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ABSTRACT 
 
3D reconstruction of the spine using biplanar X-rays remains 
approximate and sometimes requires human-machine interactions 
to adjust the position of important features such as vertebral 
corners and endplates. The purpose of this study is to develop a 
method to extract automatically the accurate position of lumbar 
vertebrae posterior corners. In the proposed method we select 
corner point candidates from an initial edge map. A dedicated 
pipeline is designed to discard unwanted candidates, involving 
polyline simplification, curvature thresholding and multiscale Haar 
filtering. Ultimately, we use a priori knowledge derived from an 
initial 3D spine model to define search areas and select the final 
corner points. The framework was tested on 21 biplanar X-rays 
from scoliotic children. Corner positions are compared with 
manual selections by two experts. The results report a localization 
accuracy between 0.6 mm and 1.4 mm, comparable to manual 
expert variability. 

Index Terms— Spine, 3D reconstruction, Biplanar X-rays, 
Haar filtering, Corner detection, Vertebrae segmentation 
 

1. INTRODUCTION 
 
An accurate 3D modeling of the vertebral column is a prerequisite 
for numerous diagnostic and therapeutic orthopedic procedures. In 
the case of moderate scoliosis of young patients for instance, minor 
errors in determining the geometric parameters calculated from a 
3D model of the spine might change the diagnosis and associated 
treatment strategy. 

These days, MRI, CT, and biplanar X-ray imaging can be 
used to image the spine. Biplanar X-ray is the modality of 
reference to study children with scoliosis due to its unique 
capability to image the patient in weight-bearing standing position 
and its significant low radiation dose. There are various methods 
that provide solutions to generate a 3D model of the spine from 
two orthogonal radiographic planes [1], [2], [3]. These methods are 
robust to the limited image quality of low-dose X-rays. 
Nevertheless, because of image noise and occlusions, the accuracy 
of the reconstruction is not optimal and sometimes requires manual 
adjustment. As post processing, localized image analysis and 
keypoint detection could help the final adjustment of such model. 

Keypoint identification and object detection in medical 
imaging are active fields of research for applications such as early 
diagnosis of disease, computational anatomy or registration of 
shape models. The literature on vertebrae detection and 
segmentation is also very rich. Various approaches have used the 
Generalized Hough Transform (GHT) [4] as a vertebrae detection 
tool due to its robustness to noise and occlusion. Klinder et al. [5] 
utilized GHT for vertebra detection in CT images. Zhang et al. [2] 

developed a deformation tolerant GHT for 3D reconstruction of the 
spine from biplanar radiographs. However, processing biplanar X-
rays of pathological cases remains challenging. Machine learning 
approaches based on adaptive boosting (AdaBoost) have also been 
developed, such as in the work of Huang et al. [6] in which an 
improved AdaBoost learning algorithm was designed for vertebrae 
detection in MR images. Major et al. [7] used Haar-based features, 
image derivatives and histograms to coarsely detect and identify 
the intervertebral disks from CT images. Although AdaBoost is a 
strong tool for object detection, its performance could be affected 
by occlusions and object deformities in 2D X-ray planes. 

Regarding spine keypoint detection, Al-Arif et al. [8] 
developed a Hough Forest-based corner detection method for 
cervical spine X-rays. In [9] they incorporated Haar-based features 
as additional predictors to improve the performance of their 
algorithm. The methods were reported to be sensitive to target 
shape variations. To initialize a shape model, Benjelloun et al. [10] 
introduced a method to extract the anterior corners of cervical 
spine from sagittal X-rays based on Harris corner detectors. Harris 
corner detectors are known to be sensitive to image resolution, 
noise, and involve parameters complex to adjust. To localize 
cervical vertebrae in sagittal radiographs, Lecron et al. [11] applied 
a support vector machine (SVM) classifier to learn SIFT features 
[12], which is difficult to extend to pathological subjects.  

Among this rich literature on feature detection, very few work 
validated their framework on pathological cases [8], [9] and none 
on lumbar vertebrae from scoliotic patients, which are more 
challenging than cervical ones, due to the presence of more 
overlying tissues. In this work we are interested in detecting 
posterior corner points of lumbar vertebrae on sagittal X-rays as 
they provide practical information regarding the spinal curve, 
intervertebral spaces, alongside the vertebral body heights and 
orientations. We avoid supervised learning on normal shapes as we 
target scoliotic cases. We also target robustness to noise, genericity 
of parameters and control of the type of corner being selected. 

To this end, a corner extraction algorithm is designed which 
benefits from geometrical features of a corner as well as the 
intensity information of its neighboring region. We assume that we 
have a 3D model initially fitted on the sagittal image but with 
imprecise positioning of the posterior vertebrae corners. 

  
2. MATERIAL AND METHOD 

 
The proposed method can be broken down into the three main 
steps: (1) preprocessing to obtain a selective edge map within the 
region of interest; (2) Multiscale Haar filtering to select a limited 
number of candidate corner points; and (3) exploitation of a priori 
knowledge obtained from the initially reconstructed shape model 
to finely identify individual posterior vertebrae corners. 
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Biplanar sagittal images were acquired with the EOS© micro-
dose X-ray system (EOS Imaging, Paris, France), with a pixel size 
of 0.1794×0.1794 mm. 
 
2.1. Image enhancement and edge detection 
 
In the proposed algorithm, points of interest are first selected 
among points of an edge map obtained with a Canny edge filter. 
Some image enhancement is required prior to edge map 
computation to limit the number of candidate points. First, the 
original image (Fig. 1-A) is downsampled by a factor of two. To 
reduce image noise, limit image dynamic range, and fill some 
boundary gaps along the desired vertebrae endplates, 5×5 Wiener 
and median filters are applied successively. Overall, these steps are 
useful in reducing the complexity of the edge map, and 
consequently limiting the number of candidate points. Finally, 
Contrast Limited Adaptive Histogram Equalization (CLAHE) [13] 
is applied to improve the local contrast (Fig. 1-B). In our work the 
CLAHE tiles (20×28 pixels) are empirically sized to be 
proportional to one third of the lumbar vertebra average size in the 
filtered images. Canny edge detection is applied on the enhanced 
sagittal X-rays (Fig. 1-C).  
 
2.2. Candidate point extraction 
 
Potential corner point candidates are sought among edge map 
points. To this end, after tracing the object boundaries and 
converting the edge map into sets of connected edge segments 
(Fig. 1-D) we perform the following processing exploiting both 
geometrical and intensity properties of the candidate points and 
their surrounding area: 
 
2.2.1. Polyline simplification 
Polyline simplification [14] is used to eliminate small variations 
along segments and reduce the number of points following the 
principle illustrated in Fig. 2. 
 

 

	  

Fig. 2. Polyline simplification of the initial set of segments. 

In this work we choose a distance threshold 𝑇 = 1 pixel for 
the distance d. We could significantly reduce the number of 
contour elements with a higher threshold value, but by choosing 
𝑇 = 1 the original number of contour points is almost reduced by 
half, while preserving corner points, as illustrated in Fig. 1-D. 

  
2.2.2. Curvature filtering 
To specifically reduce the number of candidate corner points, we 
compute the analytical curvature [15] 𝑘 of the edge segments at 
each point. Points with a normalized curvature 𝑘 outside the 
empirical range 0.01 < 𝑘 < 0.25 are discarded. This way we are 
able to preserve candidates even in rounded corners where 𝑘 is 
small, while discarding many of the unwanted candidates (Fig. 1-
E). 

2.2.3. Corner detection using Haar-based features 
To make our final selection among corner candidate points, we 
propose to use Haar-based features illustrated in Fig. 3-A and Fig. 
3-C. Haar response values 𝑅 are computed on each of the 
remaining corner candidates, calculating three local intensity 
differences. As the Haar filters are robust to a range of rotations 
between 0° and 25°, we used two sets of Haar configurations to 
cover all 2D orientations of corner patterns. Response values for 
each of the six Haar filters are detailed in Equation (1): 

𝑅!! = 𝐵! − 𝐴!                     
𝑅!! = 𝐶! − 𝐷!                     
𝑅!! = 𝐺! + 𝐻! − 𝐸! + 𝐹!   

𝑅!! = 𝐵! − 𝐴!  
𝑅!! = 𝐶! − 𝐷!  
𝑅!! = 𝐺! + 𝐻! − 𝐸! + 𝐹!   

(1) 

We use the product of the three filtering outputs as indicator 
of the presence of a corner: 𝑅!"#$ = 𝑅!"×𝑅!"×𝑅!"  (𝑖 = 1,2). The 
sign of this product reveals if we are dealing with a concave or a 
convex corner (Fig. 3-E) as they always have opposite signs. 

To handle the large variety of vertebral body shapes and 
positions, we apply the Haar filters at multiple scales. The final 
values 𝑅!"#! and 𝑅!"#! are the maximum of the responses over all 
scales. Normalization is done by dividing the responses by the 
maximum over all scales and candidates. Points are considered true 
corners according to two selection criteria: if both 𝑅!"#$ responses 
are positive, then the candidate is kept if the maximum is above 
𝑇𝐻!"#$ = 0.07; if the two responses have opposite signs (i.e. more 
ambiguity in orientation), then the candidate is preserved if the 
positive response is above 𝑇𝐻!"#$ = 0.33 and the sum of 𝑅!"#$ 
responses is positive. Thresholding is applied separately on the two 
rotation configurations (0° and 45°). Three scales are used in this 
work, with doubling of the filter size at each scale. The final filter 

Fig. 1. Processing pipeline: (A) original image; (B) enhanced image of the lumbar area; (C) canny edge map; (D. up) the original edge map of L3; 
(D. down) after polyline simplification with T=1 pixel; (E) remaining corner candidate points after curvature thresholding; (F) candidate corner 
points from curvature filtering (magenta) and final corner points selected via Haar-filtering, and thresholding from 0° (yellow) and 45° (black) 
orientations of the filters; (G) final candidate corner points only; (H) final posterior corner points (red) and the input points (blue). 
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size is set to twice the average size of the intervertebral space in 
filtered images (~18 pixels), so that centering the filter on a 
posterior corner would not lead to an overlap with the neighboring 
corners territories.  

In Fig. 1-G we illustrate the output of the proposed multiscale 
Haar filtering and thresholding. The yellow points come from the 
thresholding of the 𝑅!"#! (0° rotation) and the black points come 
from the thresholding of the 𝑅!"#! (45° rotation). Corners with an 
orientation between 0° and 45° or in visually complex areas can be 
selected by both sets of filters. 

The results indicate that most of the unwanted points inside 
and outside the vertebrae are eliminated and that true corner points 
are well preserved on the posterior side. Candidate corners on the 
anterior side are mostly removed after thresholding, and would 
require a different thresholding setup. 

 
2.3. Final selection with a priori anatomical knowledge 
 
To pick the final posterior corners, we use a priori knowledge 
given by the initial 3D model. For each vertebra, we are able to 
back-project the midpoint of the posterior wall at the level of the 
lower and upper endplates, defining the set of input points {Ai} 
illustrated in Fig. 4. We define search areas around these input 
points and make our final selection as follows. 
  
2.3.1. Defining the search areas 
As illustrated in Fig. 4, we start from vertebra L5 and the input 
point A1 that has the particularity to have been manually defined 
by the user to generate the initial 3D shape model and is therefore 
assumed to be the correct lower posterior corner of L5. Segments 
Q1 and Q2 define a 90° sector around the segment Q connecting 
the input points A1 and A2 of L5. The search area for the L5 upper 
posterior corner is defined between two arcs denoted by arc1 and 
arc2. The radius of arc1 is set to 0.75×𝑑𝑖𝑠𝑡(A1,A2) so that it is 
smaller than the approximate height of the vertebra; The radius of 
arc2 is equal to the distance 𝑑𝑖𝑠𝑡(A1,M) where M is the 
approximate midpoint of intervertebral space. The point M is 
detected as the midpoint of the segment along the profile A2-A3 
that connects the points with intensity 𝐼 = 1.25×𝐼! where 𝐼! is 
the minimum image intensity along the profile. 

Moving upward, search areas are built iteratively for lower 
and upper posterior corners of L4 to L1 using segments Q that 
connect the current posterior corner to the next input point Ai 
above it as illustrated in Fig. 4-B. 
 
2.3.2. Final corner selection 
After defining search areas for each initial posterior corner points, 
we update their position applying the following strategy: First, if 
the search area contains multiple candidates, we keep the two 
having the highest 𝑅!"#! or 𝑅!"#! response values. In this case to 

increase our chance of selecting the best corner position, we 
compute the response value of the midpoint between the two 
candidates and select as the final corner, the one that has the 
highest response value. Second, if there is no corner candidate 
within the search area, we select the final corner point based on a 
priori knowledge regarding the approximate height and orientation 
of the corresponding vertebra or intervertebral space and replicate 
this information from the last updated corner point. Results of the 
overall iterative corner selection process are illustrated in Fig. 1-H. 
 
2.4. Data and measures 
 
We evaluated our method on EOS© biplanar X-ray images from 
21 scoliotic children (between 9 and 16 years old, average=12.7) 
having a Cobb angle between 11° to 28° (average=16.7°). This 
dataset was acquired within a protocol approved by an ethical 
committee with written consent from participants. Focusing on the 
lumbar spine we processed 105 vertebrae. All tests were carried 
out with the same parameters and no patient-specific tuning was 
performed. We compare our results with manual corner detection 
obtained by two different operators familiar with the X-ray manual 
processing. Operators were asked to repeat the task three times for 
the 21 test images. We evaluate the precision of corner positions in 
coordinates X and Y separately. For each coordinate we measure 
the reproducibility deviation 𝑆! (See [16]) as 𝑆!! + 𝑆!! where 𝑆!

! 
and 𝑆!

! are inter and intra operator variances respectively. 
 

3. RESULTS 
 
Fig. 5 illustrates the reproducibility graph of manual measures for 
the Y-coordinate of the L3 inferior posterior corners. The mean 
corresponds to the average of the 6 manual measures and the black 
stars indicate the measures provided by our method. 

Few subjects generated outlier measures that have a deviation 
larger than the confidence interval (CI) width defined as: 
𝑚𝑒𝑎𝑛 ± 2×𝑆! (the blue lines in the graph). Table 1 gives an 
overview on the automated corner localization performance on the 
9 posterior corner positions being updated. Additionally, we 
computed the standard error of the estimate (SEE) of the measures 
from our method as an indication of the accuracy of the proposed 
algorithm. The results show a SEE ranging from 0.6 mm to 1.4 mm 
for X and Y. The reproducibility graphs indicate that the outliers 
remain very close to the desired points. Outliers are encountered on 
most pathological cases and positions with strong occlusions at the 
corner of interest. Regarding the Euclidean distance error, we 
measured average values of 1.2 mm, 1 mm, and 0.8 mm for the 
mean, median, and standard deviation. To the best of our 
knowledge none of the methods in the literature are validated for 

Fig. 3. Haar filtering on corners. Haar filters in (A) target the 0° corner 
orientation in (B) and Haar filters in (C) target the 45° corner 
orientation of (D). (E) Concave and convex corner types. 
 

Fig. 4. Defining the search areas around initial corner points. 
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lumbar spine corner detection. Among the literature that focuses on 
cervical spine corner detection, only Al-Arif et al. [8], [9] provided 
quantitative results for the accuracy of their corner localization. In 
[9] they reported average mean and median errors of 3.03 mm and 
2.08 mm respectively, and identified anatomical variations as the 
main source of errors. 
 

 
Fig. 5. Y-coordinate deviation from the mean for the L3 inferior 
posterior corners for each of the 21 subjects. The outcome from the 
algorithm is also reported with black stars.  
 

4. CONCLUSION 
 

We proposed an approach for posterior corner detection on X-ray 
images of the lumbar spine, where the structures of interest are 
subject to image noise, scale variations and rotation. The proposed 
approach exploits geometrical features of a corner point, and local 
intensity information to discriminate corners from initial edge 
point candidates. Two thresholds over the Haar filter response 
values are the only parameters that need to be fixed. It was set 
empirically in this study to detect posterior vertebrae corners, and 
will need to be adjusted to handle anterior corners as well. We 
demonstrated that our approach reaches a higher precision for 
corner point positioning than state of the art found in the literature 
for cervical vertebrae. In addition we demonstrated the robustness 
of our approach to handle scoliotic cases. 
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Table 1: Percentage (%) of the outcomes within the confidence interval (CI), reproducibility standard deviation of manual measurements (𝑺𝑹) 
and standard error of estimate (SEE) for X-Y coordinates on posterior corner points. (Alg=Algorithm outcome; Op=Manual measurement). 

Corner % X in CI-Alg X-𝑆! (mm)-Op X-SEE (mm)-Alg % Y in CI-Alg Y-𝑆! (mm)-Op Y-SEE (mm)-Alg 
L1 Sup-Post 86 0.8 1.3 76 0.6 1.2 
L1 Inf-Post 86 0.7 0.9 90 0.5 0.6 
L2 Sup-Post 76 0.6 1.2 86 0.6 0.8 
L2 Inf-Post 81 0.6 1.3 86 0.5 0.8 
L3 Sup-Post 67 0.7 1.4 86 0.7 1.1 
L3 Inf-Post 90 0.7 0.8 86 0.6 0.9 
L4 Sup-Post 67 0.6 1.3 86 0.8 1 
L4 Inf-Post 81 0.6 1 81 0.6 1.1 
L5 Sup-Post 90 0.7 1.1 95 0.5 0.7 
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