQUIRED

IN EARLY 2009, WITH THE REMAINDER IN 2008. OF THE 87 MESA
COPD SCANS, 55 WERE ACQUIRED IN 2009, 27 IN 2010 AND 5 IN 2011.

TOTAL NUMBER OF SCANS WAS 365

D. Data and Preprocessing

1) Database of CT Scans: The evaluation data set consisted
of 365 inspiratory chest CT scans from 87 subjects. The scans
were collected in two different studies: in the EMCAP study
[21], between 2004–2009, and subsequently in the MESA
COPD study [22], between 2009–2011. The number of scans
for each year is listed in Table I.
In addition to the evaluation data set, a parameter training set

included 44 CT scans of 22 subjects from the EMCAP study.
The 44 scans were acquired by reconstructing each of the 22 CT
acquisitions with two different kernels, as detailed below. Three
subjects in the parameter training data set overlapped with the
evaluation data set, but their scans were not used when tuning
parameter values between imaging protocols.
The subjects in the data set were 50–79 years old, with 10

or more pack-year smoking history and who did not have clin-
ical cardiovascular disease, stage IIIb-V kidney disease, asthma
prior to age 45 years, other lung disease, prior lung resection,
cancer, allergy to gadolinium, claustrophobia, metal in the body,
pregnancy or weight . [22]
In the EMCAP study, all subjects underwent noncontrast,

full-lung CT scanning on a Siemens Sensation 16 scanner, with
120 kVp, a current between 169 mA and 253 mA, and speed
0.5 s. Of the total 278 scans in the evaluation data set, 259 were
reconstructed with the B60f (sharp) convolution kernel, and 19
with the B31f (smooth) kernel. The 22 subjects in the param-
eter training set each had a single acquisition reconstructed with
both the B31f and the B60f kernel, bringing the total number of
training images to 44.
In the MESA COPD study, full-lung CTs were acquired with

a GE LightSpeed VCT 64 scanner, at 120 kVp, 200 mA, 0.984
pitch, and speed of 0.5 s. Images were reconstructed with the
standard (smooth) convolution kernel. This protocol is the same
as the SPIROMICS/MESA Lung protocol [24], except that the
mA was held fixed.
From all the available scans in the EMCAP study, we in-

cluded all full-lung scans with a slice thickness of 0.75 mm.
The EMCAP data in this study included 1–5 scans per patient,

Fig. 2. Coronal views of a small lung region for a single subject on three CT
scans acquired with different imaging protocols: (a) EMCAP B60f (sharp) from
2007, (b) EMCAP B31f (smooth) from 2008, and (c) MESA COPD from 2009.

with at least 12 months between repeated scans. In the subse-
quent MESA COPD study, a single scan was acquired for each
subject, bringing the total to 2–6 scans per subject.
The axial resolutions of the images used from the EMCAP

data set were in the range and the slice thick-
ness was 0.75 mm. For the MESA COPD data set, the axial
resolution range was , and all scans had a slice
thickness of 0.625 mm.
Fig. 2 illustrates the image appearance in the lung for the dif-

ferent imaging protocols, with detailed views of coronal slices
from three scans of a single subject.
2) Preprocessing: Lungs and large airways were segmented

from the background using an approach similar to [25], by ap-
plying an intensity threshold of and then locating the
largest connected objects in the resulting binary mask. Then, the
trachea and some of the large airways were removed from the
lung mask by closed space dilation [26].
The airway segmentation removed on average 0.9% (with

standard deviation of 0.2%) of the initial mask volume. Since
most of the volume of the airway segmentation corresponded
to the trachea, we expect that any variability in the extent of
the removed airways would have had only a minor effect on the
resulting emphysema measure. In the experiments included in
this paper, all the emphysema measures for a given scan were
extracted using the same lung mask.

E. Model Implementation and Estimation of Parameter Values

1) Intensity Distribution Priors: For each class , the loca-
tions of the parametric distributions (6) are con-
trolled by a prior distribution , which assigns probabili-
ties for different values of . The prior distribution affects the
computation of the MAP estimate in (3) and (5). Using a uni-
form distribution for means that the values of are driven
entirely by the data, whereas a nonuniform distribution injects
prior knowledge to their values, biasing the resulting MAP es-
timate .
In our segmentation task, the volume of emphysematous

tissue in a given CT scan is unknown prior to the segmenta-
tion process. It is therefore important to ensure that , the
distribution location of the emphysema class, does not receive
unreasonably high values for healthier subjects due to a lack
of samples in the emphysematous intensity range. On the other
hand, there is always some healthy parenchyma present, and
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TABLE II
ESTIMATED IMAGING PROTOCOL-DEPENDENT PARAMETER VALUES USED IN THE EVALUATION STUDY, AND DESCRIPTIONS OF THE TRAINING DATA USED FOR
THEIR ESTIMATION (DETAILS OF THE DATA ARE PRESENTED IN THE TEXT): MEAN VALUES AND STANDARD DEVIATIONS OF AND OF SKEW-NORMAL
DISTRIBUTIONS FOR CLASS 2 (PARENCHYMA), LOCATION FOR CLASS 1 (EMPHYSEMA) PRIOR DISTRIBUTION AND THE ASSOCIATED TRACHEAL

AIR INTENSITY , INITIAL VALUE , AND THE MARKOV FIELD WEIGHT

Fig. 3. (a)–(c) Fitting of skew-normal distributions to normalized intensity histograms of 10 training scans for each imaging protocol. Vertical line indicates the
threshold used for standard emphysema quantification. (d) Skew-normal distributions with estimated parameter values , and for the three

imaging protocols (see Table II).

, which corresponds to the location of the distribution repre-
senting lung parenchyma and small vessels, can be allowed to
vary more freely to fit the data.
The prior distribution was assigned a delta function

for , so that the value of was fixed at .
The value was set as: , where

corresponds to the standard intensity of air
outside the body in CT images, is a reference
value of the tracheal air intensity, and is an imaging pro-
tocol-dependent tracheal air intensity estimate. was obtained
by averaging over the airway segmentations generated in the
preprocessing stage. For EMCAP, this was done with the param-
eter training set, and for MESA COPD using 20 randomly se-
lected scans. This formula lowers the prior mean for class ,
if the intensity of tracheal air is lower than the calibration value.
Wiemker et al. [27] have used tracheal air intensities similarly
to adjust the intensity threshold for emphysema quantification.
The values , estimated for individual imaging protocols, are
reported in Table II.
For , was assigned a uniform distribution in the

range , to provide adaptivity. Due to the
positive skewness of the distribution (see
Section II-E2), the distribution peak is always located at a
higher intensity than , and therefore the range of
cannot be directly interpreted as the range of possible mean
intensities of the lung parenchyma.
2) Distribution Parameter Values: The parameterization of

intensity distributions with the pdfs , as defined in (6),
involves defining values for and for the two classes, with

and representing the emphysematous tissue and
healthy parenchyma, respectively.

To find the parameter values for class , subjects with
the mildest cases of emphysema in the parameter training set
were selected for each imaging protocol. For these subjects, the
observed intensity values within the lung were assumed to cor-
respond almost entirely to healthy lung parenchyma, with the
highest intensity values caused by the partial volume effect from
small vessels.
The scans representing mildest cases of emphysema within

the parameter training set of each imaging protocol were se-
lected as follows.
• EMCAP B31f: 10 subjects in the parameter training
set with the lowest values of the standard at

for B31f reconstructions, with
all .

• EMCAP B60f: B60f reconstructions of the same 10 acqui-
sitions as used for EMCAP B31f.

• MESA COPD: Randomly selected 10 subjects, which all
had .

Skew-normal pdfs (6) were fitted to each of the normalized
lung intensity histograms of the training scans within the range

, as illustrated in Fig. 3. From the fitted
skew-normal pdf, the estimated values and , for the
respective parameters and , were collected for each scan.
For each imaging protocol, the average values of the parameter
estimates over the training set (listed in Table II) were then
used for the evaluation data set. The skew-normal pdfs with
the mean and are illustrated in Fig. 3(d) for the three
imaging protocols.
The fit accuracy was measured by computing the histogram

intersection [28] between each intensity histogram
and the estimated skew-normal pdf . The histogram intersec-
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tion is defined as: , where
denotes histogram bins, and is the center intensity of bin .
The range of is from 0, corresponding to entirely nonover-
lapping histograms, to 1, for identical histograms.
For each imaging protocol, the average values of over in-

dividual fits were (mean standard deviation): EMCAP B60f:
; EMCAP B31f: ; MESA COPD:

. With evaluated between the histograms and the pdfs
using the mean estimates and , the average values over the
training scans were: EMCAP B60f: ; EMCAP B31f:

; MESA COPD: . The histogram inter-
section values show that individual fits were very accurate, and
the accuracy was fairly well retained when using the mean esti-
mates and . The variability in the MESA COPD intensity
distribution shapes may be due to variable breath-hold levels or
conditions that affect the density of the lungs.
The parameter values for class (emphysema class)

could not be estimated in the same manner as for class
, since the intensity distributions of emphysematous voxels
overlap with parenchymal intensity distributions. Also, since
CT image intensities were limited to be higher than ,
finding a proper parameterization of the distribution from data
could prove challenging even if reliable delineations were avail-
able.
Since the appropriate values of are affected mostly by

image noise, it seems reasonable to assume that . The
exact correspondence was not investigated in this study, and the
parameter was assigned as . The shape of the class

intensity distribution is also unknown, and the skew pa-
rameter was set to , making the parametric distribution

a standard normal distribution.
3) Model Initialization: Tominimize computational cost and

to simplify the optimization process, the initial values
for were chosen with the aim that they would be close

to their final values, on average, for each imaging protocol.
For class , the value was assigned simply as the loca-
tion of the prior distribution: . The values were
determined by fitting a skew-normal distribution in the range

on a training data set, using the estimated
parameters and (see Table II), and taking themedian value
of the resulting locations. For EMCAP, this estimation was per-
formed using the 22 images in the parameter training data set,
and for MESA COPD, the same 20 randomly selected scans as
in Section II-E1 were used. The resulting values of are re-
ported in Table II.
The initial values for were assigned at each

voxel using the initial values

and .
4) Markov Field Regularization Parameters: The value of

the Markov field weight should be assigned based on the level
of noise in the image. The value of was tuned between the
EMCAP B31f and B60f scans. For MESA COPD scans, was
assigned to be same as for EMCAP B31f, due to similar noise
levels. Of the 22 subjects in the EMCAP parameter training set,

Fig. 4. MAD and standard deviations of and in the
parameter training set, as a function of and , respectively.

the three subjects included in the evaluation data set were re-
moved when optimizing the parameter, to separate training
and evaluation sets.
First, the CT scans reconstructed with the smooth kernel

(B31f) were segmented with a low value for , namely
. This provided reference emphysema measures, de-

noted . Then, for the sharp reconstructions (B60f) of
the same CT acquisitions, was varied and the absolute differ-
ences between the resulting and the corresponding

were computed. Finally, the B60f reconstructions
were assigned a value for that minimized the mean absolute
difference (MAD) over the training data set.
The MAD values and their standard deviations for different

values of are shown in Fig. 4. The minimum MAD was 0.5,
with a standard deviation of 0.4. This value was obtained using

for the B60f images, and the other parameter values as
presented in Table II. Fig. 5 illustrates the effects of varying the
value of , on two image reconstructions.
Related to the parameter, the parameter (2) controls the

decrease of the Markov weight with respect to distance. Since
the slice thicknesses in the scans used in this study were similar
to the in-plane resolutions, had only a minor influence on
the results. Nonetheless, it has the desired effect of reducing
the weight at the corners of the neighborhood. The same value

as in [20] was used.

F. Instructions for Model Employment

To conclude the Section, we provide step-by-step instructions
to employ the presented model on a new full-lung CT data set.
The steps should be applied sequentially and separately for each
imaging protocol in the data set.
1) Apply preprocessing on all the CT scans to generate seg-
mentations of the lungs and the main airways.

2) Select scans with the least emphysema (for example by
choosing the 10 subjects with the lowest ). Fit
a parametric distribution to each of the histograms of the
selected scans and collect the parameter values to model
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Fig. 5. Illustration of the HMMF segmentation results for different values of the Markov field weight . Images represent a cropped coronal view of a scan
reconstructed with the two different kernels, with B31f reconstruction on the top row and B60f reconstruction on the bottom row. Red color represents regions
classified as emphysema.

the likelihood function for the parenchyma class. In this
study, skew-normal distributions were used, so this step
produced estimates for the scale and skew pa-
rameters. The distributions learned from mild cases in this
step are expected to provide accurate likelihood values for
the parenchyma class.

3) Select scans randomly from the data set. Fit the parametric
distribution obtained in the previous step on the intensity
histograms and find an estimate of the median of the
parenchymal distribution location , and use this as the
initialization value . Choosing an initialization value
near the data set average provides more reliable results and
faster optimization than using a predefined initial value.

4) Estimate the mean tracheal intensities using the airway
segmentations of the scans in the previous step. Use the
tracheal intensity mean to define the intensity distribution
location for the emphysema class. Airway intensity
values provide an indication of average emphysema in-
tensity values, and this information is used to provide
accurate likelihood values for the emphysema class.

5) Assign a value for the Markov field weight . If multiple
reconstructions of CT acquisitions are available, the ap-
proach used in the present study can be replicated. This
requires defining a low value for the smoothest scans
and adjusting the value for noisier scans, byminimizing the
mean absolute difference of between the recon-
structions. Alternatively, the weight value can be inferred
from results in previous studies, based on the parametric
distribution scale or some measure of image noise, such as
the local noise estimation in [7]. The Markov weight is in-
tended to improve the segmentation results by reducing un-
certainty caused by image noise. Here, the Markov field is
implemented with a 3-D neighborhood to enforce segmen-
tation regularity between image slices, as well as within
them. For scans with thicker slices, 2-D neighborhoods
may suffice (i.e., not enforcing regularity across slices).

6) Finally, using the parameter values learned in the previous
steps, initialize the HMMF model and apply the segmen-
tation method. The values of are obtained by
computing the volume classified as emphysema, divided
by the total lung volume.

III. RESULTS

A. Average Emphysema Scores Over the Evaluation Database

In the following, refers to the measure
obtained with the presented HMMF model. repre-
sents the standard using a threshold of , which
is commonly used in clinical studies [29], [30], and is the
fifteenth percentile density.
The measure obtained by thresholding at

after 3-D Gaussian filtering is denoted as . The
filter scale was optimized in the same way as the value of
, by minimizing the MAD on the parameter training data set
(see Section II-E4 for details). For Gaussian filtering, MADwas
minimized at , using (see Fig. 4).
The values provided by these four emphysema measures are

generally referred to as emphysema scores. All scores
are reported in the range , corresponding to percentages
of total lung volume, and scores are reported in HU.
A general overview of the emphysema scores over the evalu-

ation data set of 87 subjects is provided in Table III, with mean
values, standard deviations, and minimum andmaximum values
reported using the four emphysema measures, for each imaging
protocol. In addition, the values are reported using the most re-
cently acquired EMCAP B60f scan for each subject. For 49 sub-
jects, the most recent B60f scan was acquired in 2008–2009, for
35 subjects in 2007 and for the remaining three subjects in 2006.
This scan grouping enables a comparison to the same population
of 87 subjects that was available in MESA COPD.
Based on the assumption that emphysema is irreversible,

should theoretically not decrease with time. Since the
majority of the population in this study represented mild cases
of emphysema, only a minor increase in the mean of
values was expected. The measure should decrease
slightly for the same reasons.
The overall statistics show that the average

remained fairly stable, while the average varied
greatly depending on the imaging protocol. Indeed, between
imaging protocols the mean of increased by 1.7
from the most recent EMCAP B60f scans to the MESA COPD
scans, while the mean of decreased by 29.6 for
the same data. With prior Gaussian smoothing
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TABLE III
MEANS, STANDARD DEVIATIONS, AND MINIMUM AND MAXIMUM VALUES OF THE EMPHYSEMA SCORES OVER THE ENTIRE DATA SET. 1) EMCAP B60F, ALL
(2004–2009); 2) EMCAP B60F, MOST RECENT (2006–2009); 3) EMCAP B31F (2008–2009); 4) MESA COPD, SUBJECTS IN EMCAP B31F (2009–2011);

5) MESA COPD, ALL (2009–2011)

TABLE IV
PAIRWISE CORRELATIONS AND 95% CONFIDENCE INTERVALS (IN SQUARE BRACKETS) OF EMPHYSEMA MEASURES BETWEEN LONGITUDINAL SCANS. REPORTED
VALUES ARE STATISTICALLY SIGNIFICANT , EXCEPT WHEN MARKED WITH ‘ ’. HIGHEST CORRELATION OF EACH COMPARISON IS SHOWN IN
BOLD. AND INDICATE THE SET OF DATA BEING USED, AND REFERS TO THE NUMBER OF SCANS IN EACH COMPARISON. FOR SPACE CONSIDERATIONS,
COMPARISONS WITH LESS THAN 16 CASES WERE OMITTED, AND THE FOLLOWING SHORTHAND EXPRESSIONS WERE USED: MESA COPD (MC), EMCAP B31F
(B31F), EMCAP B60F 2008-2009 (’08) AND OTHER B60F YEARS ACCORDINGLY, AND OTHER MEASURES SIMILARLY,

Fig. 6. Scatterplots of emphysema scores between EMCAP scans acquired in 2008–2009 and MESA COPD scans. The total number of scans was 68, of which
19 were reconstructed with the B31f kernel in EMCAP. Diagonal line represents one-to-one correspondence.

on B60f scans, the mean decreased by 3.4. The measure
increased by 95 HU. In a paired t-test, all these changes were
statistically significant at the 5% level.
As the EMCAP B31f and MESA COPD scans were recon-

structed with smooth kernels and acquired one or two years
apart, they were expected to give similar emphysema scores.
However, the mean values of declined signifi-
cantly, from 8.5 to 2.6, and the mean values increased
by 22 HU. In comparison, showed only a slight
increase for the same data set, from 4.7 to 5.5. Also these
changes were statistically significant at the 5% level.

B. Pairwise Intra-Measure Correlations Between Longitudinal
Scans

Pairwise correlations between emphysema scores from
longitudinal scans of individual subjects were computed. The
results are reported in Table IV (evaluations with fewer than 16
cases were omitted for space considerations). In the following,
comparisons of correlations were performed using Fisher’s
r-to-z transformation and a two-tailed test of the resulting
z-score. Fig. 6 shows scatterplots of the emphysema scores
from EMCAP 2008–2009 and MESA COPD.
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TABLE V
PAIRWISE CORRELATIONS BETWEEN AND , WITH

ALL -VALUES , EXCEPT FOR THE YEAR 2004

The results show that achieved very high correla-
tions between longitudinal scans regardless of the imaging pro-
tocol. All 10 comparisons with more than 20 scans had correla-
tions of 0.95 or higher, whereas the overall minimum was 0.85.
In only one comparison (18 scans between 2004 and 2007, B60f
reconstruction) the correlation for was lower than
for another measure , but the difference was not statis-
tically significant .
While the correlation values for were relatively

high when comparing scores between EMCAP B60f scans, in
the range , their values declined significantly when
comparing scores from B60f scans to scores from EMCAP
B31f scans , or to scores from MESA COPD
scans . Gaussian filtering of B60f scans before
thresholding improved the correlation values, particularly for
comparisons to MESA COPD scans. Interestingly, correlations
between B60f scans were also higher for than for

. Correlations of were similar to or lower
than correlations of .
When comparing EMCAP B60f scores to MESA COPD

scores, all correlation values were higher for
than for any other measure. This difference was significant

for all comparisons, except for EMCAP B60f 2004
, where the sample size was the smallest .

Between EMCAP B31f and MESA COPD, also
had the highest correlation (0.96), but the difference to the

value (0.87) was not statistically significant
due to the small sample size .

C. Correlations Between Emphysema Measures

To study the correspondence between and
, pairwise correlations were computed. The results

are reported in Table V.
The correlation values show that there was a good agreement

between and for the MESA COPD
scans. For the EMCAP scans, the correlation values were signif-
icantly lower. When taking into account the high intra-subject
correlations of in Table IV, the high correlation for
the MESA COPD data indicates that values from
the EMCAP scans are also comparable to the MESA COPD

values.

D. Progression of Emphysema Measures

Subject-specific differential scores
were generated by subtracting the MESA COPD value

Fig. 7. Means and standard deviations of differential emphysema measures
between EMCAP (2004–2008) and MESA COPD (2009–2011).

Number of scans for each year is reported in Table I. A reference annual
progression rate of 0.63 for [31] is plotted in blue, by assigning
a value of for each year .

from all preceding (EMCAP) values
of the same subject

This way, negative values of indicate growth over
time.
The mean values and standard deviations of

for the three measures are shown in Fig. 7. The annual
progression rate of has been previously estimated
as 0.63 (SE 0.03) [31], albeit for a different patient population.
This estimate is used as a reference progression rate in Fig. 7.
The figure shows that on average, increased

steadily and the differential scores had a relatively low standard
deviation throughout the studied data set. Also, the average
progression rate of seems to agree well with the
progression rate reported in [31]. For the standard measure

, the values of were large and
had high variability. With prior Gaussian filtering of B60f
scans, had better agreement with the MESA
COPD values than , but the differential scores still
had high variability. Moreover, the values from
MESA COPD were clearly lower than values
from EMCAP, suggesting a decrease of in time (see
also Table III).
To evaluate annual changes in the emphysema

measures, the changes in between consecutive scans
were computed and divided by the number of years between
the scans at time points and (equivalently for ):

. His-
tograms of the annual changes are shown in Fig. 8.
The histograms show that the values of were

centered close to 0, with more instances in the positive values,
indicating an increase in . Out of 278 evaluations
of , were in the range . On the other
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Fig. 8. Histograms of 278 evaluations of annual changes for the four emphysema measures. Please note the different x-axis for the measure in (d).

hand, the values of and had very wide
and irregular distributions.
The annual progression rates were computed by taking the

mean of for each subject. First, the annual progres-
sion rate was evaluated using only the EMCAP B60f data set.
The means and standard deviations of the annual progression
rates over the 87 subjects for the four emphysema measures in
EMCAP B60f were: ,

, , and
. The results show very similar progression rates between

and , but the latter suffers from higher
variability.
The overall annual progression rate of was com-

puted over the entire evaluation data set. The mean and stan-
dard deviation were . The progression rate depended
on the degree of emphysema. Out of the 87 subjects, 32 had

above 5.0 for the MESA COPD scan, and for these
subjects themean and standard deviation of were

. For the remaining 55 milder cases, the corresponding
values were .
For reference, a study by Parr et al. [5] estimated the annual

progression rate of within a range , and
the annual progression rate of within . The
progression rate depended on disease status, so that more severe
disease progressed faster. The presented results for the annual
progression rate of agree with these estimates, as
well as with the reference value in Fig. 7.

E. Example Case

Fig. 9 presents an example of emphysema masks and the as-
sociated emphysema scores from six scans for a single subject.
The figure illustrates how increased gradually with
time, while depended largely on the image acqui-
sition protocol. The figure also exemplifies the quality of the
emphysema masks produced by the HMMF segmentation, as
the emphysema regions are seemingly consistent across the dif-
ferent scans.

F. Sensitivity to Parameter Value Estimation

The sensitivity of the HMMF model with respect to the
, and parameter values was evaluated with 22 B60f

and B31f scans in the EMCAP training set, and a randomly
selected subset of 20 scans from the MESA COPD data set,

where mean standard deviation of were .
The changes in were quantified when adjusting
each parameter value, while keeping other values unchanged.
The changes for and for were given values
of times the standard deviations of the respective
estimates and for each imaging protocol, as listed in
Table II. Since was estimated by taking the median over
randomly selected scans, the range of values was defined
by estimating times (see Section II-E3) on EMCAP B60f
and on MESA COPD, each time with a different randomly
selected set of 20 scans (for EMCAP B31f, not enough scans
were available for repeating the estimation). The standard
deviation of the resulting estimates was 4.1 HU for EMCAP
B60f and 4.5 HU for MESA COPD (the respective means were

and . Therefore, was assigned values
between and 10 HU, to approximate the range of the first
two multiples of the estimate standard deviation.
The resulting changes in are shown in Fig. 10.

The model was more sensitive with respect to than the other
two parameters. When the change in or was within one
standard deviation of the parameter value estimate, the absolute
mean change in was less than 1.0, for all imaging
protocols. Adjusting by also changed the mean

by less than 1.0, except for EMCAP B60f, where
increasing by 5 HU resulted in a mean change of 1.1.
Of the three data sets, MESA COPD showed the most sensi-

tivity with respect to , although this is at least partially caused
by the high standard deviation associated with the estimates.
EMCAP B31f scans displayed the least sensitivity with respect
to , while the most sensitive were EMCAP B60f scans. The
sensitivity of the EMCAP B60f scans is assumed to be due to
the high Markov field weight used for this imaging protocol.
With a high value of , spatial regularity is strongly enforced,
causing the initialization to have more influence on the result
than with a lower value of .
These results show that the presented model is somewhat

sensitive to the parenchyma class location initialization ,
although this value can be estimated fairly consistently for a
given imaging protocol. Decreasing the value of resulted in a
smaller absolute change in than increasing its value.
The resulting always increased with an increase in
, indicating that changes in alter in a consistent

direction. The value of could therefore be used to adjust the
sensitivity of , and provide lower and upper bounds
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Fig. 9. Example of emphysema masks and values for six scans for a single subject, between the years 2004 and 2010. Top row shows original image
slices, and the three bottom rows show emphysema masks generated by the HMMF method , thresholding at , and thresh-
olding at with prior Gaussian smoothing . Scans from 2004 to 2008 were from the EMCAP study, and the latest scan was from MESA
COPD. Scans between 2004 and 2007 were reconstructed with the B60f kernel and the last EMCAP scan with the B31f kernel.

for the extent of emphysema, as proposed for tumoral growth
estimates in [32].

G. Computational Expense

The computational expense of the HMMF model depends on
the number of voxels within the lung segmentation and the con-
vergence speed of the optimization process. A typical lung re-
gion in this study included between and voxels.
With the current C programming language implementation, the
HMMF segmentation was computed for 100 images in 407 min
using four computing cores, corresponding to an average com-
putation time of 16.3 min per image, where is the number
of cores used. We expect code optimization to reduce the re-
quired computation time.

IV. DISCUSSION AND FUTURE WORK

This study presented a novel method for the quantification
of emphysema from lung CT images. The method is based
on a segmentation of emphysematous regions from the lung
parenchyma with a HMMF model. This approach is analogous
to the original density mask [3], which has become popular

in clinical studies. The presented segmentation model intro-
duces a parameterization of the intensity distributions and a
probabilistic labeling of voxels that enforces spatial coherence
of the resulting label regions. These qualities were shown to
provide segmentations that were robust to changes in imaging
protocols, and subsequently enabled consistent and robust
quantification of emphysema with the measure.
The presented method was shown to be valuable for quan-

tifying emphysema in a longitudinal data set where imaging
protocols and CT scanners changed over time. Using CT scans
from the EMCAP and the MESA COPD studies, the results
showed that thresholding-based values were not
comparable between the two studies, whereas
values showed good agreement. Prior Gaussian filtering im-
proved the thresholding-based measure on noisy scans, but
the correlation values were still lower than for .
Interestingly, also resulted in higher intra-subject
correlations than for longitudinal scans acquired
with a single imaging protocol.
For the MESA COPD scans, the values were on

average higher than the values for . This means
that would correspond on average to a standard
thresholding-based measure using a higher threshold
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Fig. 10. Mean differences (D) in the scores, resulting from mod-
ifying the values of the parameters (a) by , (b) by , and (c)
by . The notation “std” refers to the standard deviations of the estimated
parameter values reported in Table II. Errorbars represent standard deviations
of D, evaluated over the 22 EMCAP B60f and B31f training scans, and a ran-
domly selected set of 20 scans from MESA COPD.

value than . However, this does not mean that a
higher threshold would replicate the HMMF masks, or that the

values could be replicated by simply identifying
an intensity threshold value for each imaging protocol. The
presented HMMF model adapts to the intensity distribution
of each individual scan to provide a unique separation of the
emphysematous regions from the lung parenchyma, while
imposing a spatial regularization that goes beyond labeling by
pure intensity-based analysis.

Even though the values of were higher than
on average for the MESA COPD data, the corre-

lation between the two measures was high, indicating a good
agreement for this imaging protocol. The average
values from MESA COPD scans for the studied population
were relatively low. While this study showed that the HMMF
segmentations are able to provide consistent values
between imaging protocols, a future study should be performed
on a population with more severe cases of emphysema.
The annual progression rate of in this study was

similar to what has been found previously for in
other studies [5], [31]. In comparison, the estimated annual pro-
gression rate of in the present study was signifi-
cantly affected by changes in imaging protocols, and did there-
fore not correspond to the estimates found in studies using data
acquired with a single imaging protocol. Also, for
the progression rate in mild cases of emphysema was found to
be slower than for severe cases.
For the EMCAP scans, the mean of showed a

relatively large average annual increase. However, this change
mightnotbe indicativeofemphysemaprogression,as themeanof

for the latest scans in MESA COPD was relatively
low. Still, the intra-subject correlations for in the
EMCAP data remained relatively high. These qualities suggest
that the values for the EMCAP scans hold patient-
specific information,but theirabsolutevaluesshouldbeusedwith
caution, and the differences between longitudinal scans may be
mostlydue tochanges in imageacquisitionprotocols.
Generating emphysema masks using a robust and consistent

segmentationmethodmay have significant value beyondmerely
extracting a single estimate of emphysema extent. The masks
provide information needed to assess the spatial distribution and
regional progression of emphysema. The presented model en-
forces smoothness of the emphysema masks, which is partic-
ularly important for scans with high levels of noise. This may
prove very valuable for morphological analysis of segmenta-
tion masks, used for emphysema quantification and subtyping
[33]–[35]. Visually, the generated HMMF-based emphysema
masks seemed to correspond to each other between longitudinal
scans. Our future work will include intra-subject registration
of scans to quantify the overlap of the generated emphysema
masks, and their regional evolution on longitudinal data.
One of the shortcomings of the HMMF model is the require-

ment to learn parameter values for each CT imaging protocol.
Estimation of the parenchymal intensity distribution parame-
ters requires either normal subjects or mild cases of emphy-
sema. In our preliminary work [19], the intensity distributions
were modeled as normal distributions. However, normal distri-
butions were not able to account for the typical heavy tails of
the intensity distributions towards higher parenchymal intensi-
ties. This led to poor fits that often affected the final location of
the parametric distribution, and caused unreliable estimates of
emphysema. By adding the skew parameter that is fairly simple
to estimate, the skew-normal distribution improves the fit to the
data. The method was shown to be somewhat sensitive to the
initial value of the parenchymal likelihood function location,
but with a predictable effect on the resulting emphysema esti-
mate. This issue will be investigated in future work, by studying
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the effect of the initial value on the intermediate measure field.
Also, sensitivity might be reduced by adopting a reinitialization
scheme after the initial optimization of the distribution location
for a given scan. Another drawback of the method is the com-
putational cost of generating the HMMF segmentation, which
is obviously higher than for simple thresholding. However, with
currently available computational resources this should not be
a critical issue, even though real-time processing does not seem
achievable.
Further development is still possible to improve the segmen-

tation of emphysematous regions from lung CT scans. In partic-
ular, gravity often causes the average intensity within the lung
parenchyma to vary spatially. Sometimes this unevenness can
affect the thresholding-based values as the intensity
values may decrease below the set threshold and cause an over-
estimation of emphysema. The presented version of the HMMF
model does not fully alleviate this problem, as the intensity dis-
tribution is modeled globally over the whole lung region. Fu-
ture development will focus on regional intensity distribution
modeling, to adjust the lung parenchyma intensity mean esti-
mate according to the effect of gravity. Alternatively, the CT
intensity values could be adjusted for the effect of gravity in the
preprocessing stage, as proposed in [36]. Future work will also
include a comparison study with other emphysema quantifica-
tion approaches [7]–[9].
The lack of ground truth is a shortcoming of the evaluation

performed in this study. Establishing ground truth would require
repeated pathological sections, which is not feasible in humans.
However, this study showed that the proposed method can be
used to obtain robust and replicable estimates of emphysema
extent across imaging protocols, which is a prerequisite for fur-
ther study of their clinical relevance.
While providing extraordinary data for diagnostic purposes,

the increase in repeated CT scans for patient monitoring has
raised concerns about imaging-based health risks caused by ra-
diation. The presented emphysema quantification method may
prove valuable for accurately quantifying emphysema even as
image noise levels are elevated when reducing scanner radiation
doses. The method was already shown to improve the quantifi-
cation of emphysema on existing heterogeneous image data, en-
abling better understanding of the disease.

ACKNOWLEDGMENT

The authors would like to thank Research Professor T. Häme
of VTT Technical Research Center of Finland for technical ad-
vice and valuable comments. The authors would also like to
thank the other investigators, the staff, and the participants of the
MESA study for their valuable contributions. A full list of par-
ticipating MESA investigators and institutions can be found at
http://www.mesa-nhlbi.org. The authors also thank the anony-
mous reviewers for their valuable comments.

REFERENCES

[1] O. M. Mets, P. A. D. Jong, B. V. Ginneken, H. A. Gietema, and J. W. J.
Lammers, “Quantitative computed tomography in COPD: Possibilities
and limitations,” Lung, pp. 1–13, 2012.

[2] “Global initiative for chronic obstructive lung disease. Global strategy
for the diagnosis, management, and prevention of chronic obstructive
pulmonary disease,” Oct. 2012 [Online]. Available: http://www.gold-
copd.com

[3] N. L. Müller, C. A. Staples, R. R. Miller, and R. T. Abboud, “Density
mask. An objective method to quantitate emphysema using computed
tomography,” Chest J., vol. 94, no. 4, pp. 782–787, 1988.

[4] E. A. Hoffman, B. A. Simon, and G. McLennan, “State of the art. A
structural and functional assessment of the lung via multidetector-row
computed tomography phenotyping chronic obstructive pulmonary
disease,” Proc. Am. Thoracic Soc., vol. 3, no. 6, pp. 519–532, 2006.

[5] D. G. Parr, B. C. Stoel, J. Stolk, and R. A. Stockley, “Validation of
computed tomographic lung densitometry for monitoring emphysema
in α1-antitrypsin deficiency,” Thorax, vol. 61, no. 6, pp. 485–490, 2006.

[6] J. D. Newell, J. C. Hogg, and G. L. Snider, “Report of a workshop:
Quantitative computed tomography scanning in longitudinal studies of
emphysema,” Eur. Respirat. J., vol. 23, no. 5, pp. 769–775, 2004.

[7] A. M. R. Schilham, B. V. Ginneken, H. Gietema, and M. Prokop,
“Local noise weighted filtering for emphysema scoring of low-dose
CT images,” IEEE Trans. Med. Imag., vol. 25, no. 4, pp. 451–463, Apr.
2006.

[8] M. Ceresa, G. Bastarrika, J. P. D. Torres, L. M. Montuenga, J. J. Zu-
lueta, C. O.-D. Solorzano, and A. Muñoz-Barrutia, “Robust, standard-
ized quantification of pulmonary emphysema in low dose CT exams,”
Acad. Radiol., vol. 18, no. 11, pp. 1382–1390, 2011.

[9] S. T. Bartel, A. J. Bierhals, T. K. Pilgram, C. Hong, K. B. Schechtman,
S. H. Conradi, and D. S. Gierada, “Equating quantitative emphysema
measurements on different CT image reconstructions,” Med. Phys.,
vol. 38, no. 8, pp. 4894–4902, 2011.

[10] B. C. Stoel, H. Putter, M. E. Bakker, A. Dirksen, R. A. Stockley, E.
Piitulainen, E. W. Russi, D. Parr, S. B. Shaker, J. H. C. Reiber, and
J. Stolk, “Volume correction in computed tomography densitometry
for follow-up studies on pulmonary emphysema,” Proc. Am. Thoracic
Soc., vol. 5, no. 9, pp. 919–924, 2008.

[11] S. B. Shaker, A. Dirksen, L. C. Laursen, L. T. Skovgaard, and N.-H.
Holstein-Rathlou, “Volume adjustment of lung density by computed
tomography scans in patients with emphysema,”Acta Radiologica, vol.
45, no. 4, pp. 417–423, 2004.

[12] L. Sorensen, M. Nielsen, P. Lo, H. Ashraf, J. H. Pedersen, and M. D.
Bruijne, “Texture-based analysis of COPD: A data-driven approach,”
IEEE Trans. Med. Imag., vol. 31, no. 1, pp. 70–78, Jan. 2012.

[13] S. B. Ginsburg, D. A. Lynch, R. P. Bowler, and J. D. Schroeder, “Auto-
mated texture-based quantification of centrilobular nodularity and cen-
trilobular emphysema in chest CT images,” Acad. Radiol., vol. 19, no.
10, pp. 1241–1251, 2012.

[14] Y. Xu, M. Sonka, G. McLennan, J. Guo, and E. A. Hoffman, “MDCT-
based 3-D texture classification of emphysema and early smoking re-
lated lung pathologies,” IEEE Trans. Med. Imag., vol. 25, no. 4, pp.
464–475, Apr. 2006.

[15] J. L. Marroquin, E. A. Santana, and S. Botello, “Hidden Markov mea-
sure field models for image segmentation,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 25, no. 11, pp. 1380–1387, Nov. 2003.

[16] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 6, no. 6, pp. 721–741, Nov. 1984.

[17] J. Besag, “On the statistical analysis of dirty pictures,” J. R. Stat. Soc..
Ser. B Methodol., pp. 259–302, 1986.

[18] S. Z. Li, Markov Random Field Modeling in Image Analysis. New
York: Springer, 2009.

[19] Y. Häme, E. D. Angelini, E. A. Hoffman, R. G. Barr, and A. F.
Laine, “Robust quantification of pulmonary emphysema with a hidden
Markov measure field model,” in Proc. IEEE 10th Int. Symp. Biomed.
Imag., 2013, pp. 382–385.

[20] Y. Häme and M. Pollari, “Semi-automatic liver tumor segmentation
with hidden Markov measure field model and non-parametric distribu-
tion estimation,”Med. Image Anal., vol. 16, no. 1, pp. 140–149, 2012.

[21] S. Mesia-Vela, C.-C. Yeh, J. H. M. Austin, M. Dounel, C. A. Powell, A.
Reeves, R. M. Santella, L. Stevenson, D. Yankelevitz, and R. G. Barr,
“Plasma carbonyls do not correlate with lung function or computed
tomography measures of lung density in older smokers,” Biomarkers,
vol. 13, no. 4, pp. 422–434, 2008.

[22] M. A. Thomashow, D. Shimbo, M. A. Parikh, E. A. Hoffman, J. Vogel-
Claussen, K. Hueper, J. Fu, C.-Y. Liu, D. A. Bluemke, C. E. Vente-
tuolo, M. F. Doyle, and R. G. Barr, “Endothelial microparticles in mild
chronic obstructive pulmonary disease and emphysema. The multi-
ethnic study of atherosclerosis chronic obstructive pulmonary disease
study,” Am. J. Respirat. Crit. Care Med., vol. 188, no. 1, pp. 60–68,
2013.



1540 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 33, NO. 7, JULY 2014

[23] A. Azzalini, “A class of distributions which includes the normal ones,”
Scand. J. Stat., pp. 171–178, 1985.

[24] J. P. Sieren, E. A. Hoffman, H. Baumhauer, R. G. Barr, J. G. Goldin,
and S. Rennard, “CT imaging protocol standardization for use in a mul-
ticenter study: SPIROMICS,” in Radiol. Soc. N. Am., 2011.

[25] S. Hu, E. A. Hoffman, and J. M. Reinhardt, “Automatic lung segmen-
tation for accurate quantitation of volumetric X-ray CT images,” IEEE
Trans. Med. Imag., vol. 20, no. 6, pp. 490–498, Jun. 2001.

[26] Y. Masutani, K. Masamune, and T. Dohi, “Region-growing based
feature extraction algorithm for tree-like objects,” in Visualization in
Biomedical Computing. New York: Springer, 1996, pp. 159–171.

[27] R. Wiemker, T. Bülow, T. Blaffert, and E. Dharaiya, “Correlation of
emphysema score with perceived malignancy of pulmonary nodules:
A multi-observer study using the LIDC-IDRI CT lung database SPIE
Medical Imaging,” Int. Soc. Opt. Photon., vol. 7263, 2009.

[28] S.-H. Cha, “Comprehensive survey on distance/similarity measures be-
tween probability density functions,” Int. J. Math. Models Methods
Appl. Sci., vol. 1, no. 4, pp. 300–307, 2007.

[29] C. J. Galbán, M. K. Han, J. L. Boes, K. A. Chughtai, C. R. Meyer,
T. D. Johnson, S. Galbán, A. Rehemtulla, E. A. Kazerooni, F. J. Mar-
tinez, and B. D. Ross, “Computed tomography-based biomarker pro-
vides unique signature for diagnosis of COPD phenotypes and disease
progression,” Nat. Med., vol. 18, pp. 1711–1715, 2012.

[30] P. A. Gevenois, V. D. Maertelaer, P. D. Vuyst, J. Zanen, and J.-C. Yer-
nault, “Comparison of computed density and macroscopic morphom-
etry in pulmonary emphysema,” Am. J. Respirat. Crit. Care Med., vol.
152, no. 2, pp. 653–657, 1995.

[31] H. O. Coxson, A. Dirksen, L. D. Edwards, J. C. Yates, A. Agusti, P.
Bakke, P. Calverley, B. Celli, C. Crim, A. Duvoix, P. N. Fauerbach,
D. A. Lomas, W. MacNee, R. J. Mayer, B. E. Miller, N. L. Müller,
S. I. Rennard, E. K. Silverman, R. Tal-Singer, E. F. M. Wouters, and
J. Vestbo, “The presence and progression of emphysema in COPD as
determined by CT scanning and biomarker expression: A prospective
analysis from the ECLIPSE study,” Lancet Respirat. Med., vol. 1, no.
2, pp. 129–136, 2013.

[32] E. D. Angelini, J. Delon, L. Capelle, and E. Mandonnet, “Differential
MRI analysis for quantification of low grade glioma growth,” Med.
Image Anal., vol. 16, no. 1, pp. 114–126, 2012.

[33] M. Mishima, T. Hirai, H. Itoh, Y. Nakano, H. Sakai, S. Muro, K.
Nishimura, Y. Oku, K. Chin, M. Ohi, T. Nakamura, J. H. T. Bates, A.
M. Alencar, and B. Suki, “Complexity of terminal airspace geometry
assessed by lung computed tomography in normal subjects and pa-
tients with chronic obstructive pulmonary disease,” Proc. Nat. Acad.
Sci., vol. 96, no. 16, pp. 8829–8834, 1999.

[34] R. A. Blechschmidt, R. Werthschutzky, and U. Lorcher, “Automated
CT image evaluation of the lung: a morphology-based concept,” IEEE
Trans. Med. Imag., vol. 20, no. 5, pp. 434–442, May 2001.

[35] T. Achenbach, O. Weinheimer, C. Buschsieweke, C. P. Heussel, M.
Thelen, and H. U. Kauczor, “Fully automatic detection and quantifi-
cation of emphysema on thin section MD-CT of the chest by a new
and dedicated software,” RöFo: Fortschritte auf demGebiete der Rönt-
genstrahlen und der Nuklearmedizin, vol. 176, no. 10, pp. 1409–1415,
2004.

[36] R.Wiemker, R. Opfer, T. Bülow, P. Rogalla, A. Steinberg, E. Dharaiya,
and K. Subramanyan, “Toward computer-aided emphysema quantifi-
cation on ultralow‐dose CT: Reproducibility of ventrodorsal gravity
effect measurement and correction,” Proc. SPIE, vol. 6514, pp. 1–11,
2007.


