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Abstract. Real-time acquisition via four-dimensional (3D plus time) ultra-
sound obviates the need for slice registration and reconstruction, leaving
segmentation as the only barrier to an automated, rapid, and clinically appli-
cable calculation of accurate left ventricular cavity volumes and ejection
fraction. Speckle noise corrupts ultrasound data by introducing sharp
changes in an image intensity profile, while attenuation alters the intensity of
equally significant cardiac structures, depending on orientation with respect
to the position of the ultrasound beam. These properties suggest that meas-
ures based on phase information rather than intensity are appropriate for de-
noising and boundary (surface) detection. Our method relies on the expan-
sion of temporal volume data on a family of basis functions called Brushlets.
These basis functions decompose a signal into distinct patterns of oriented
textures. Projected coefficients are associated with distinct “brush strokes”
of a particular size (width) and orientation (direction). Brushlet decomposi-
tions are invariant to intensity (contrast range) but depend on the spatial fre-
quency content of a signal. Preliminary results of this directional space-
frequency analysis applied to both phantoms and clinical data are presented.
The method will be used to clinically evaluate 4D data and to extract and
quantify heart LV volumes.

1 Introduction

Cardiologists are excited about the opportunity for improved clinical and diagnostic
performance via new 3D and 4D cardiac acquisition techniques, as they can view a
heart at any angle with only one acquisition sequence. This represents a great potential
cost savings for health care management as a patient would not need to be recalled in
case a traditional echoplanar view did not reveal some crucial aspect of heart function.
Also, cardiologists believe that a new visualization tool for displaying volumes in time
would improve their diagnostic accuracy regarding tissue characterization and per-
formance measures, such as cardiac output (CO) and ejection fraction (EF), by re-
ducing the (inter-physician) variability of these measures.
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Motivation: A diversity of modalities allows for the acquisition of dynamic se-
quences of cardiac volumes such as CT, Tagged MRI, SPECT and ultrasound. Echo-
cardiography is the fastest, least expensive, and least invasive method for imaging the
heart. The simplest and most useful clinical parameter used to assess cardiac function
is ejection fraction (EF), calculated as the difference between end diastolic and end
systolic left ventricular volumes. However, accurate calculations of ventricular volume
from standard echocardiographic data are tedious and costly to employ clinically. This
is because existing methods require time to digitize endocardial borders on a series of
two-dimensional images, then register the image set and reconstruct each cavity vol-
ume.
Real-time acquisition via three-dimensional ultrasound obviates the need for slice
registration and reconstruction, leaving segmentation as the remaining barrier to an
automated, rapid, and therefore clinically applicable calculation of accurate left ven-
tricular cavity volumes and ejection fraction.
Because it provides such a rich description of the temporal and spatial environment of
any area of interest, three-dimensional ultrasound also offers the potential for in-
creased sensitivity in detecting subtle wall motion abnormality indicative of ischemia
(for example during an exercise stress test), compared to fast MRI techniques.

Existing Methods: State of the Art. Extraction of cardiac volume and quantitative
analysis of wall deformation is of great interest to researchers in the field of medical
imaging. Multigated radionuclide angiography (MUGA) and 2D echocardiography
(2DE) are traditional screening techniques used in echocardiography. The main draw-
back of MUGA is that it requires the injection of a radiopharmaceutical agent. The 2D
echocardiography technique is limited by its geometric resolution and by low signal-
to-noise ratios (SNR) intrinsic to ultrasound images. Advanced invasive techniques
such as Xray-CT and high cost nuclear modalities such as Tagged MRI and SPECT
offer excellent resolution in space and time.

The majority of the volume extraction methods are based on prior models of the
entire heart or of the left ventricle only. The parametrization of the model generally
uses Finite Element models where the volume is constructed after deformation of the
model following physics based constraints for equilibrium. Movement of the cardiac
wall extracted from temporal data requires some parametrization of the model.
Duncan et al. used contour shape descriptors in [1], Ayache; Cohen et al. [2] have
used superquadratics. The nature of the constraints varies between models and can
take a wide range of properties, including differential constraints [3], displacement
and velocity constraints [4] as well as other constraints allowing for non-rigid move-
ments.

Temporal Quantification: A dynamic Measure of CO. As a precursor for vol-
ume extraction, our data required some preprocessing to increase available SNR. In-
deed it seems that any effort to build a 3D model and apply some deformation to iso-
late the LV volume from the raw data would be pointless because of the poor signal
available for feature analysis. Following this statement, we employed multiscale de-
noising as a preprocessing step to volume extraction. The design principle of our de-
noising method relies on the expansion of temporal volume data on a family of basis
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functions called Brushlets, introduced in 1997 by Meyer and Coifman [5]. These basis
functions offer a decomposition of a signal into distinct patterns of oriented textures.
In 2D, depending on the tilling of the L2 domain chosen prior to analysis, the projected
coefficients are associated with distinct “brush strokes” of a particular size (width) and
orientation (direction). Final denoising is achieved with the construction of gradient
maps, thresholding of selected coefficients and reconstruction of an “en-
hanced/denoised” volume. The reconstructed data serves as an initial guess for volume
extraction. The potential of the proposed methodology resides in the mathematical
assertion that the problem of 3D surface denoising and detection is more constrained,
more accurate in localization (time and space) and more robust when compared to
traditional methods of 2D denoising and segmentation.

2 Motivation and Methodology

Raw data acquired from 4D ultrasound has specific characteristics relevant to
problems in segmentation. Feature detection should be robust to speckle noise and
attenuation artifacts. Speckle noise corrupts the data by introducing sharp changes in
an image intensity profile, while attenuation alters the intensity of equally significant
cardiac structures, depending on their orientation with respect to the position of the
ultrasound beam. These acquisition properties suggest that measures based on phase
information rather than intensity might be more appropriate for denoising and edge
detection. This idea was first expressed and developed on ecocardiography images in a
paper by Noble et al. [6, 7]. Their work showed promising results and improvement in
the quality of edges detected in the spatio-temporal domain in comparison to the
Deriche intensity-based method [8]. Moreover, it is interesting to note that the brushlet
decomposition is invariant to intensity and contrast range of an image but depends on
the spatial frequency content of a signal. This makes it a very attractive and powerful
basis for the analysis of 4D cardiac ultrasound where choosing a single global inten-
sity-based edge threshold is not possible due to position dependent attenuation.

Powerful denoising and segmentation methods have been developed in the context
of wavelet analysis [9, 10]. The intuitive principle used in this framework is to con-
sider a domain where features of interest in a signal can be decorrelated from noise
allowing for a selective reconstruction of the signal features alone. Wavelet basis
functions are characterized by finite time support and localized spectrum in the Fou-
rier domain. Wavelet orthogonal bases are constructed by scaling and translating a
single “mother wavelet function”. This framework introduces the notion of shift in
time and scale, providing a time-scale representation of a signal via wavelet coeffi-
cients. Brushlet functions have similar mathematical properties to wavelet functions.
A wavelet scale is analogous to a brushlet “brushstroke” characterized by a specific
size and an orientation. A brushlet decomposition is carried out on subquadrants of the
Fourier domain, where tiling of the domain is analogous to the shifting of wavelet
functions, and strong gradient in the transform domain means a discontinuity of pat-
tern orientation. The coefficients do not rely on pixel intensity but on spatial fre-
quency alone.

An overcomplete scheme is essential for accurate preservation of spatial informa-
tion (features) in the original data set [11].
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Brushlet Basis

Brushlet functions are complex valued and well localized in the frequency domain.
Their construction is based on a windowed Fourier transform of the Fourier transform
of an image. A windowed Fourier basis of the Fourier plane provides a more flexible
angular resolution than wavelet packets [12]. The projection on this orthonormal basis
of )(2 ℜL provides a decomposition of an image along distinct texture orientations.

The initial idea motivating the construction of the brushlet is the desire to build an
orthonormal basis of transient functions with good time-frequency localization. For
this purpose, windowed complex exponential functions have been used for many years
in the context of the sine and cosine transforms. Similarly, Meyer and Coifman intro-
duced a division of the real axis into the subintervals [ ]1, +nn aa , and a new set of basis

functions:
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The windowing functions nb and v and the basis function nju , are displayed in

Figure 1.

(a) (b)

Figure 1: (a), Windowing function b
n
, and bump function v defined on the interval [an-ε, an+1+ε].

(b), real part of brushlet basis funtion u
j,n

defined for j=5, l
n
=8, and ε=4.

Suppose we call f a given signal and f̂ its Fourier transform. We can project f̂ on

a brushlet basis, jn
n j

jn uff ,,
ˆˆ ��= with jnu , the brushlet basis function and jnf ,

ˆ the

brushlet coefficients. By applying an inverse Fourier transform, we can compute a

decomposition of f, jn
n j

jn wff ,,
ˆ��= on the orthonormal basis jnw , , the inverse Fourier

transform of jnu , .

The projection of f
�

on jnu , is efficiently implemented by a folding technique de-
scribed by Wickerhauser in [13] and fast Fourier transform (FFT). The reconstruction
is simply computed in the same manner by an inverse Fourier transform and unfolding
operation.

The 2D and 3D implementations are a direct extrapolation of the 1D projection
computation using a tensor product structure. For the 2D brushlet function basis, the x
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and y axis are divided into subintervals and on each interval, we define a set of or-
thonormal 2D basis functions kmnj uu ,, ⊗ and their inverse Fourier transform pair

kmnj ww ,, ⊗ .

An illustration of sample 1D and 2D brushlet basis functions computed in this
fashion is shown in Figure 2, below. We can observe the difference in spatial and
frequency resolution obtained with two different window sizes of b. A good spatial
resolution corresponds to a window with small support and is associated with less
frequency resolution as shown in Figure 2(a.2-b.2-c.2). Good frequency resolution
corresponds to a window with small support and is thus associated with less spatial
resolution as shown in Figure 2(a.1-b.1-c.1).

(a.1) (b.1) (c.1) (a.2) (b.2) (c.2)

Figure 2: Two-dimensional brushlet basis functions kmjn uu ,, ⊗ for j=5, ε=4, (a) l
n
=16, (b) l

n
=8.

(a.1-a.2), Selection of size of the quadrants in the Fourier plane for windowing with b. (b.1-b.2),
Real part of 1D brushlet basis function . (a.3-b.3), Real part of 2D brushlet basis .

As the number of quadrants increases, the frequency resolution and the number of
distinct brushlet orientations represented increases, while the size of the brush stroke
and its spatial resolution decrease at the same time. This tradeoff between spatial and
frequency resolution is analogous to the Nyquist uncertainty principle for spectral
analysis. We illustrate these theoretical properties in Figure 3 with the use of two
mathematical phantoms. To best demonstrate the directional selectivity of a brushlet
quadrant we chose as a first example, in Figure 3(a.1 -b.1), a non-specific oriented
circular pattern with variable spatial frequency in every direction (concentric circular
bands of variable size and gray values). The second phantom, in Figure 3(a.2-b.2), is a
2D representation of a chirp signal.
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Figure 3: (a.1), A mathematical phantom with concentric bands of variable size and
gray value. (a.2), Chirp signal in 1D. (b.2), Cross-product of the 1D signal displayed
as an image. (b.1 - c.2), Modulus of the brushlet coefficients for a tiling of the Fourier
domain into 4 quadrants (b.1) and 16 quadrants (c.2). Note the different pattern ori-
entations in distinct quadrants.
The implementation of this analysis in three dimensions is straightforward. The tensor
product structure of the basis allows a direct extrapolation of the 1D case to both 2D
and 3D. In terms of implementation, for a given volume data, its 3D Fourier transform
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is first computed, then each sub-block is folded along the three directions and finally
expanded into a 3D exponential basis by a 3D Fourier Transform.

Multiscale Analysis

As described above, the brushlet serves as a basis for analysis of the Fourier transform
of the original signal and not the signal itself. The number of subintervals along each
dimension of the signal (3 for a volumetric data set) and their position in transform
space determine the size and the orientation of the brushstroke. The notion of tiling of
the Fourier domain of the signal prior to analysis is illustrated in Figure 4.

(a) (b) (c)

Figure 4: Tiling of the Fourier domain prior to projection on the brushlet basis. (a), Original
Fourier Transform of the volume data. (b), Tiling of the Fourier domain into 4 quadrants by
dividing each direction in two. Each cube is half the dimension of the original data in each
direction. (c), Tiling of the Fourier domain into 64 cubes by dividing each direction by four.
Each cube is thus four times smaller than the original volume.

The tiling of the Fourier sub-spaces determines the number distinct directional
brushlet basis used for the analysis and their size (i.e., the more quadrants defined, the
more angular directions for a particular brush stroke are available). The coefficient
domain is the same size as the sub-cubes for each brushstroke. Therefore, the smaller
the quadrants, the more precise is the frequency resolution of the analysis and the
better the resolution at each spatial frequency, or scale. It is important to note that the
improvement in frequency resolution implies a loss in spatial resolution as the number
of coefficients influencing the reconstruction of the whole signal diminishes with the
size of the cube.

The notion of multiscale decomposition can be extended with the brushlet basis by
analogy to the wavelet structure. In this context, we analyze our signal with different
tiling and manipulate independently different scales for different orientations. Coif-
man and Meyer exploited this property for optimal compression. In this study, we
have used it for denoising and enhancement by eliminating the most outer quadrants as
high-frequency noisy components and reconstructing with selected low frequency
(inner-quadrants) coefficients. More precisely, in the example displayed in Figure 4,
the eight cubes of the tiling in (b) correspond in terms of direction and frequency to
the eight inner cubes of the finer tiling shown in (c). The frequency resolution in (b) is
less than in (c) but the spatial resolution is inversely finer. Multiscale analysis in this
context consists of tracking directional patterns within the eight cubes of (b) corre-
sponding to the eight inner cubes of (c), at a lower scale of analysis.
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Overcomplete Framework

Recall that the size of the cubes created with the tiling of the Fourier domain deter-
mines the size of the coefficient domain associated with each characteristic brush-
stroke of a cube. The diminution of dimension between the spatial domain and the
transform domain is analogous to a two-fold downsampling in dyadic wavelet analy-
sis. This downsampling is problematic when manipulating transform coefficients,
because there is not a homomorphism between the original signal and coefficient
domains.

The theory of overcomplete multiscale analysis has been developed to overcome
this mathematical limitation. Overcomplete multiscale representations are well suited
for image analysis and denoising/enhancement, because they avoid aliasing effects
introduced by critically sampled representations [14] and yield a shift invariant repre-
sentation. In our case, the aliasing effect arises from the se ction of overlapping sub-
intervals on the Fourier plane that are expanded into a loc
this and increase the number of coefficients within the sam
ect onto an extended Fourier basis. This increases the ma
domain without changing the original signal. The overco
ciently implemented by padding the original signal with ze
Since padding a signal will increase the resolution of the
tions increase the number of coefficients for the same inter
lution in the transform (coefficient) plane as illustrated in F

(a) (b)

Figure 5: (a) Original cardiac ultrasound slice (64 × 64 pixels) fro
coefficients for a 16-quadrant tiling of the Fourier plane in the n
overcomplete case (c). In (b), the dimension of each quadrant i
original image matrix size . In (c), each coefficient quadrant ha
original image matrix.

Thresholding for Denoising

Images formed with coherent energy such as ultrasound
This type of noise consists of a granular pattern and is c
characteristics of an organ and orientation of the beam. Th
tion has a significant impact on image quality, interpretation

More recently several spatial and frequency based deno
investigated for echoplanar ultrasound images [15], [16], [
tional methods often reduce noise at the cost of blurring ed
multiscale analysis has been intensively tested as a denoisin
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and post processing.

ising techniques have been
17]. However, these tradi-
ge features. For this reason
g tool [9, 18]. The general
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scheme for denoising is achieved by lowering or eliminating noise energy via coeffi-
cient thresholding or ‘shrinkage”. Of particular interest to us is the recent work of
Zong, Laine and Geiser [19], using non-linear thresholding on dyadic wavelet coeffi-
cients for speckle reduction. It showed a significant advantage by reducing inter-
physician variability in quantification of cardiac areas, leading to an improved accu-
racy in the diagnosis of coronary disease. Thresholding is based on the assumption
that the noise component can be isolated in certain projection coefficients while en-
ergy of a signal is largely concentrated in separate coefficient sets (sub-spaces). This
approach has been successfully applied for many years within wavelet decompositions
via frames [20], [9].

In our study, we used the threshold selection method for coefficient shrinkage in an
orthonormal basis developed by Donoho and Jonhstone [21] and investigated by
Mallat in [20]. After projecting original data on a selected basis, we applied a hard
thresholding on the projected coefficients in the transform domain as defined below.

The value of the threshold level was empirically deduced from distinct image prop-
erties and the projection coefficients’ distribution. After the thresholding operation,
the denoised signal was simply reconstructed with the new set of coefficients.

3. Results

Volume analysis with brushlet basis and gradient volume visualization was tested on
three different volumes of increasing complexity: (1) a mathematical phantom with
three intensity levels of gray, (2) a contrast echocardiogram and, (3) a clinical volume
data set.
The 3D-ultrasound acquisition machine used in this study was the Model 1 RT3D
(Volumetric Medical Imaging Inc, Durham, NC), originally developed at Duke Uni-
versity [22]. A single volumetric data acquisition cycle requires around 70ms at a
depth setting between 10 and 15 cm. A transthoracic 2.5 MHz matrix array transducer
scans the 3D volume electronically. The resolution of the acquisition is 64 × 64 pixels
in the short axis plane and an average of 300 pixels in the long axis plane. The clinical
volume processed in this study was of size 64 × 64 × 64, and the phantom volumes
were made to match these same dimensions.
The three volumes were analyzed with the brushlet basis for a tiling of the Fourier
domain in eight cubes with overcomplete representations. This analysis provided a
decomposition of four brushstrokes represented by paired diagonal cubes. The brush-
stroke orientation in each of the three directions was +/-45º for each cube.
Visualization in 3D used isosurfaces and isovolumes at selected levels. The level was
set as the maximum value of each gradient volume, in the transform domain. The
“marching cube” algorithm was used for the isovolume computation [23].

1. A mathematical phantom created with three gray levels is illustrated in
Figure 6(a.1-b.1-c.1-d.1). It consists of two ovoid shapes, one inside the other one.
The initial geometry of the phantom is known a priori. The edges were blurred with a
median filter, prior to processing. This example is provided to clearly visualize the
concept of a gradient volume in the transform domain. The maximum gradient values
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were located in the inter-space between the two ovoid objects. Reconstruction after
hard tresholding returned the original volume with negligible numerical error.

2. An in-vitro contrast echocardiogram phantom that consists in a balloon, filled
with human albumin and sonicator bubbles as a contrast agent, immerged in a water
tank is shown in Figure 6. A volume was recorded with the same 3D-ultrasound ma-
chine used in clinical screenings. A typical slice (64 × 64 pixels) of the volume data is
displayed in Figure 6(a.2) below. The inner black cavity corresponds to the albumin
tissue inside the balloon. The surrounding white layer is an artifact created by the
bubble accumulation on the inner surface of the balloon wall. The corresponding gra-
dient volume in the transform space is displayed in Figure 6(b.2-d.2). We observed a
very efficient outline of the inner cavity of albumin from the outside of the balloon.

3. A clinical volume data set was acquired with the same clinical 3D-ultrasound
transducer. The patient lied on a gantry during the screening examination and an api-
cal view of the left ventricle and atrium is acquired by placing the beam on his/her
lateral costal margin. The data are presented in Figure 6(a.3-c.3).

(a.1) (b.1) (a.2) (b.2) (a.3)

(c.1) (d.1) (c.2) (d.2) (c.3) (d.3)

Figure 6: (a.1-b.1-c.1-d.1), Mathematical phantom. (a.2-b.2-c.2-d.2), Contrast echocardiogram
phantom. (a.3-c.3-d.3), Clinical volume data. (a.1-a.2-a.3), 2D slice in cross section of the
volume data. (c.1-c.2), Volume visualization of the phantoms. (c.1). (b.1-b.2), Plot of the gradi-
ent in the transform plane for one slice of the domain. (d.1-d.2), Isosurface of the maximum
gradient in the transform domain. (c.3-d.3), Volume visualization of the gradient in the trans-
form plane for an 8-cubes (c.3) and 64-cubes (d.3) tiling of the Fourier domain.

Validation of Gradient volumes in Transform Domain In order to validate our
gradient volumes as a “valid” representation of the data in terms of feature shapes and
locations we asked an expert in echocardiography to manually digitize the volume
data of the contrast phantom and the clinical echocardiograms. The manual segmenta-
tion was performed on sixty four 2D slices of the volumes (64×64×64 pixels). The
result of the superposition of the gradient volumes and the manually segmented vol-
umes is displayed in Figure 7. Regarding the phantom data in Figure 7(a), the match
between the gradient data (isosurface of maximum value) in the transform domain and
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the manually segmented volume of the albumin cavity is excellent. Please note that the
isosurface describes the inner albumin cavity and the outer balloon wall separated by
the bubble layer. Indeed the gradient in directional information between the two layers
is high. The match for the clinical data, as displayed in Figure 7(b), is also very im-
pressive. The most striking result in the transform domain is our ability to isolate
information from the ventricular papillary muscles and the wall muscular pattern. The
sample manual segmentation did not trace the papillary muscles. This difference in
contour is distinguishable in Figure 7(b) at the “neck” of the gradient volume, where
the papillary muscles insert (see arrow). This is a remarkable result since systematic
errors usually prohibit visualization of papillary muscles in 3D from traditional 2D
gated data.

(a) (b)

Figure 7: Comparison between manually segmented contours and gradient isosurfaces at maxi-
mal values for echocardiographic phantom (a) and clinical data (b). (a), Volume visualization of
the gradient inner isosurface surrounded by the manually extracted volume of the balloon. (b),
Volume visualization of the gradient isosurface at maximum value surrounded by manually
extracted volume of the left ventricle. The papillary muscles were not segmented manually but
are correctly isolated by the gradient surface.

Denoising Performance. Denoising performance via hard tresholding was evalu-
ated for an empirical threshold value of 20% of the maximum coefficient values of
each cube. The clinical data set was decomposed into an eight-cube (2×2×2) tiling of
the Fourier domain. Quantitative measurements of image quality improvement are
difficult. We plan to follow the validation approach of Laine et al. [19] by using cardi-
ologist performance for denoising quality assessment. A first observation of the de-
noised volume data showed improvement in the smoothness of the LV edges. How-
ever a loss in contrast was observed in the reconstructed voxels.

4. Conclusion

Our method for feature extraction used a hybrid technique to combine model based
and directional denoising and segmentation in three dimensions by identifying effi-
cient projection coefficients within sets of redundant articulated (orientation rich)
bases. The results of our method will be used to clinically evaluate new 4D ultrasound
(3D plus time) acquisition techniques and provide an accurate method to quantify
heart volumes from this type of data. This is a very exciting challenge since this type
of data is totally new. A future study will aim at modeling the heart volume at systole
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and diastole and then study of myocardium deformation patterns to characterize and
isolate areas of ischemic tissue. The development of non- invasive measurement tech-
niques of cardiac tissue stress and strain is of major clinical importance. The result of
our proposed analysis would provide a valuable imaging tool for modeling cardiac
volumes.
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