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ABSTRACT

Transient elastography can be used to measure tissue elas-

ticity by applying a mechanical stress constraint and measur-

ing the velocity of propagation of the induced shear wave,

assumed to be proportional to tissue elasticity. In this paper

we study two original maximum-likelihood (ML) approaches

for shear wave velocity estimation on RF ultrasound signals

acquired with a transient elastography setup. For acquisitions

made with a line of sight (LOS) aligned with the directions

of propagation (DOP) of the shear wave, a simple parametric

model was derived from the theoretical Green’s function, en-

abling ML estimation of the elasticity. For non-aligned LOS

and DOP, an empirical approach was considered to learn a

simple time-delay model of the displacement field, using an

annotated database of simulated data. A ML estimator was

then defined to jointly estimate the angle of the LOS and the

elasticity of the tissue. The proposed methods were evaluated

on simulations, and RF signals acquired on phantom objects

and on volunteers, for liver screening. Results reported very

high accuracy, with elasticity errors of measures below 10%.

Index Terms— Ultrasound, transient elastography, tis-

sue elasticity, shear wave, maximum likelihood estimator,

Green’s function, liver fibrosis.

1. INTRODUCTION

During the last decade, several shear-wave based elastogra-

phy scanning approaches have been investigated for measur-

ing mechanical properties of biological soft tissues. Elastog-

raphy is particularly useful to assist practitioners to diagnose

liver fibrosis based on the assumption that the pathological

stage of the liver is directly related to its elasticity. Elasticity

is defined by the Young’s modulus E and is related, under lin-

ear elastic assumptions, to the shear wave velocity Vs inside

the liver, through the relation E ≈ 3ρV 2
s where ρ denotes the

mass density of the tissue [2]. Because most biological tissues

are essentially composed of water, ρ may be taken equal to 1.

In transient elastography, shear waves are generated using a

circular piston inserted in the center of a single-element ultra-

sound probe positioned on the surface of the skin. The piston

is excited with a short pulse, typically designed as a single pe-

riod of a sine wave, whose frequency ranges between 50 and

500 Hz. The shear wave velocity Vs is estimated through the

evaluation of point displacements within the liver. A common

way to access the displacement field is to use ultrasonic scan-

ning and measure correlations between successive RF lines

observed along a fixed line of sight (LOS) using the single-

element ultrasonic probe. Such approach assumes that the

LOS coincides with the direction of propagation (DOP) of

the shear-wave. This assumption can be altered significantly

if the LOS direction is not perpendicular to the liver interface,

due to diffraction phenomena. A recent study [1] has pro-

posed a multi-correlation computation and shape analysis of

depth correlation profiles to derive shear wave velocity val-

ues. The method claims to be independent of the direction of

the LOS but the estimator is based on a shape factor difficult

to predict and control in practice. In this work we propose an

alternative approach, formulating a parametrical model of the

displacements within the tissue and fitting this model with the

observations using a maximum likelihood (ML) criterion.

In wave propagation problems, an explicit relation be-

tween the stress constraint applied to a medium and the gen-

erated displacement field within this medium can be derived

with the Green’s functions. Boundary conditions must be

specified on the limits of the medium and the spatial extent

of the constraint. In our experiments, we considered that

the stress constraint is produced by a cylindrical piston act-

ing normally on the planar surface of a semi-infinite medium.

This setup corresponds to the one used in [3] to model the Fi-

broscan probe and motivated by the fact that the dimensions

of the organ being screened are greater than the wavelength

of the acoustic wave. An illustration of transient elastography

scanning setup is provided in Figure 1. In the case where the

DOP coincides with the LOS, the Green’s function was de-

rived in [3]. We show in this work that it can be used as a

parametric model to estimate the shear wave velocity Vs from

displacement measures made on RF lines. In the case where

the DOP does not coincide with the LOS, the Green’s func-

tion seems to be intractable. As an alternative, we propose

to formulate a simple model for the point-wise displacement

field in the medium as a delay function that depends on the
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scanning setup parameters.

Fig. 1. Setup of transient elastography scanning. Param-
eters include the direction of propagation (DOP) of the
shear wave and the line of sight (LOS) used to record the
RF lines. In the general case, the LOS can be shifted (by
a) and tilted (by angle θ) with respect to the DOP.

Using a simple delay model, we show that delay values

can be learned on a database of RF lines using a parametri-

cal regression approach. A ML criterion can then be used on

new measures to jointly estimate the shear wave velocity and

the direction of the LOS. Regarding the delay model itself,

we show on simulated data that a simple spherical model is

not valid but that a regression approach leads to an accept-

able time-delay model. In particular, assuming that the depth-

attenuation of the RF signals is also unknown, we were able

to derive an algorithm that estimates both the shear wave ve-

locity Vs and the angle θ between the DOP and the LOS.

2. DISPLACEMENT FIELD FROM GREEN’S
FUNCTION

The Green’s function for the shear wave propagation in a

semi-infinite medium stimulated by an impulse was derived

in [3], for a setup illustrated in Figure 1. Using a Cartesian

coordinate system (x1, x2, x3), a stress constraint s(t) is ap-

plied by a cylindrical piston with radius R, along the nor-

mal of the planar surface (x1, x2, x3 = 0) of a semi-infinite

medium. The piston is located at x1 = x2 = x3 = 0. In [3]

the probe is also located at the origin and the LOS coincides

with the DOP (i.e. θ = 0 and a = 0). The DOP corresponds

to the line x3 > 0 in the plane x2, x3. With this setup and

parameterization, it can be shown that the displacement field

within the medium has only one component u3(x3, t) along

the x3-axis that writes:

u3(x3; t) =
R2

ρ

1

(x2
3 +R2)3/2

∫ τs

0

τs(t− τ)dτ (1)

where τs =
√

x2
3 +R2/Vs. Using the expression (1), we

can therefore compute analytically the response of a medium

(characterized by its elasticity E through Vs) to a given

stress s(t), as a displacement field u3. We can measure dis-

placements within the medium, via RF signal observations

y sampled on time intervals Ts and spacing intervals Zs.

These measures are related to the displacement field within

the medium via the following simple model:

y[m,n] = β[m]u3[m,n;E] + w[m,n], (2)

where (m,n) ∈ [1M ]× [1N ], u3[m,n;E] = u3(mZs, nTs)
and β[m] is the unknown attenuation factor, which varies in

depth. The noise term w[m,n] encodes both the measure-

ment noise and the discrepancy between the model used to

compute the displacement of RF lines and the true displace-

ment. We denote by μ = (β,E) the parameter of interest.

Under Gaussian assumption, the maximum likelihood esti-

mation is obtained with a least-square criterion that writes:

μ̂ = argminμ
∑M

m=1

∑N
n=1 |y[m,n]− β u3[m,n;E]|2.

Minimization w.r.t. β yields:

Ê = argmax
E

∣∣∣∑m,n y[m,n]u3[m,n;E]
∣∣∣2∑

m,n y
2[m,n]

∑
m,n u

2
3[m,n;E]

(3)

Computing a close-form expression of Ê is out of range but

the maximization of Eq. 3 may be performed via exhaustive

testing on a fine grid of values of E.

2.1. ML estimation of Young’s modulus on displacement

FEM simulations

The elastography experiment was first simulated with a FEM

solver1 for a purely elastic medium and a simple geometry. In

this work we studied a cylindrical geometry (90 mm high and

90 mm wide), and different elasticity values. The cylindrical

piston of the experimental setup illustrated in Figure 1 was

simulated with a diameter R = 9 mm and the LOS coincided

with the DOP, normal to the planar interface.

The stress pulse was designed as a period of sinusoid at

150 Hz with apodization. We report in Figure 2, input and

output components of the FEM simulation, and in particular

the displacement field along a scan line, as a function of time.

The ML criterion maximized in Equation (3)) is also plotted

on elasticity grid values from 0 to 70 kPa by step of 0.2 kPa.

The maximum was reached at E = 12.0 kPa while the true

value used to generate the simulated displacement field was

12 kPa.

A series of comparison was performed between true and

estimated elasticity values for different stress pulse frequen-

cies (in the range [50 500] Hz) and different elasticity values

(in the range [6 60] kPa). Relative errors are reported in Fig-

ure 3, which all remain below 10%. This first series of ex-

periments confirms that maximization of the ML criterion is

1we used the FEM solver from the COMSOL Multiphysics software en-

vironment.
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Fig. 2. ML estimation of E on simulated data. (top left)
Simulated displacement field. (top right) Stress temporal
profile in arbitrary unit (A.U.) applied with a cylindric pis-
ton. (bottom right) Likelihood critrion in A.U. versus E.

capable of estimating accurately the elasticity of a medium,

exploiting an analytical expression of the displacement field

and simulated measures (using a FEM solver).

In-vivo experiments

We evaluated our proposed model on a phantom object (made

with gelatin material) and on in-vivo data acquired on four

volunteers. RF signals were recorded with the Fibroscan

(Echosens, Paris) which was also used to provide a reference

value of the elasticity of the medium. ML estimations of the

E values are reported in Table 1. This series of experiments

shows very high agreements of measures, with errors below

10%, and average errors of 6% for the phantom and 9% for

the volunteers.
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Fig. 3. Relative errors of ML elasticity estimations versus
stress frequency using FEM simultations with different E
values.

E (ML) E (FibroScan)

Phantom E = 31.18 kPa, E = 34.00 kPa

Phantom E = 27.36 kPa, E = 27.00 kPa

Phantom E = 6.66 kPa, E = 6.10 kPa

Volunteer E = 8.7 kPa E = 8.67 kPa

Volunteer E = 4.35 kPa E = 5.00 kPa

Volunteer E = 3.48 kPa E = 4.10 kPa

Volunteer E = 23.92 kPa E = 23.90 kPa

Table 1. In-vivo tissue elasticity estimations: E val-
ues from ML estimations on RF measures and from the
Fibroscan are reported for 2 series of experiments on
gelatin phantom objects and on volunteers.

3. EMPIRICAL TIME-DELAY MODEL FOR
DISPLACEMENT FIELDS

3.1. Empirical time-delay model

When the DOP does not coincide with the LOS, we do not

have an analytical expression of the Green’s function to com-

pute the displacement field. To circumvent this difficulty, we

propose to construct an empirical model of the displacement

field, based on numerical measures. We consider that the

source signal can be viewed as a point, located at the center

of the piston. As illustrated in Figure 1, we call z the linear

abscissa of the RF measures acquired along the LOS, a the

distance between the LOS and the center of the piston and θ
the angle between the LOS and the DOP. The piston located

at point O acts normally to the planar interface (x1, x2) where

x1 is orthogonal to the plane (x2, x3).
In this configuration, observation are made at positions:

x2 = a + z sin(θ), x3 = z cos(θ). We propose to express

the displacement field u(z; t) based on the following time-

delay model along the LOS:

u(z +Δz; t) = β(z)u(z; t−Δt)

where z is the linear abscissa along the LOS, and:

Δt = τ̃(z;E, θ) + T0 (4)

For example, in the case of a spherical wave propagation2, the

delay can be written as:

τ̃(z;E, θ) =
d(z; θ)√
E/3

, with

d(z; θ) =
√

a2 + z2 − 2az sin(θ)

(5)

We used FEM simulations, as previously described, with a

stress frequency s(t) of 100 Hz and a distance between the

LOS and the DOP set to a = 20mm. We then analyzed the

relation between the delay measured by maximum of corre-

lation on the simulated trajectories and the spherical delay

2Note that, for plane waves, the parameter θ is not identifiable.
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modeled in Equation (6). Comparison was performed for a

set of E values from 6 kPa to 60 kPa, with 6 kPa increments.

For each E value, we varied θ from −30◦ to 30◦ by steps of

5◦. We observed that no (E,θ) pairs lead to a validation of the

spherical model given by Equation (6). This initial observa-

tion highlights the need for empirical learning of the time de-

pendency of the delay with respect to the parameters z, E and

θ. We propose to learn the following empirical delay model:

τ̃(z;E, θ) = α0(E, θ) + α1(E, θ)d+ α2(E, θ)d2 (6)

where d(z; θ) is defined in Equation (5). The regression pa-

rameters αi, i = 0, 1, 2 were learnt as a double-entry array

depending on (E, θ), on a database of FEM-based simulated

data.

3.2. Model of RF-based displacement measures

Working with the time-delay model defined in Equation (6)

and learned on simulated data, we can derive a model for the

RF-based displacement measures within the tissue, as:

y(z, t+ τ̃) = β(z)us(t) + b(z, t) (7)

where us(t) denotes the generic shear-wave displacement

front, β(z) is an unknown attenuation term depending on z,

and b(z, t) is the measurement noise assumed to be centered

Gaussian with unknown variance σ2. The signal us(t) is also

assumed to be Gaussian, centered, with unknown variance

σ2
s . Measures are acquired on time intervals Ts and spatial in-

tervals Zs. We let u[m,n; θ, Vs] = u(mZs, nTs+τm(θ, Vs)),
us[n] = us(nTs) and b[m,n] = b(mZs, nTs) and write:

y[m,n; θ, Vs] = β[m]us[n] + b[m,n] (8)

For m ∈ [1 · · ·M ], concatenating the M observations as a

vector, we may write in vector forms:

y[n; θ, Vs] = βus[n] + b[n] (9)

Under Gaussian assumption, the likelihood function can be

derived and its maximization w.r.t. β, σ and s has a close form

expression, that is based on the eigenvectors of the empiri-

cal covariance matrix of the delayed signals. Maximization

w.r.t. θ and Vs has to be performed numerically, via exhaus-

tive search. Shannon’s interpolation was used on non-integer

delay values.

3.3. Experiments on joint estimations of (E,θ)

A set of FEM simulated data was generated with the fol-

lowing parameters: stress frequency of 100 Hz, LOS shift

a = 20mm, θ in [−30◦ + 30◦] with increment steps of 5◦

and E in the range [6 60] kPa with increment steps of 6 kPa.

In total 130 files were generated with the FEM solver: 102
files were used for learning the regression coefficients of the

linear model in Equation (6), and 28 files were used to test

the joint ML estimator of E and θ. Pairs of values (E, θ) to

estimate in the test database were not represented in the learn-

ing database. Results, reported in Figure 4, reported a relative

error smaller than 5% for the Young’s modulus.
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Fig. 4. Box and whiskers plots of the relative errors for E
and θ estimations, on FEM simulated data

4. CONCLUSION

In this work, we proposed a parametrical statistical model and

a maximum likelihood estimation of Young’s modulus E for

transient elastography screening setup. Two configurations of

interest were studied to derive models of displacement fields

within a tissue: (1) when the LOS and DOP coincide (θ = 0),

we proposed a model derived from the Green’s function, (2)

when the LOS and DOP are not aligned (θ �= 0), we proposed

an empirical time-delay model learned on a database of ob-

served motion fields for varying experimental conditions w.r.t.

(E, θ). For the first case, numerical results on simulations and

in-vivo RF data acquired showed very high agreement with

reference values. The second approach was evaluated on sim-

ulated data, where the LOS direction was perfectly controlled.

Results demonstrated the capability to perform elastography

measures without the need to align the LOS and the DOP, and

opens a path to new elastographys scanning setups.
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