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a b s t r a c t

Recent advances in 4D imaging and real-time imaging provide image data with clinically

important cardiac dynamic information at high spatial or temporal resolution. However, the

enormous amount of information contained in these data has also raised a challenge for

traditional image analysis algorithms in terms of efficiency. In this paper, a novel deformable

model framework, Active Geometric Functions (AGF), is introduced to tackle the real-time

segmentation problem. As an implicit framework paralleling to level-set, AGF has mathe-

matical advantages in efficiency and computational complexity as well as several flexible

feature similar to level-set framework. AGF is demonstrated in two cardiac applications:

endocardial segmentation in 4D ultrasound and myocardial segmentation in MRI with super

high temporal resolution. In both applications, AGF can perform real-time segmentation
ardiac imaging in several milliseconds per frame, which was less than the acquisition time per frame.

Segmentation results are compared to manual tracing with comparable performance with

inter-observer variability. The ability of such real-time segmentation will not only facili-

tate the diagnoses and workflow, but also enables novel applications such as interventional

guidance and interactive image acquisition with online segmentation.

[12] combining different existing methods were also proposed.
Among segmentation methods, deformable models are still
. Introduction

mage segmentation is a critical step for quantitative image
nalysis. In medical imaging, image segmentation is the pre-
equisite for quantitative evaluation of organs and pathologies

orphologies and diagnosis. For example, in cardiac imaging,
elineating borders of chambers of the heart and valves are of
reat clinical importance. Segmentation of the left ventricular
ndocardium is required for quantitative evaluation of the LV
unction, such as ejection fraction or 3D fractional shortening
1]. With recent advances in 3D and 4D imaging techniques
owards real-time imaging, the amount of data is becom-

ng prohibitively overwhelming. Manual tracing of these large
ata sets is tedious and impractical in clinical setting.
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In this context, automated or semi-automated segmen-
tation methods have been proposed and applied to medical
image analysis to leverage the human efforts involved in the
segmentation task. Based on the mathematical foundation
of each method, segmentation approaches can be roughly
divided into several classes: classification (e.g. thresholding,
k-means), region growing (such as fuzzy connectedness [2]),
deformable models (e.g. snake [3], level-set [4–7]), active shape
[8] and active appearance models [9], and probabilistic meth-
ods (Markov random field [10], graph cut [11]). Hybrid methods
el.: +1 212 263 6643; fax: +1 212 263 7541.

widely used in medical image analysis, especially for cardiac
imaging.

erved.
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The first deformable model parametric formulation was
proposed by Kass et al. in 1987 [3]. In 1998, Xu and Prince
[13] proposed the Gradient Vector Flow (GVF) method to over-
come several drawbacks in the original snake framework. In
order to handle topological changes, especially in 3D,in the
late 1990s, Sethian [14] proposed level-set framework by uti-
lizing level-set functions with higher dimensionality than the
data. In 2001, Chan and Vese [6] proposed their famous “active
contour without edges”. The driving forces were derived via
energy minimization of the Mumford–Shah segmentation
functional [15]. Their method was widely used in ultrasound
segmentation [16], brain segmentation [17], and many other
applications. However, the introduction of level-set functions
implicitly increased the number of parameters of the surface
model, which increases the demand for computational power.
Although many optimization modifications such as narrow-
banding or fast marching schemes were proposed, level-set
framework was still, however, a relatively “slow” approach
especially for 3D or 4D data.

As imaging technology evolves, demands for real-time
feedback also increases, mostly for interventional imaging and
minimum-invasive surgery. Latest 3D and 4D imaging tech-
niques and real-time imaging techniques not only provide
better appreciations of the anatomy and function of the body,
but also raise a great challenge for image segmentation in
terms of efficiency. In this context, a new framework called
Active Geometric Functions (AGF) is proposed in this paper
to push the limits of real-time segmentation. AGF is extend-
ing implicit representation in the opposite direction as the
level-set framework does. Instead of adding one additional
dimension to achieve flexibility in topological changes, AGF
is achieving benefit in computational efficiency by reducing
the dimensionality of the segmentation problem and utilizing
efficient function basis. In the following sections, the gen-
eral AGF framework is proposed and compared to existing
deformable model framework. Then, the performance of AGF
framework is demonstrated in two cardiac image analysis
examples, with an extension to multi-phase segmentation in
the second one.

2. General active geometric functions
framework

2.1. Interface representation

In image analysis, segmentation refers to the process of
partitioning a digital image into multiple segments. Image seg-
mentation is typically used to locate objects and interfaces of
these objects (lines, curves, etc.) in images.

In all deformable model methods, interface representation
is fundamental. Mathematically, there are two ways to repre-
sent the interface:

• Explicit representation: that is representing the surface by
explicitly listing the coordinates of the boundary points (i.e.

a parametric representation). This is the representation that
original snakes [18] used.

• Implicit representation: that is representing the surface by
embedding the boundary as the iso-value curves of some
b i o m e d i c i n e 9 8 ( 2 0 1 0 ) 223–230

function f called the representation function. Level-set func-
tions [4–7] are a good example by embedding the interface
as the zero level-set of a distance function.

2.2. Geometric function

Most of the recent efforts in segmentation based on implicit
interface representation have focused on the level-set frame-
work, given its advantages for topological changes and
feasibility to represent convoluted surfaces. As mentioned
above, level-set functions add one extra dimension beyond the
dimensionality of the image data. For example, to represent
a surface in 3D space, the level-set function corresponding to
the surface will be a tri-variate function. For comparison, origi-
nal parametric deformable models only required a list of point
coordinates in 3D. For level-set, this extra dimension brings
various benefits as well as additional computation load, which
may degrade computational efficiency.

By looking the opposite way of level-set frameworks, it is
very natural to think of dimensionality reduction in surface
representation to reduce the computational complexity. Using
terminology of interface representation, we are looking for a
representation function which has fewer dimensions than the
image data, i.e. using a 2D function to represent a 3D surface
in space. We call such function a geometric function.

Mathematically, in N-dimensional space, we can define a
geometric function g : RN−1 → R as a special set of functions
representing one of the coordinates constrained by the oth-
ers. Without losing generality, we can assume that this special
coordinate is x0 and the other coordinates are x1 to xN−1. That
is:

x0 = g(x1, . . . , xN−1). (1)

The corresponding representation function f is defined as

f = x0 − g(x1, . . . , xN−1). (2)

So that the corresponding boundary is the zero-value curve
of the function f, i.e. f = 0.

Examples of a unit spherical interface represented by
different approaches were shown in Fig. 1. Corresponding
level-set function (Fig. 1b) as a signed distance function
is ˚(x, y, z) = (1/

√
3)

√
x2 + y2 + z2 − 1. And the correspond-

ing geometric function representation (Fig. 1(c)) is f(r, �,
�) = r − 1 = 0. Note both implicit functions have the same roots,
with the fact that the coordinates used in the explicit rep-
resentation (Fig. 1(a)) are digitized version of these roots.
And geometrically, these roots form the same unit spheri-
cal surfaces. This example also illustrates that non-Cartesian
coordinate systems can be used in geometric function repre-
sentation to efficiently represent the desired surfaces.
2.3. Driving forces

Similar to other deformable models, we adopt a variational
framework in deriving the driving forces. For example, we can
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Fig. 1 – Surface representations using (a) explicit represe

se the Mumford–Shah segmentation energy functional:

(F,
−→
C ) = ˇ

∫
˝\�C

(F − G)2dV + ˛

∫
˝\−→C

|∇F|2dV + �

∮
−→
C

ds, (3)

n which −→
C denotes the smoothed and closed segmented

nterface, G represents the observed image data, F is a piece-
ise smoothed approximation of G with discontinuities only

long −→
C , and ˝ denotes the image domain. Given the flex-

bility of variational frameworks, other segmentation energy
unctionals may also be easily adopted.

For the segmentation of an N-dimensional image data
et, the Active Geometric Functions framework will solve an
N − 1)-dimensional variational problem; explicit representa-
ion will solve an N-dimensional problem; and the level-set
ramework will solve an (N + 1)-dimensional variational prob-
em. It is obvious that AGF framework has advantages in
imensionality reduction when compared with the other two
eformable models formulations, at the cost of some flexibility
iven the assumption of 1 versus (N − 1) coordinate mapping.
owever, such surface mapping can be further modified via

he combination with finite element models. In addition, for
ypical medical applications, biological surfaces are relatively
mooth and well represented with relatively simple geometric
unctions.

.4. Efficiency of AGF framework

he efficiency benefit of AGFs comes from three aspects: a
imension-reduced surface representation, use of efficient
unction basis, and dimension reduction of optimization prob-
em. The first two aspects can greatly reduce the number of
arameters used in the optimization procedure.

In the general case, for N − D segmentation, let’s assume
he number of parameters used in parametric models is 1
fter normalization, and AGF can gain some parameter reduc-
ion factor of r in each dimension by using surface functions
nd spacing of parametric nodal points of d-pixels in 1D, and
arrowband width of level sets is b (b ≥ 3) in each dimension,

hen the total number of parameters used in each model is:

1/d)(N−1) for AGF, 1 for parametric model as the reference, and
(N−1)b(N−1) for level sets. In other words, if we use parametric

odels as the reference method, and represent the compu-
ational complexity in terms of the “Big-Oh” representation,
on, (b) level-set framework, and (c) geometric functions.

then for N − D segmentation, AGF is a O(−(N − 1)) method
in comparison with parametric models and level sets with
narrow-banding which is O(N − 1) method. The three models
are only comparable when N = 2, in which case N − 1 = 1 and
level-set and parametric model are different by a linear factor.
However, AGF is still two orders of magnitude faster.

With this example, it is clearer of the advantage of AGF in
comparison with existing methods, especially for images with
higher dimensionality. Nowadays, 3D and 4D image data is
becoming routine in medical image analysis and we think that
the advantages for AGF in computational efficiency is critical
and non-substitutable by existing frameworks.

In general, deformable models usually utilize iterative
methods to find the optimal solution for the associated energy
minimization framework via curve evolution, which requires
an additional variable as an artificial time step added into
the functions. In this case, curve evolution with explicit rep-
resentation with K node points becomes an N × K variable
minimization problem since the evolving curve is represented
by

⎡
⎢⎢⎢⎢⎢⎢⎣

−→
X

0
(t)

−→
X

1
(t)

...

−→
X

K−1
(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

x0
0(t) x0

1(t) · · · x0
N−1(t)

x1
0(t) x1

1(t) · · · x1
N−1(t)

...
...

...
...

xK−1
0 (t) xK−1

1 (t) · · · xK−1
N−1(t)

⎤
⎥⎥⎥⎥⎥⎦

, (4)

with N × K evolving variables.
Curve evolution with level-set becomes an (N + 1)-variate

functional minimization problem since the evolving curve is
represented by

�(−→X , t) = �(x0, x1, . . . , xN−1, t), (5)

which has to be solved for every point on the entire image
domain or within the narrowband.

Curve evolution with surface function actives becomes an

N-variate functional minimization problem since the evolving
curve can be represented by

x0(t) = f (x1, x2, . . . , xN−1, t). (6)
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The advantage in dimensionality reduction for surface
function actives over level-set framework is evident.

The advantage of AGF over explicit expression is in two
aspects. First, in explicit representation, for each node point,
there are N evolving variables, whereas in surface function
representation, there is only one variable for each correspond-
ing points. This will become more evident if we digitize Eq. (6)
and reformulate in a similar form as in Eq. (4):

⎡
⎢⎢⎢⎢⎢⎢⎣

−→
X

0
(t)

−→
X

1
(t)

...

−→
X

K−1
(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

x0
0(t) x0

1 · · · x0
N−1

x1
0(t) x1

1 · · · x1
N−1

...
...

...
...

xK−1
0 (t) xK−1

1 · · · xK−1
N−1

⎤
⎥⎥⎥⎥⎥⎦

. (7)

Although the memory usage of Eq. (7) is the same as Eq.
(4), the curve evolution of Eq. (7) has N − 1 less dimensional-
ity than Eq. (4), which usually leads to faster and more stable
convergence. Generally speaking, the more parameters to be
optimized, the larger possibility that local minimums and sad-
dle points exist, especially with presence of noise. Of course
it is not necessarily true for every case that 1D optimization
is more stable than N − D; they could be equivalent. But even
for that, the searching space for 1D case is much smaller than
the N − D one, which leads to faster convergence.

Another aspect is that Eq. (6) can be represented via func-
tion basis, such as cubic Hermite functions, in which case
only a few weighting parameters rather than a lot of digitized
node points have to be stored and iterated on. This can further
improve the accuracy, efficiency, and numerical stability.

3. Endocardial segmentation in 4D
ultrasound

3.1. Geometric function setup

AGF is a generic framework. The actual geometric function
is not necessarily defined on Cartesian bases. Any spatial
basis can be chosen for the purpose of efficiency in surface
representation. In cardiac applications, given the ellipsoidal
shape of the left ventricle, usually spherical coordinate sys-
tem [19] or prolate spheroidal coordinates system [20] can be
used to exploit the shape prior knowledge. Generally in 3D
space a geometric function can be described through an equa-
tion v0 = g(v1, v2) with coordinates (v0, v1, v2). (v0, v1, v2) can
be (r, �, z) in cylindrical coordinate systems, (r, �, �) in spherical
coordinate systems, and (�, �, �) in prolate spheroidal coor-
dinate systems. In this paper, although prolate spheroidal
coordinate systems proposed by Hunter [21] is used, all for-
mulations are expressed in generic form and free of change in
coordinate system.

Another benefit of AGF is that it does not require using
a single function to represent the entire surface. Piecewise
smooth functions building on conceptual patches can be

adopted for accuracy and flexibility. Specifically, in this paper,
geometric functions described by a conceptual finite element
model utilizing cubic Hermite polynomials as geometric func-
tion basis was used to efficiently represent the convoluted
b i o m e d i c i n e 9 8 ( 2 0 1 0 ) 223–230

endocardial surface. The entire endocardial surface was repre-
sented by geometric functions built on a “mesh” composed by
8 × 8 conceptual patches. Given the dimensionality reduction
of the geometric function representation, on each concep-
tual patch, a 2D cubic geometric function was defined, using
cubic Hermite polynomials as basis functions. On each node
of a four-node patch, there were four Hermite coefficients
Hi, i = 1, 2, 3, 4, controlling the weights of each basis func-
tion. Given their efficiency in surface representation, Hermite
polynomials are widely used in cardiac biomechanics stud-
ies for surface representation [1,22,23]. A simple 8 × 8 finite
element model (FEM) with intrinsic C1 continuity can suffi-
ciently represent the geometry of the endocardium [1,23]. In
our implementation, this 8 × 8 convention was followed.

3.2. Energy minimization

Following the same rationale used in the Chan and Vese level-
set [6] framework, the energy in Eq. (3) can be minimized via
a Newton Downhill method:

Hi,t+dt = Hi,t − dt
∂E

∂Hi
, (8)

with dt representing the artificial time step in numerical iter-
ations. It has been shown in [20] that for binary segmentation
problem, into two partitions {˝i}i=1,2 of the image domain ˝,
∂E/∂Hi has the surface integral form of

∂E

∂Hi
=

∫
v1,v2

(
2f i

(
u − c1 + c2

2

)
(c2 − c1)V + �

∂A

∂Hi

)
dv1dv2, (9)

with fi representing the surface coefficient with respect to the
basis function values at current surface location, c1 and c2 rep-
resenting the average intensity values in the two partitions,
V representing the scaling factor due to coordinate transfor-
mation and A representing the surface area. Details on the
computation of this term can be found in [20]. The second part
in the integration is a curvature term, which is composed by
two non-linear terms involving Hi and scaling factors. Due to
the intrinsic continuity in the Hermite representation, contri-
bution from this term was usually very small. For this reason,
and for cost-effectiveness, this terms can be either suppressed
as proposed in [20] or replaced by an equivalent linear term [19]
derived from minimizing curvature instead of the surface area
as in the original Chan and Vese framework.

3.3. Results

The proposed method was tested on 35 4D data sets con-
taining 425 frames, acquired by a Philips© iE33 ultrasound
machine during five separate canine experiments, with var-
ious degrees of induced ischemia as well as controlled stages.
Each data set contained 10–15 volumetric frames, depending
on the heart rate. Each volume was about 200 × 200 × 200 in
matrix size with pixel size of 0.8 mm in each dimension. For

quantitative comparison purpose, endocardial borders for all
data sets were manually traced by an experienced expert with
a computer-aided interface. Eleven data sets were also traced
by two other experts to estimate the inter-observer variability.
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Fig. 2 – (a) Automatic initialization of the LV surface with an ellipsoid positioned at the center of the volume; (b) overlaid
segmentation results from AGF (red), one expert (green), and the other expert (blue). All three surfaces were very close to
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istances between two surfaces served as quantitative met-
ics to describe surface discrepancy.

As shown in Fig. 2(a), all 425 segmentation experiments
ere initialized as a small ellipsoid (defined as an isosurface

n prolate spheroidal coordinates) at the center of the image
olume and aligned with the vertical direction of the image
ata, without using any prior knowledge. The segmentation
as fully automated without any manual modification. A sam-
le frame overlaying segmentation from AGF (red) and manual
racings from two experts (green and blue) is shown in Fig. 2(b).
ll three surfaces were very close to each other. This obser-
ation was confirmed by quantitative validation. On all 425
rames, the mean distance of AGF segmentation to manual
racing was 4.00 mm (about 3 times the pixel diagonal dimen-
ion) with a standard deviation of 3.23 mm; the mean distance
etween two manual tracings was 4.23 mm with a standard
eviation of 3.26 mm.

On average, it took AGF 32.9 ms to converge for one 3D
rame, on a regular Pentium 2.0 GHz PC running Redhat Linux,
nabling a potentially 33 fps segmentation rate. Note that this
ate is faster than the actual imaging acquisition rate (up to
5 Hz), suggesting AGF could enable online segmentation.

. Myocardial segmentation in high speed
RI

.1. Coupled active geometric functions

ach AGF model could divide an image into two partitions, i.e.
he object (or the foreground) and the background. In order to
imultaneously segment multiple objects, similar to level-set
ramework [19,24,25], more than one deformable model could
e introduced at the same time. In order to realize simultane-
us multi-object segmentation, these deformable models will
e coupled together via some mechanism, such as distance
25] or multi-phase fashion [17,24].
One benefit of implicit surface representation is that

he function value of the representation function could be
ssigned with some physical meanings that may be conve-
ure legend, the reader is referred to the web version of the

nient during segmentation iterations. In level-set framework,
usually signed distance functions [4,5] are usually chosen as
the level-set function, which not only offers an immediate
measures or approximation of the distance to the current
interface for any given point, but also have some nice fea-
tures, such as unitary slope, that would simplified the energy
minimization equations. As another implicit surface repre-
sentation approach, values of Geometric Functions also have
physical meanings, i.e. the coordinate values along the direc-
tion of one spatial basis functions. These values generally do
not correspond to the Euclidean distances for given points to
the current surface. However, recalling the definition of coordi-
nate values, it is obvious that this value is a distance measure
along the corresponding basis direction. If this basis is lin-
ear, the function value is thus a signed distance function,
with some scaling factor, along the basis direction. More-
over, such distance measures usually is an upper bound to
the true point-to-surface distance. And sometime it also has
clinical importance and diagnostic values. For example, in car-
diac diagnosis, radial displacement and radial thickening are
important metrics for cardiac dynamics. By choosing a coordi-
nate system with radial directions, such as polar coordinates,
Geometric Function values can be immediate measures of
radial distance.

This nice feature can also be used in coupling Active
Geometric Functions models. Specifically for myocardial seg-
mentation in 2D+ time cine series, two geometric functions
can be introduced to simultaneously segment the endo-
cardial and epicardial surfaces. Running this segmentation
protocol, both models were driven by forces computed via
energy minimization. The total energy was defined by com-
bination of Mumford–Shah energy functionals and a penalty
term computed from the signed radial distance between
the two surfaces. Specifically, assuming −→

C1 and −→
C2 are the

two coupled surfaces with corresponding geometric func-
tions g1 and g2, then in polar coordinates system, we had

r = g1(�) and r = g2(�). We shall assume −→

C1 targets the endo-
cardial surface and −→

C2 targets epicardial surface. Generally,
these two models can divide an image into four different
partitions [17,24], with the average intensity values within
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Fig. 3 – Partitioning of the image into four phases using

two level-set functions. Average intensity values are
designed as c00, c10, c01, c11.

each partition defined as c00, c10, c01, and c11, as shown in
Fig. 3.

Let a function d be a membership penalty function defin-
ing a penalty associated with its function variable. In our
implementation, a linear penalty function similar to wavelet
soft-thresholding [26] function was used. However, more
sophisticated membership function such as fuzzy member-
ship function [27] can be used. The membership function was
defined as

d(x) =

⎧⎨
⎩

x − dmax, x ≥ dmax

0, dmin ≤ x ≤ dmax

x − dmin, x ≤ dmin

, (10)

with dmin and dmax defining acceptable range of member-
ship. The shape of the membership penalty function is given
in Fig. 4. The idea is to penalize large and small values
beyond an admissible range of values for the thickness of the
myocardium being segmented.

Lastly, a smoothness constraint was superimposed to each
AGF model to ensure the papillary muscles were excluded in
the endocardial segmentation. In our experiments, since the
doctors preferred much smoothed segmentation with papil-
lary muscles excluded, strong smoothness constraints were
imposed on both surface functions, resulting circle-like seg-
mentations.

Thus, the final energy functional was defined as

E(F,
−→
C1,

−→
C2) = �11

∫
inside C1

inside C2

(u − c11)2 + �10

∫
inside C1
outside C2

(u − c10)2

+ �01

∫
outside C1

intside C2

(u − c01)2

+ �00

∫
outside C1

outside C2

(u − c00)2

+ �1

∮
−→
C1

ds + �2

∮
−→
C2

ds + �

∮ ∣∣d(g2 − g1)
∣∣2

(11)
with �ij, i = 0, 1; j = 0, 1 as the parameters balancing the homo-
geneity measures, �1, �2 as the weighting factor for the
smoothness constraint for each AGF model, and � as the
parameter controlling the weight for membership penalty.
Fig. 4 – Shape of membership penalty function.

4.2. Results

The proposed algorithm was applied to 414 frames of clinical
Phase Train Imaging (PTI) data with average temporal resolu-
tion of 2 milliseconds. Each image frame had a dimension of
160 × 192 pixels. Manual tracing of the endocardium and epi-
cardium was also performed by an experienced expert serving
as a gold standard to evaluate the performance of the proposed
multi-phase AGF method. The algorithm was preliminarily
implemented in Matlab© (The Mathworks, Natick, MA).

The coupled Active Geometric Functions models were
automatically initialized as two tiny circles with different radii
at the center of the image at the first frame of whole series, as
shown in Fig. 5.

After initialization, two AGF models started to evolve under
the force derived via energy minimization of the total energy
functional defined by Eq. (11) until convergence. The forces
from membership penalty functions successfully pushed the
outside contour beyond the endocardial surfaces to lock on
epicardial surfaces. Subsequently the segmentation results on
the current frame were propagated into the next one, uti-
lizing the high temporal resolution that the PTI data offers,
followed by curve evolution until convergence and propaga-
tion to the next frame. Fig. 5 shows 10 sample frames of
the segmentation results taken at different phases of the
cardiac cycle. Both endocardial and epicardial surfaces were
accurately segmented on all frames with papillary muscle suc-
cessfully excluded.

The proposed method took 500 ms to segment all 414
frames. On average, it took AGF 6 iterations to reach a stable
endocardial and epicardial segmentation with each iteration
using 0.194 ms under a Matlab© implementation. All computa-
tions were executed on a 2.4 GHz 64-bit AMD server, running
Red Hat Linux Enterprise AS. Quantitative evaluations were
performed both on endocardial and epicardial segmentation
volume, in terms of area difference, true positive fraction,
and false positive fraction. For endocardial segmentation, the
area difference (mean ± standard deviation) was 8.7 ± 5.9%;
the true positive fraction was 93.3 ± 7.0%; and the false pos-
itive fraction was 7.0 ± 4.6%. For epicardial segmentation, the
area difference was 6.8 ± 5.3%; the true positive fraction was

95.5 ± 3.6%; and the false positive fraction was 7.8 ± 5.2%. Aver-
age distance between automated segmented surfaces and
manually traced surfaces was 3.0 ± 2.4 pixels. Comparison
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Fig. 5 – Illustration of initialization at the first frame and segmentation of endocardium and epicardium on 10 frames out of
4 ium
s
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14 frames. The red curves indicate the automated endocard
egmentation.

etrics from a recent systematic study on cardiac MRI seg-
entation [24] were used as a reference, which suggested

hat our results were comparable to level-set-based methods
s well as inter-observer variance. Note that the PTI images
ave slightly coarser resolution as well as a slightly blurrier
ppearance than regular cardiac cine MRI due to undersam-
ling in the phase-encoding direction, which may increase the

nter-observer variance as reported in [24].
. Conclusions

ctive Geometric Functions (AGF) was presented as a new
ramework for deformable model. It was demonstrated in
segmentation; the green ones are automated epicardium

two cardiac applications: endocardial segmentation in 4D
ultrasound and myocardial segmentation in MRI with super
high temporal resolution. In both applications, AGF could
perform real-time segmentation in several milliseconds per
frame, which was less than the acquisition time per frame.
Segmentation results were compared to manual tracing
with comparable performance with inter-observer variabil-
ity. AGF offered great advantages in computational efficiency,
benefiting from dimensionality reduction in the interface
representation. It utilized implicit surface representation,

enabling easy determination of inside and outside surface
areas as well as straightforward quantitative segmentation
comparison. Moreover, besides providing numerical solutions
to the desired interface like a level-set framework, AGF could
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use closed form expressions as well as achieve even bet-
ter efficiency and accuracy. The continuous form of interface
function could also benefit downstream analysis based on
shape or other information from the interface. AGF was suit-
able for any applications where real-time feedback is desired,
such as interventional procedure or online segmentation. The
variational framework that AGF adopted provides flexibility
of further expansion in terms of additional constraints or the
ability to deal with multi-channel multi-phase segmentation
problems. And, AGF can easily utilize more complex energy
functions that have been proposed (e.g. conditional random
fields) in place of the original Mumford–Shah style functions,
to achieve better performance in image segmentation.
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