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ABSTRACT

Determining the extent of pulmonary emphysema with quan-

titative computed tomography commonly relies on fixed in-

tensity threshold values. However, the reliability of such mea-

sures is limited due to variability in parenchymal intensities

and noise levels in CT images. In this work, we present a

novel method for emphysema quantification, based on a lung

tissue segmentation with a Hidden Markov Measure Field

model. By adapting to the intensity distribution present in the

input image, the method provides a more robust emphysema

index than standard densitometric approaches. The focus of

this study is to show robustness between imaging protocols,

enabling the comparison of emphysema measures between

studies. The method can have a significant impact in longi-

tudinal analysis and prediction of emphysema. In addition,

the method shows promise in delineating emphysematous re-

gions, potentially facilitating subtyping of the disease.

Index Terms— Emphysema, Markov field, segmentation

1. INTRODUCTION

Parenchymal destruction in the lungs, or emphysema, is a con-

dition involving alveolar wall destruction [1]. A mixture of

emphysema and small airways disease contributes to chronic

airflow limitation characteristic of chronic obstructive pul-

monary disease (COPD), which is a leading cause of mor-

bidity and mortality worldwide [2].

Computed tomography (CT) is commonly used to identify

and quantify the extent of pulmonary emphysema. Generally,

an estimate of emphysema severity is obtained using a den-

sitometric measure, called the emphysema index (EI) (also

referred to as percent emphysema or percent low attenuation

area), which quantifies the proportional area of image points

with intensities below a fixed threshold within the lung re-

gion. The EI is commonly used in clinical COPD studies,
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but there is no consensus on the intensity threshold value that

should be used and the values typically range from −950 to

−910 Hounsfield Units (HU) (see review in [3]).

EI values are obviously influenced by the choice of the

intensity threshold, but also by several other factors that cause

variation in the level of noise and parenchymal intensity level

present in CT images. These factors include the image recon-

struction algorithm, slice thickness, scanner type and calibra-

tion, radiation dose, gravity and inspiration level [1]. Recent

studies have proposed to normalize the resulting EI to ac-

count for differences between reconstruction algorithms and

slice thickness [4, 5]. However, these approaches only con-

sider a part of the sources of variation and have the shortcom-

ing of only adapting the final EI score, not the original se-

lection of pixels. In terms of image processing, texture-based

analysis of emphysema [6, 7, 8] has been studied to take spa-

tial information into consideration, but these approaches re-

quire labeled data to train classifiers, and have not been shown

to be robust to changes in imaging protocols.

In this work, we propose a novel method for emphysema

quantification based on a segmentation of lung tissue using

a Hidden Markov Measure Field (HMMF) model [9]. This

approach has two benefits compared to existing approaches:

1) the appearance model adapts to the image data, providing

robustness with respect to variability in intensity distributions,

and 2) the Markov field enforces spatial coherence of the seg-

mented regions, providing robustness with respect to noise.

We demonstrate that the proposed segmentation not only pro-

duces robust measures of EI , but also robust delineations of

diseased regions, which can be useful in determining subtypes

of emphysema. The HMMF model has been used in our pre-

vious work for liver tumor segmentation [10].

2. METHODS

2.1. Data and Preprocessing

The CT data used in this study included 22 subjects from the

EMCAP data set [11]. All subjects underwent low-dose, non-

contrast, full-lung CT scanning on a Siemens 16 multidetector
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scanner (120 kVp, 169 mAs, 6:1 pitch, 0.75 mm slice thick-

ness, single breath-hold). For each acquisition, three differ-

ent reconstructions were used, with convolution kernels B31f,

B46f, and B60f.

Lungs and large airways were segmented using an ap-

proach similar to [12], by applying an intensity threshold of

−400 HU and then locating the largest connected objects in

the resulting binary volume. The trachea and some of the

large airways were then separated from the lungs by using

closed space dilation [13].

Threshold-based EI measures were computed for three

different thresholds: −980 HU, −950 HU and −910 HU.

The respective indices are denoted as EIR
−980, EIR

−950, and

EIR
−910, where R ∈ {31, 46, 60} indicates the image recon-

struction kernel. All EI values are expressed in percentages.

2.2. Segmentation with the HMMF model

A two-class HMMF model was used to segment lung tissues

and quantify emphysema. Let I denote the input image, Ω
represents the image domain, and r ∈ Ω is an image point.

The segmentation process involves two steps. The first step

computes a continuous-valued Markov random vector field

q = [q1, q2], and the second step generates a binary label field

f from q. The vector field q represents an intermediate label-

ing and is assigned a distribution

Pq(q) =
1

K
exp

[

−
∑

C

WC(q)

]

, (1)

where C are spatial cliques of the selected neighborhood sys-

tem, WC are potential functions and K is a positive normaliz-

ing constant. The vector field q has the additional constraint:

q1(r) + q2(r) = 1, q1, q2 ≥ 0, where qk(r) is the value cor-

responding to class k at point r. Here, 3D pairwise cliques in

26-connected neighborhoods were used. The potential func-

tions were defined as (similarly to [10]):

Wr1r2(q) = λ exp

[

−
d(r1, r2)

2

2σ2

W

] 2
∑

k=1

(qk(r1)− qk(r2))
2,

(2)

where d(r1, r2) corresponds to the Euclidian distance be-

tween the two points (r1, r2), and σW and λ are weighting

constants. Selection of the values for these parameters is

discussed in Section 2.3.

The posterior distribution for q and the associated param-

eter vector θ = [θ1, θ2] is obtained from the Bayes rule:

P (q, θ|I) =
1

Z
P (I|q, θ)Pq(q)Pθ(θ), (3)

where Z is a positive normalizing constant. Each θk repre-

sents the mean of a Gaussian distribution vθk for class k. The

prior distribution Pθ(θ) was assigned a Gaussian distribution

with respect to θ1, with standard deviation of 40, centered at

−1000 HU, which corresponds to the value of air. Pθ(θ) was

constant with respect to θ2, to provide adaptivity.

The likelihood function can be represented as [9]:

P (I(r)|q, θ) = vθ1(r)q1(r) + vθ2(r)q2(r). Combining (1)

and (3), the measure field is found as a maximum a posteriori

(MAP) estimate of P (q, θ|I) = 1

KZ
exp [−U(q, θ)], where

U(q, θ) = −
∑

r∈Ω

log [vθ1(r)q1(r) + vθ2(r)q2(r)]

+
∑

C

WC(q)− log(Pθ(θ)). (4)

Since KZ > 0, the MAP estimates q∗ and θ∗ for q and θ

are found by minimizing U(q, θ). The optimization was per-

formed with the gradient projection Newtonian descent, as

formulated in [9]. Finally, a binary label f(r) for point r is

defined as f(r) = 1 if q∗1(r) > q∗2(r), and f(r) = 2, oth-

erwise. To complete the segmentation model description, the

following subsection describes how the values for the param-

eters λ and σW were selected. The EI from the proposed

method are denoted as EIRMF .

2.3. Parameter selection

The Markov field weight λ determines how much influence

neighboring values of the measure field q have at each point.

This value should be chosen according to the noise level of

the image. To find an optimal λR value for a given recon-

struction R, the EI31MF was first computed using an arbitrary

small weight value, λ31 = 0.1 (B31f being the smoothest re-

constructions in the used data set). The resulting scores were

then used as reference values for the noisier reconstructions

of the same subject, with λ values tested between 1.0 and 6.0,

with increments of 0.5. Increasing λ caused EIMF to de-

crease without exception, justifying the value range that was

tested.

The parameter σW defines how fast the Markov weight

decreases as a function of voxel distance, and is critical when

considering 3D neighborhoods. The same value σW = 1.5 as

in [10] was used.

3. RESULTS

For EI46MF and EI60MF , the smallest mean absolute differ-

ences (MAD) between EI31MF , over all subjects, were found

at λ46 = 2.0 (MAD = 1.1), and λ60 = 4.5 (MAD = 2.1),

respectively. Out of the 22 subjects, the smallest absolute

difference to the corresponding EI31MF was obtained within

range λ46 = [1.5, 2.5] for 19 subjects, and within λ60 =
[3.5, 5.5] for 18 subjects. The MAD values with standard

deviations as a function of λ are shown in Fig. 1.

The obtained EIMF were compared to the thresholding-

based measures for different reconstructions. The mean val-

ues, standard deviations, minimum and maximum values of
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Fig. 1. Mean absolute differences (MAD) and standard devi-

ations between EI31MF and: EI46MF (solid) and EI60MF (dashed)

for different values of λ, over 22 subjects. For comparison, the

horizontal line represents the observed MAD = 9.0 between

EI31
−950 and EI46

−950 for the same data.

EI for the different quantification methods over the 22 sub-

jects used in the study are reported in Table 1. Figure 2 shows

an example of the delineations of emphysema regions for a

single subject with the different methods. The effect of noise

on the thresholding-based delineations is apparent, while the

HMMF-based method delineates the emphysematous regions

fairly consistently across the different reconstructions.

Compared to the mean of EI−950, the mean of EIMF was

slightly higher for B31f images, and lower for the noisier im-

ages. The inter-subject variability (i.e. standard deviation) of

EIMF was lower than that of EI−950 for all reconstructions,

partially due to the narrower range of values in EIMF .

The differences in EI between different reconstruction

kernels are reported in Table 2. As expected, the differences

for the thresholding-based measures increased with noise,

while the proposed quantification method was able to adapt

to the noise levels in the images and provided steady re-

sponses. The MAD to the reference image (1.1 for B46f,

2.1 for B60f) can be considered small when compared to cor-

responding differences between the thresholding-based EI

values. As seen in Fig. 1, selecting a proper value for λ is

an important aspect of the segmentation model, since it has

a clear effect on EIMF . Still, for λ values within the range

that was tested for this analysis, the differences in EIMF

values were well below the corresponding differences for

thresholding-based approaches.

For the thresholding approaches, the mean (signed) dif-

ferences of EI between reconstruction kernels were equal

to MAD values. For EIMF , the mean differences between

[EI31MF , EI46MF ] and between [EI31MF , EI60MF ] were 0.6 and

0.3, respectively.

4. DISCUSSION AND FUTURE WORK

The HMMF model was successfully applied to lung CT seg-

mentation and pulmonary emphysema quantification. The

proposed method was shown to be robust with respect to the

Table 1. Mean values (M ), standard deviations (SD), maxi-

mum values (Max), and minimum values (Min) of EI for dif-

ferent quantification methods, over 22 subjects.

Measure M SD Max Min

EI31MF 10.0 2.6 15.6 6.1

EI31
−980 1.6 1.5 4.8 0.1

EI31
−950 7.8 6.4 21.3 0.8

EI31
−910 32.1 15.5 56.8 6.1

EI46MF 10.6 3.2 18.6 5.4

EI46
−980 6.7 3.8 14.5 2.0

EI46
−950 16.9 7.9 31.6 6.2

EI46
−910 38.8 12.5 58.0 14.8

Table 2. Mean absolute differences ± standard deviations

(MAD), root mean square differences (RMSD), and maximum

absolute differences (MaxAD) of EI between [B31f, B46f] and

between [B31f, B60f] images from a single acquisition, for differ-

ent quantification methods, over 22 subjects.

Measures MAD RMSD MaxAD

EI31MF /EI46MF 1.1± 0.8 1.3 3.0
EI31

−980/EI46
−980 5.2± 2.5 5.7 9.7

EI31
−950/EI46

−950 9.0± 2.3 9.3 13.5
EI31

−910/EI46
−910 6.7± 3.3 7.4 11.5

EI31MF /EI60MF 2.1± 1.6 2.6 5.8
EI31

−980/EI60
−980 20.1± 4.1 20.5 26.5

EI31
−950/EI60

−950 23.6± 2.6 23.7 28.0
EI31

−910/EI60
−910 14.0± 7.7 15.9 25.7

noise level in the image, provided that the parameters of the

model are given appropriate values. In particular, the Markov

field weight λ needs to be tied to the image noise level and

in this work it was assigned based on the reconstruction algo-

rithm. In the future, we plan to use an adaptive value, selected

based on a measure of the input image noise level.

Based on our results, it seems very likely that the com-

monly used methods for CT lung analysis based on fixed

threshold values constantly either under- or overestimate

the disease extent, given the amount of intensity variation

present in the images. However, this study does not claim

that the proposed method is able to provide a quantification

that is closer to the “true” amount of emphysematous tissue.

While this study showed robustness to noise resulting from

the applied reconstruction kernels, the other key component

of the HMMF-based approach, related to the adaptivity to

variability in intensity distributions, will be the topic of the

next study. In addition, showing correlation with histological

findings and mortality remains a future aim to show that the

results correspond to the true extent of the disease.

The use of a robust and reproducible automated method

may have a significant impact on emphysema quantification,

especially for longitudinal studies where imaging protocols

change and patients’ ability to reach full inspiration may de-
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Fig. 2. Example of emphysema indices (EI) with different methods for a single acquisition reconstructed with three different kernels:

B31f, B46f, and B60f (resulting scores are reported below each image). The images represent a cropped coronal slice of the CT volumes

with windowing [−1000,−700] HU. The overlaid red points correspond to voxels classified as emphysema. The columns correspond

to different quantification methods and the rows correspond to different reconstruction kernels.

cline. In a future study, the proposed method will be applied

on a large longitudinal dataset of COPD patients to show pre-

diction capability of the method.
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