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Abstract. This paper presents a first set of experiments to integrate
a realistic electro-mechanical model of a beating heart into simulated
real-time three-dimensional (RT3D) ultrasound data. A novel ultrasound
simulation framework is presented, extended from the model of Meunier
[12]. True three-dimensional transducer modeling was performed, using
RT3D acquisition design. Myocardium and blood scattering parameters
were defined in three dimensions. Ultrasound data sets were generated
for a normal case and a pathological case, simulating left bundle branch
block. Accuracy of an optical flow tracking method was evaluated on
the simulated data to measure displacements on the myocardial surfaces
and inside the myocardium over a cardiac cycle. The proposed simula-
tion framework has important motivations in a cardiac modeling context
as part of this project is focused on the design of effective parameter es-
timation methods, based on cardiac imaging.

1 Introduction

Ultrasound is the cardiac screening modality with the highest temporal resolu-
tion, but is still limited to two-dimensions in most hospitals and clinical centers.
Development of 3D echocardiography started in the 1990s [23], with real-time
3D (RT3D) ultrasound based on matrix phased arrays. A new generation of
RT3D transducers was introduced by Duke University and more recently by
Philips Medical Systems (Best, The Netherlands) with the SONOS 7500 trans-
ducer followed by the IE33 model that acquires a fully sampled cardiac volume
within four cardiac cycles. This technical advance increased the spatial resolution
and image quality, which makes 3D ultrasound techniques increasingly attrac-
tive for quantitative cardiac diagnosis on patients [2,1]. Since RT3D ultrasound
acquires volumetric ultrasound sequences with fairly high temporal resolution
using a fixed-positioned transducer, it can capture complex 3D cardiac motion
very well. Cardiac motion analysis from clinical image sequences has been an ac-
tive research area over the past decade. Previous efforts using ultrasound data for
motion analysis include intensity-based speckle tracking and optical flow (OF),
or dedicated imaging set ups such as strain-imaging, and elastography. In [16]
for example, a shape tracking approach was used to track endocardial surface
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patches in 3D echocardiography for motion analysis. In a previous study [8,7]
we developed a framework to derive several dynamic cardiac measures based on
four-dimensional optical flow using RT3D ultrasound sequences. This framework
was applied to a clinical data set from a heart transplant patient and the dy-
namic measurements, computed with this method, agreed with findings in other
cardiac biomechanics studies.

In this paper, in order to quantitatively evaluate our tracking method, we
present a framework to generate 3D simulated ultrasound data using a realis-
tic electro-mechanical model of a human heart, namely, a model that generates
displacement and deformation patterns – as well as global physiological indi-
cators such as pressures and flows – representative of clinical observations. A
numerical cardiac phantom was used to mimic realistic anatomy, along with
acoustic impedance of cardiac tissue and blood, as well as motion field of the
myocardium during a cardiac cycle. Based on this phantom, simulated linear
three-dimensional ultrasound data sets were generated, using similar transducer
parameters as in the RT3D ultrasound machine from Volumetrics (Durham, NC).
Details of the 3D ultrasound simulation framework as well as performance of our
optical flow based method in tracking myocardial tissues were explored by sim-
ulating consecutive RT3D ultrasound frames of the beating heart under known
motion fields, including translation, rotation, and thickening deformations. Our
approach also has important motivations in a cardiac modeling context. Indeed,
part of this project is focused on the design of effective parameter estimation
methods – relevant for diagnosis assistance – based on clinical measures and
simulations from a mathematical model of the beating heart [17,21]. Difficulties
encountered in such estimation fall into two main categories:

– Modeling difficulties, namely, the mathematical model must accurately rep-
resent actual phenomena observed in clinical measurements and reflect
pathologies of interest targeted in a diagnosis assistance setup; and

– Estimation difficulties, namely, the parameter estimation procedure per se
must be carefully designed in order to be effective when the model is ade-
quate, taking into account the presence of measurement errors.

Therefore, when focusing on the design of a parameter estimation strategy
for a given class of models, one crucial step consists in generating synthetic
measurements from the model for a specific choice of parameters. Indeed, by
doing so we can circumvent modeling difficulties. The parameter estimation pro-
cedure is then assessed by processing these synthetic measurements, combined
with well-chosen measurement noise components, and extracting modeling pa-
rameters to be compared with the initial values. Of course, for this assessment
to be meaningful, the generation of synthetic measurements must be carefully
designed, close to physiological conditions, while the processing of these mea-
surements must take into account the constraints and uncertainties associated
with a given modality of observation (e.g. cardiac imaging). In this context, this
paper presents a first series of experimentation integrating our cardiac model
into 3D echocardiographic data sets.
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2 Electro-mechanical Model of the Heart

2.1 Heart Anatomy

We use the “Generic Anatomical Heart Model” presented in [21], which ap-
proximates the ventricles by truncated ellipsoids This generic model could be
adapted to specific patient anatomies by fitting the model geometry to medical
image segmentation results – in particular when pursuing the above-mentioned
estimation and diagnosis goal – but this was not needed for the present study.

2.2 Bio-physical Properties of the Model

The electro-mechanical model employed to generate realistic deformation pat-
terns of the heart during a complete cycle was fully described in [17]. The un-
derlying contraction law is based on physiological considerations and satisfies
essential thermo-mechanical requirements. This law incorporates contractility
parameters that can be varied to simulate cardiac pathologies such as infarcts.
Electrical activation is modeled based on the bidomain equations [15], with ac-
tion potential propagation initiated near the apex on the endocardial surface.
Blood inside each ventricle is modeled as a simplified lumped pressure / volume
system, and cardiac cycle phases are distinguished through coupling conditions
between the internal fluid and the different compartments of the cardiovascular
system – in particular systemic and pulmonary circulations, both represented
with Windkessel models. Numerical methods – including finite element proce-
dures – used to obtain simulations of this global heart model were also described
in [17]. Simulation results are illustrated in Fig.1, where we compared simula-
tion of a normal heart (our reference) with results corresponding to a left bundle
branch block (LBBB) modeled via initiation of the electrical activation in the
right ventricle only.

Fig. 1. Electrical activation at early stage: Reference (left) and LBBB (right)

2.3 Motion Field Generation and Format

We used several numerical simulation results with the model described above
to generate rasterized 3D images of the cardiac tissue over a complete cycle,
with a spatial sampling of 1 mm3 and a temporal sampling of 5 ms, comparable
to 3D echography sampling capabilities. We recall that the rasterization of an
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Fig. 2. Myocardial mesh and corresponding rasterization during systole

object consists in computing the set of voxels enclosed within the object bound-
aries. The algorithm used is described in [20], see also [4]. In Fig. 2, we show
cross-section views of these images during systole. The 3D ultrasound simulation
procedure takes these images as an input, and optical flow tracking results can
then be assessed using the reference values of the displacements between two
subsequent images, whose exact values can be obtained for each voxel by simple
post-processing of the model simulations.

The physics of ultrasound imaging being rather well-known, accurate simu-
lations of the measurements can be obtained, including for 3D echography [9].
Hence, the remaining key point in the assessment of estimation procedures con-
cerns the processing step leading to data used as an input in the estimation,
such as the optical flow that provides displacements or velocities, for which the
corresponding errors must be accurately determined.

3 3D Ultrasound Simulation

3.1 Review of Existing Methods

Simulating ultrasonic B-scanning images can be dated back to 1980 [3]. In their
paper, Bamber et al. modeled the ultrasonic image formation process in the
far–field as a convolution of the point spread function from the transducer and
the scattered distribution of underlining tissues defined by local density and
compressibility.

Several studies have been performed since then, with more or less elaborate
models. In [14], Narayanan et al. used a very simple simulation framework for
transmitted pulses and received echo signals to study the influence of the scat-
tering cross-section and the number of scatterers per cells on the envelope signal
statistics. Their model was derived from the extensive review of first and second
order statistics of complex random signals from Wagner et al. [27]. Proposing
to model the scattering cross-section as a Gamma random variable, and setting
the number of scatterers to 7, 13 and 38 they showed strong deviation from a
Rayleigh distribution as randomness of the cross sections increased and number
of scatterers decreased.

In the field of specific cardiac applications, a study of reference in [5] demon-
strated that the K-distribution is generally more appropriate than the Rayleigh
distribution to simulate backscatters from myocardial tissue in the frequency
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range of 5-15 MHz. The K-distribution is generated by a sparse density of Pois-
son scatterers (average number of scatterers per resolution cell ρ between 9 and
12), whereas the Rayleigh distribution is generated by a dense distribution of
Poisson scatterers (ρ above 12) [25,5].

In a seminal paper [12], Meunier and Bertrand proposed a three-dimensional
inhomogeneous continuum model to mimic myocardial tissue as a collection of
acoustic cells with individual impedance. Their work was motivated by the need
to understand mean gray level changes occurring with different tissue motions.
An important assumption was made in their work, assuming small and dense
scatterers per resolution cells, leading to Rayleigh distributed amplitudes of the
envelope signals. In [13], the same authors looked at the problem of decorrelation
between tissue and speckle patterns under linear transformations (2D rotation,
translation and deformation). They identified threshold values of deformation
amplitudes to guarantee visual correlation of backscattered patterns between
two consecutive ultrasound frames.

Jensen [9] developed an extensive ultrasound simulation software called FIELD
in 1996 based on Tupholme-Stepanishen’s method, which simulates acoustic fields
generated from arbitrarily designed transducers. Modeling is based on the numer-
ical computation of a transmit excitation function (e.g. sine wave with Gaussian
envelope) with the spatial impulse response of the transducer, which is the sum of
small individual array elements, organized according to a pre-defined geometry.

A 3D extension of the model,generating 3D ultrasound image volume can also
be simulated, as shown in [11] and [30] most recently.

Regarding the three-dimensional aspect of the ultrasound simulation problem,
a first approach was proposed by [18] to simulate acoustic fields generated by
phased array transducers, with waves propagating in a uniformly lossy media.
Their approach was based on a double integral of the Huygens-Fresnel equations
to describe the spatial behavior of the wave front pressure in the acoustic field,
generated from a matrix of transducers. Later, with the introduction of the Vol-
umetrics RT3D transducer from Smith and Von Ramm, several papers [22,29,28]
were published, performing similar simulations for different geometrical designs
of the transducer matrix.

3.2 Proposed Simulation Framework

In this section, we propose a 3D ultrasound simulation framework, based on the
extension of Meunier et al. approach [12] in 3D. This model assumes that the
point spread function (PSF) H(x, y, z) of the transducer is linear and position-
independent, leading to formation of the radio-frequency (RF) signal RF (x, y, z)
via convolution of the system PSF with the impulse response T (x, y, z) of the
tissue:

RF (x, y, z) = H(x, y, z) ∗ T (x, y, z) (1)
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3.3 Image Formation Model

The far–field PSF was approximated by a cosine function combined with a 3-D
Gaussian envelope:

H(x, y, z) = exp

(
−1

2

(
x2

s2
x

+
y2

s2
y

+
z2

s2
z

))
cos (2πfz) (2)

where (s2
x, s2

y, s2
z) define the size of the PSF in lateral, elevation and axial direc-

tions, respectively, and f defines the transducer spatial frequency. This model
assumes that time gain compensation was applied to correct for depth-dependent
attenuation of the echos. It is also important to note that this model neglects sev-
eral points: multiple scattering, multiple simultaneous interrogating directions,
dispersion and attenuation phenomena and velocity variations.

3.4 Scattering Modeling of the Tissues

The tissue function T (x, y, z) represents the scattering structure of the medium
and can be related to the continuum tissue structure via the Laplacian operator
applied to the compressibility distribution B(x, y, z): T (x, y, z) = Δ (B(x, y, z)).
Bamber and Dickinson in [3] proposed the following function T (x, y, z) describing
tissue echogeneity of a weakly inhomogeneous continuum in the far–field of an
ultrasound beam, formed by plane-waves propagating in the z-direction:
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where ρ and β are the density and compressibility functions, with reference val-
ues ρ0 and β0. Seggie suggested in [19] to modify this model and replace the
compressibility distribution with an impedance distribution Z3D(x, y, z), argu-
ing that for weak scattering, backscattering are mainly due to fluctuation in
impedance. Pursuing this approach, Meunier et al. [12] proposed to model the
impedance function with a common kernel function C(x, y, z) and a ”echogene-
ity” parameter an, which is proportional to the number of scatterers in a pixel:
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The parameters (σx, σy, σz) model the tissue cell dimensions and control the
modeling of tissue anisotropy while an controls the modeling of scatterer density
within scanned pixels, which depends on both the transducer and the tissue.
Because of important undersampling in the receiving mode of RT3D ultrasound
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transducers, assumption of large scatterers density (above 5 per pixel) can cer-
tainly be made in our simulation framework, leading to typical Rayleigh dis-
tributed RF signals as discussed in [12].

3.5 Model Simplification

In a 2D simulation framework, assuming that the diffraction angle in the elevation
direction y (i.e. the slice thickness) is very small, Meunier et al. in [12] further sep-
arated the transducer PSF in separated components H(x, y, z) = H(x, z)×H(y).
Combined with the approximation of the tissue function as the 2D derivative, in
the axial direction, of a 3D tissue function, they obtained a 2D RF image for-
mation model in the image plane (x, z). In this work, we did not use typical 2D
transducer parameters to set our acquisition parameters for a RT3D transducer,
as done in previous studies. Instead, we used available parameters from the com-
mercial Volumetrics machine from Duke University [26] and estimated unknown
parameters from sample RT3D ultrasound data. To approximate the actual image
resolution of commercial RT3D ultrasound transducers, we set the PSF parame-
ters to (1, 2, 0.5)mm for Full Width Half Maximum (FWHM) dimensions in axial,
lateral, and transverse directions. The corresponding PSF parameters (s2

x, s2
y, s

2
z)

can be derived using the relationship FWHM = 2.35 × standard deviation as
used in [12]. The transducer frequency was set to 3MHz (2.5-3.5 MHz can be used
with the Volumetrics transducer). The velocity of the acoustic wave in the human
body was set to the standard 1540m/s average value.

In medical ultrasound systems, H(x, y, z) is a narrowband signal. In this con-
text, the second order derivative operator in Eq.3 can be discarded since the
second derivative of a narrow-band is almost identical to the shape to the sign-
reversed signal itself. This assumption is also used to simplify the model in other
studies, explicitly in [10] or implicitly in [12,30].

3.6 Myocardium and Blood Cell Kernels Parameters Setting

We chose a 3D Gaussian to model the impedance inhomogeneities as in [12].
Thus, the general cell kernel function was expressed as a Gaussian function with
(σx, σy , σz) = (10, 10, 35) μm given the fact that myocardial cells are elongated
with dimensions around (20, 20, 70) μm. Since myocardial cells are tightly con-
nected and the myocardial fibers are parallel to each other at a scale of 100 or
1000 μm, a (1:1:3.5) ratio can be observed at the image pixel scale. Recent studies
on 2D or 3D ultrasound simulations only included modeling of the myocardium
tissue. Since in actual clinical RT3D echocardiography, both myocardium and
blood are imaged, we also built a tissue model for the blood. The average size of
the blood cells is about (10, 10, 2) μm. However, since blood cells are not tightly
connected to each others and pixel volumes are much larger than individual blood
cell volumes, the echogeneity within each blood pixel is mainly determined by
the number of cells within each pixel, a random variable with Poisson distribu-
tion. We used an = 10 or 30 to generate two volumes with different contrast
between blood and myocardium, as illustrated in Fig. 3. The simulation with
the highest density gave more satisfactory visual ultrasound data appearance.
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Fig. 3. Orthogonal views of a 3D ultrasound simulated volume of data: (top) low
density of scatterers in blood pool, (bottom) high density

4 Results and Discussion

We generated two sets of simulations for the normal and pathological (LBBB)
cases, varying the echogeneity parameters of the blood. These simulations pro-
vided very realistic volumes of images as illustrated in Fig. 3. We ran our OF
tracking algorithm on the simulated dataset with the highest blood density, to
compute the displacement vector field u on the endocardial and epicardial sur-
faces, initialized by the geometry of the first frame of the cardiac model. For
computational efficiency, challenged by the very high spatial resolution of the
simulated ultrasound data, we downsampled the point density on the myocardial
surfaces by 50(1/3) in each dimension, tracking about 500 points. Maximum dis-
placement values, from the model, between two consecutive frames was 13 mm
and rms angular displacements between consecutive frames between 10 and 75
deg. Accuracy of the motion field on the endocardial surface was computed via
magnitude and angular errors over the whole cardiac cycle, as illustrated in
Fig. 4. Epicardial tracking errors were very similar.

We also computed displacement maps from the true and estimated motion
fields between the first frame (initiation of the depolarization) and end–systole
(ES), after projection of the displacement vector field u in a cylindrical coordi-
nate system (r, θ, z), with the z axis oriented along the long axis of the ventricle.
In this coordinate system, and using the AHA 16-sectors partition of the LV, we
illustrate in Fig. 4 the circumferential component uθ, the radial component ur

and the twisting ∂uθ/∂z of the displacement vector field u of the myocardium.
Computation of these maps required tracking of the endocardial and epicardial
surfaces, spatial interpolation of the motion field with radial-basis functions as
described in [6] and correction for global translation of the myocardium between
the first frame and ES. Note that the twist values, being computed as derivatives,
need to be rescaled with respect to the sectorial height for physical values, which
averages 20mm. End–diastole corresponded to frame 4 or 5. We observed that
maximum error measurements occurred at end-systole (i.e. frame 10). We also
observed that specific displacement maps were very similar between the model
and the OF estimations on our simulated data. Motion patterns between the
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Fig. 4. Evaluation of displacements computed from optical flow (OF) on simulated
RT3D ultrasound data: (top) Angular and magnitude error measurements on the en-
docardial surface. (bottom) Dense myocardial displacement fields from OF tracking of
the myocardial surfaces.

normal and disease case were quite similar, as expected, since LBBB only incurs
delayed contractions of the LV.

Regarding motion estimation errors, in a recent study, [24], the authors evalu-
ated their OF method on simulated 2D ultrasound B-mode images, with Rayleigh
distributions, computed as the modulus of complex RF signals. Motion was sim-
ulated on a short-axis like slices, with area-preserving radial displacements and a
global translation. The overall velocity was set to a maximum of 2 pixels (versus
13 pixels for us). Results showed accuracy of angular estimates between 2.5◦

and 5◦, depending on the image SNR, and magnitude accuracy between 7% and
10%. We are below such accuracy but we remain within an average error of 2±4
pixels, despite very large displacements between consecutive frames.

5 Conclusions

Additional experiments will be performed to evaluate the accuracy of OF on
simulated data and evaluate the precision of OF displacement estimation in
additional disease cases, such as LAD, incurring local abnormal contractions.
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Regarding data assimilation perspectives, we emphasize that, once the procedure
has been validated using synthetic measurements such as described in this paper
the remaining difficulties in processing real data will focus on modeling aspects
not parameter estimation nor image processing issues.
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