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ABSTRACT

Recent improvements of fetal MRI acquisitions now allow three-
dimensional segmentation of fetal structures, to extract biometrical
measures for pregnancy follow-up. Automation of the segmentation
process remains a difficult challenge, given the complexity of the fe-
tal organs and their spatial organization. As a starting point, we pro-
pose in this paper a fully automated segmentation method to localize
the eyes and segment the skull bone content (SBC). Priors, embed-
ding contrast, morphological and biometrical information, are used
to assist the segmentation process. A validation of the proposed seg-
mentation method, on 24 MRI volumes of fetuses between 30 and 35
gestational weeks, demonstrated a high accuracy for eyes and SBC
extraction.
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1. INTRODUCTION

MRI constitutes a good adjunct to echography for pregnancy follow
up [1]. Higher image quality and shorter acquisition times have led
to an increase in the number of MRI exams performed. However,
very few works have been dedicated to automatic segmentation of in
utero fetal structures, except for brain segmentation [2, 3, 4] on data
with field of views restricted to the fetal head.

Segmentations of other fetal structures are desirable to closely
monitor fetal growth. As an example, a precise estimation of the
fetus weight could be derived from biometrics measures, which is
crucial when obstetricians need to plan for an optimal delivery pro-
cedure in case of fetal macrosomia (oversized fetuses). Using the
Steady State Free Precession (SSFP) sequence, whole uterus MRI
volumes can be acquired in less than 30 seconds, thus limiting imag-
ing artefacts related to fetal motion. Moreover, the SSFP sequence
provides adequate image quality for segmentation of fetal structures
[5]. However, the MRI images contain complex information to pro-
cess: (1) the SSFP sequence is highly sensitive to magnetic field
inhomogeneity; (2) as a wide field of view is used, numerous mater-
nal, uterine and fetal structures are visible; (3) the fetus orientation
within the uterus (and hence with respect to the acquisition direc-
tion) is unknown. Our approach to process those images consists
in identifying an initial structure in the fetal anatomy, to improve
the knowledge of the fetal position and initialize the whole fetus
segmentation process. Then, segmentation of neighboring organs
can be performed sequentially in narrow regions of interest, using
anatomical spatial relationships.

In this work, we use the eyes as initial structures, motivated by
three factors: a fetal eye is small enough to be considered insensitive
to image inhomogeneity, its spherical shape is rotationally invariant
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and it highly contrasts with its surroundings. We propose an eye-
extraction scheme based on template matching. By explicitly using
the eyes localization, the neighboring skull bone content (SBC) is
then segmented using a graph cut approach. Shape, contrast and
biometrical priors are used to guide both segmentation tasks.

2. FETAL IMAGING AND PROBLEMOVERVIEW

A database containing 24 MRI volumes of fetuses between 30 and
35 gestational weeks was gathered. All the images were acquired
with the SSFP sequence on two 1.5 Tesla superconducting units
(Magnetom, Siemens c©, Erlangen, Germany and Avanto, General
Electric c©, Milwaukee (WI), United States). Typical acquisition pa-
rameters were: TR/TE = 4.2/1.8 ms, flip angle = 60◦, FOV = 480,
slice thickness/gap = 4/0 mm, matrix = 512×512, while voxel size
were 0.94 x 0.94 x 4 mm3. An MRI slice is shown in Figure 1, with
the structures of interest (fetal eye and SBC) outlined respectively
in green and red. The SBC includes the brain and the cerebrospinal
fluid and is delimited by the boundary between the cerebrospinal
fluid and the skull bone. Due to the T2-weighting component of
the SSFP sequence, voxels intensity is strikingly higher in aqueous
tissues than in fetal soft tissues and fetal bones. This explains why
(1) the eye, which contains fluid-filled chambers, is brighter than the
surrounding muscles and (2) the cerebrospinal fluid, which water
content is about 99%, appears brighter than the skull bone.

Fig. 1. 2D slice of an MRI volume Ik of the database. The eye is
outlined in green and the SBC in red.

Figure 2 illustrates the different steps of the overall segmentation
framework. (a) The eyes are detected in the whole image Ik using
an appearance model. (b) The midsagittal sliceMk is reconstructed
thanks to the eyes centers localization and the SBC is segmented,
taking advantage of the closeness between the SBC and the eyes
centers. (c) Orientation, position and scale information is extracted
from the SBC segmentation in Mk, to perform a precise 3D seg-
mentation.

Simple appearance models are built to guide the segmentation
of fetal eyes and SBC. Contrast priors between those structures
and their surroudings are embedded in the segmentation process, as
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(a) (b) (c)
Fig. 2. Main steps of the proposed segmentation framework. (a)
Eye detection in the image Ik. (b) Extraction of the midsagittal slice
Mk using the eyes centers and 2D segmentation of the SBC. (c)
3D segmentation of the SBC using orientation, position and scale
information extracted from 2D segmentation inMk .

well as shape and biometrical priors. Those last two priors rely on
information extracted through manual tracing on the image database.
The eyes diameter d and the distance D between their centers E1

and E2 were measured, while the SBC was manually segmented to
extract shape information.

Considering the limited number of cases available in our
database, the different steps of the proposed segmentation frame-
work were validated using a leave-one-out cross validation proce-
dure. When an image Ik is processed, a training database DBk is
considered. DBk corresponds to the whole database, leaving Ik out.

3. EYES DETECTION

3.1. Eyes appearance modeling

Let μd and σd be the mean and the standard deviation of the eye
diameter d on the database. We measured μd = 15.03 mm and
σd = 0.74 mm. Since σd is small (because the fetuses in our
database are of similar gestational ages and do not exhibit any eye
development pathology), the eye diameter is well modeled by using
only μd. Considering the contrast and shape priors presented above,
an eye template E is built, modeling the eye as a ball of diameter
μd, brighter than the background. The typical image resolution in
our database is (rx, ry, rz) = (0.94, 0.94, 4). rz and μd are of the
same order of magnitude and the eye is affected by partial volume
effect as shown in Figure 3 (a,d). We propose to take into account
these visual artefacts.

A first isotropic templateE′ is considered at a resolution r′ finer
than r (Figure 3 (b,e)). Let v′ be a voxel of E′. E′ is then down-
sampled at the resolution r to obtain E (Figure 3 (c,f)). Let v be a
voxel of E and V be the set of voxels v′ contained in v. The par-
tial volume effect being a mixture of multiple tissues inside a given
voxel, we model the intensity of v as the mean intensity of the voxels
belonging to V . This is an approximation of the actual MRI acqui-
sition sampling process, but this is sufficient to generate a realistic
template.

3.2. Eyes localization

A set of eye candidates {ECi} is computed using template match-
ing. As a similarity measure, we use the normalized cross-correlation,
which presents several advantages, such as being only sensitive to
local contrast information. This is a key feature as the images ob-
tained with the SSFP sequence are heterogeneous which can lead to
great intensity variations in the eye and its surroundings from one
image to another one. A normalized cross-correlation coefficients
map (N3C) is computed using the templateE, and then thresholded
at a value t. Connected components are identified in the thresholded

(a) (b) (c)

(d) (e) (f)
Fig. 3. Eye appearance model: central slices of an image Ik across
one eye (a,d), E′ (b,e) and E (c,f). (a,b,c) and (d,e,f) are slices in
(X, Y ) and in (X, Z) planes respectively. Image spatial resolutions
are r′ = (0.1, 0.1, 0.1), for E′, and r = (0.94, 0.94, 4), for E and
I , in millimeters.

map and one eye candidate {ECi} is extracted in each connected
component, corresponding to the maximum of N3C in the compo-
nent. The threshold value t is extracted from the N3C distribution
considering all the images in the training database DBk . With
μN3C and σN3C the mean and standard deviation of N3C, we use
t = μN3C + 2σN3C .
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Fig. 4. Eye detection on an image Ik: (a) connected components
extracted from the thresholded N3C map, overlayed on a slice of
Ik, (b) ten best ECi, (c) membership function f(Dij) and (d) ten
best Sij . The blue color identifies the results corresponding to the
eye centers.

All couples (ECi, ECj) of eye center candidates are then con-
sidered. The distance Dij between ECi and ECj is computed
and a soft selection is proposed to discard couples separated by in-
appropriate distance, building a trapezoid membership function f
with keypoints (k1, k2, k3, k4). Using the mean μD and the stan-
dard deviation σD of the inter-eye distance D in DBk , keypoints
are defined as (k1, k2, k3, k4) = (μD − 4σD, μD − 2σD, μD +
2σD, μD + 4σD). Combining conjunctively f(Dij) with the N3C
values of ECi and ECj (N3Ci and N3Cj ) leads to the scoring
function Sij = N3Ci.N3Cj .f(Dij), which is computed for every
couple and identifies the couple with the highest score as the fetus
eyes (E∗

1 ,E∗

2).
Figure 4 shows intermediate results when applying the algorithm

to an MRI volume Ik. On this image, t = 0.53 and 59 connected
components were extracted from the thresholded N3C map using
this value, which remains reasonable. In (a), the connected compo-
nents are plotted in a slice containing an eye center (blue compo-
nent). The ten best ECi are shown in (b), ordered by decreasing
N3Ci. The best two correspond to the eyes centers (blue circles).
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The selection function f , built with μD = 33.2 mm and σD = 2.4
mm, is shown in black (c), along with the evaluation of the couples
such that Dij < 100. The couple corresponding to the eyes cen-
ter returned 1 (blue circle) while 97.4% of the couples returned 0,
demonstrating the high selectivity of f . Finally, (d) presents the ten
best (ECi, ECj), ordered by decreasing Sij . (E∗

1 ,E∗

2), correspond-
ing to the highest Sij , indeed matches the fetal eyes in the image.

For two MRI datasets Ik, the eyes centers did not correspond to
the best two ECi. However, the use of f discarded all false posi-
tives and the eyes centers were detected successfully on the whole
database. The average discrepancy between the eyes centersE∗

i pro-
vided by the algorithm and those manually localized Ei, i ∈ {1, 2},
was 1.7 mm and a precise detection was hence performed.

4. SKULL BONE CONTENT SEGMENTATION

4.1. Skull bone content modeling

We now consider the SBC, defined as the volume delimited by the
boundary between the skull bone and the cerebrospinal fluid. Sev-
eral factors prevent the use of an appearance model, as was done for
the eyes, for the SBC segmentation. First, important changes affect
the fetal brain during the gyration phase, which occurs from the 28th
to 35th gestational week and therefore concerns the fetuses in our
database. During this phase, the SBC presents variable visual char-
acteristics. Moreover, the fetal head surroundings can include differ-
ent maternal and uterine structures, depending on the fetal position.
Finally, given the SBC size, field inhomogeneities make the inten-
sity of the SBC structures variable and cannot be neglected. Hence,
a different approach is adopted and an average shape model is built
using the SBC manual segmentations. Leaving Ik out, binary seg-
mented shapes in DBk are registered using a similitude transform
and averaged in order to derive a mean shape model of SBC de-
noted SM . Figure 5 illustrates one SM . It is important to point out
here that the different SM are very similar, showing a weak sensi-
tivity to the Ik left out of the training set. Therefore, any SM could
be used to process a new image added to the database.

(a) (b) (c)
Fig. 5. 3D mean shape model SM . (a) Right, (b) anterior and (c)
inferior views.

SM and a contrast prior between the cerebrospinal fluid and the
skull bone are combined in a segmentation process involving two
steps. Firstly, the midsagittal slice Mk is extracted using (E∗

1 , E∗

2 )
and the SBC is segmented in this slice, to fully determine the fetal
head orientation and initialize the 3D segmentation of the SBC. In-
deed, E∗

1 and E∗

2 define the lateral orientation of the fetal head, but
anterior-posterior and inferior-superior orientations are unknown.
Secondly, the 2D segmentation of SBC is used to precisely embed
the shape model SM in the 3D data, and perform a narrow-band 3D
segmentation of the SBC.

4.2. Skull bone content segmentation in the midsagittal slice

Let Ē be the center of the [E∗

1E∗

2 ] segment. The midsagittal slice
Mk, passing through Ē and orthogonal to

−−−→
E∗

1E∗

2 , is reconstructed.
Let SM2D denote the 2D mean shape model of SBC corresponding

to the midsagittal slice of SM . For different locations and orienta-
tions of SM2D , a segmentation is performed in a narrow-band, pro-
viding different SBC candidates. The best one is then selected as
the most similar to SM2D . The details of the method are as follows.

SM2D is translated in order to be at a proper distance from Ē,
and L orientations of SM2D are considered, rotating SM2D around
Ē with angles θl = (l2π)/L, l ∈ [0, L − 1[. Let SM l

2D be SM2D

rotated with the angle θl. SM l
2D is eroded and dilated to provide

two objects ε(SM l
2D) and δ(SM l

2D), which are used to define a
narrow-band NBl = δ(SM l

2D)\ε(SM l
2D). A graph cut segmenta-

tion is performed in NBl [6]. Oriented edges are created between
neighboring pixels. Two special nodes, the source S and the sink T ,
are added. Edges are created between (1) S and the pixels of NBl

adjacent to ε(SM l
2D) and (2) T and the pixels of NBl adjacent to

δ(SM l
2D). The minimal cut of the graph provides a binary segmen-

tation corresponding to a minimal path in the region located between
the source and the sink, considering the edge weights. Let p and q
be two neighboring pixels and Ip and Iq their intensity. The weight
of the edge linking p to q is defined as wpq = e−(Ip−Iq)2/2σ2

, if
Ip > Iq, and wpq = 1, if Ip ≤ Iq. This weighting includes contrast
prior [7]. As the cerebrospinal fluid is brighter than the skull bone,
edges linking cerebrospinal fluid pixels to skull bone pixels have a
low weight. Thus, those edges are prone to belong to the minimal
cut. The segmentation result provides the brain candidate SBCl

2D in
the position l. The similarity between the brain candidates shape and
the shape model is evaluated by computing the kappa measure κl be-
tween SBCl

2D and SM l
2D for each orientation. The final SBC2D

segmentation result, denoted by SBC∗

2D , corresponds to SBCl
2D

for which κl is maximum.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 6. SBC segmentation in 2D. (a) A midsagittal slice Mk .
(b,c,d,e) The narrow-bands NBl and (f,g,h,i) the brain candidates
SBCl

2D (orange) segmented inNBl, overlayed on the rotated shape
model SM l

2D , for θl ∈ {0, π/2, π, 3π/2}.

We have used L = 24 rotation steps and σ = 4 in all the ex-
periments. The erosion and dilation radius used to generate NBl

(Re and Rd respectively) are learned from DBk , using manual seg-
mentations of the SBC2D , denoted SBCman

2D . Let re and rd be
the minimum erosion and dilation radius garanteeing that there ex-
ists an l0 ∈ L such that ε(SM l0

2D) ⊂ SBCman
2D and SBCman

2D ⊂

δ(SM l0
2D) for any element ofDBk . We ended up using Re = 0.5re

andRd = 1.5rd, to tolerate SBC2D to segment to be smaller or big-
ger than all SBC2D represented in DBk and to ensure that bound-
aries are included in a given NBl.

Figure 6 presents the midsagittal sliceMk from one dataset and
intermediate results for θl ∈ {0, π/2, π, 3π/2}. For this image
Re = 20, Rd = 18. Figure 7 plots κl values for all θl. The high-
est κl was obtained for θl = 3π/2 and SBCl shown in Figure 6
(i) corresponded to SBC∗

2D. For each element of the database, the
mean distance, the kappa measure and the Hausdorff distance were
computed between SBC∗

2D and SBCman
2D . The mean values on the
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whole database for each indicator are noted μmd, μκ and μhd re-
spectively. We obtained μmd = 0.7 mm, μκ = 0.98 and μhd = 3.9
mm, providing a very good agreement between manual and auto-
matic segmentations of SBC inMk.

Fig. 7. Values of κl depending on θl (L = 24). The highest score
is obtained for θl = 3π/2. See Figure 6 (i) for the corresponding
result.

4.3. Skull bone content segmentation in 3D

SM is first scaled using the areas ratio between SBC∗

2D and SM2D ,
before being embedded in Ik using the centroid and the principal
directions of SBC∗ as shown in Figure 2 (c). The registered SM is
noted T (SM). An algorithm similar to the one used for the SBC
detection in Mk is used. T (SM) is eroded and dilated to provide
two objects ε(T (SM)) and δ(T (SM)) in order to build the narrow-
band NB = δ(T (SM))\ε(T (SM)). A graph cut segmentation
is performed in NB, the graph being built as explained in Section
4.2, considering 3D neighborhoods and weights wpq including the
distance between voxels. We set wpq = e−(Ip−Iq)2/2σ2

/dist(p, q),
if Ip > Iq, and wpq = 1/dist(p, q) if Ip ≤ Iq.

The mean kappa measure between the SBC manual segmen-
tation SBCman and T (SM) was 93% on the database. This high
accuracy of the registration process derives directly from the good
quality of the SBC segmentation in Mk. The erosion and dilation
radiuses used to generate NB are learned from DBk using the ap-
proach presented in Section 4.2. T (SM) being close to the SBC
boundaries, small radiuses are considered. Hence, a very constrained
NB is defined which is crucial to obtain a correct segmentation of
the SBC. As a matter of fact, partial volume effect degrades SBC
boundaries on some slices, thus lowering the contrast between the
cerebrospinal fluid and the skull bone. When a wide SR is consid-
ered, preliminary tests have shown some leakage in the segmentation
result due to weak contrast.

The kappa measure between the manual segmentation SBCman

and the segmentation result has been evaluated for different σ val-
ues. Similar results were obtained for σ ∈ [2, 5] showing the robust-
ness of the algorithm. The mean value of the mean distance μmd,
the kappa measure μκ and the Hausdorff distance μhd were com-
puted between the segmentation result and SBCman considering
the whole database. High precision segmentations were obtained:
μmd = 0.5 mm, μκ = 0.98 and μhd = 3.4 mm. Figure 8 presents
the SBC segmentation result in orthogonal views for one Ik.

5. CONCLUSION

A fully automatic method is proposed to segment the skull bone con-
tent on fetal MRI. The fetal eyes are first localized using a template
combining contrast, shape and biometric priors. Based on the eyes
localization, the midsagittal planeMk is reconstructed and the SBC
is segmented in Mk. This intermediate 2D segmentation result is
used to embed a SBC shape model in the 3D data, in order to seg-
ment the structure in a restricted region. The segmentation is per-
formed using a graph cut approach on a graph exploiting contrast
priors. Precise segmentation results were obtained on 24 fetal MRI

(a) (b) (c)

(d) (e) (f)

Fig. 8. 2D slices and SBC boundary in (X,Y) (a), (X,Z) (b) and
(Y,Z) (c). 3D reconstruction of the segmentation in right (d), anterior
(e) and inferior (f) views.

cases, which can be used for morphological and biometrical analysis
of the fetal SBC. The whole segmentation process takes less than 5
minutes on a 3.5 GHz PC running MATLAB (The MathWorks Inc.).

The method is applied on images on which the fetus orientation
is unknown. The fetal eyes localization and the SBC segmentation
provide information on the fetus head orientation. Benefiting from
the detection of the fetal spine root in the SBC, the segmentation of
the fetus spine is now in progress, in order to increase the knowledge
on the fetus trunk orientation and size. Further works will include
a segmentation of the brain in the SBC to extract morphological,
biometrical and maturation information.
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