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LV Volume Quantification via Spatiotemporal
Analysis of Real-Time 3-D Echocardiography

Elsa D. Angelini, Andrew F. Laine*, Shin Takuma, Jeffrey W. Holmes, and Shunichi Homma

Abstract—This paper presents a method of four-dimensional 2-D plane to be registered by an external locator and used for
(4-D) (3-D + Time) space—frequency analysis for directional |ater reconstruction. Since five to ten planes through the heart
denoising and enhancement of real-time three-dimensional (RT3D) \yere required at a preset point in each cardiac cycle, this system

ultrasound and quantitative measures in diagnostic cardiac ul- . .
trasound. Expansion of echocardiographic volumes is performed was cumbersome to use and only a static 3-D image could

with complex exponential wavelet-like basis functions called D€ reconstructed [1], [2]. The second-generation 3-D imaging
brushlets. These functions offer good localization in time and System, originally developed by Hewlet-Packard, took the form
frequency and decompose a signal into distinct patterns of oriented of a transducer that rotated around a fixed axis or moved along
harmonics, which are invariant to intensity and contrast range. 3 fixed path, obtaining images of the heart at regularly spaced

Deformable-mode| segmentation is carried out on denoised data e g5, The 2-D images were later reconstructed into a 3-D
after thresholding of transform coefficients. This process atten-

uates speckle noise while preserving cardiac structure location. vqume._By obtaining Z'D.'mages at different time points in
The superiority of 4-D over 3-D analysis for decorrelating additive  the cardiac cycle, these axial slices could be later reconstructed
white noise and multiplicative speckle noise on a 4-D phantom to show the motion of the heart. However, the acquisition
volume expanding in time is demonstrated. Quantitative valida- remained cumbersome and reconstruction was a time-con-
ggng)gﬂm%‘gﬁ%xgc?ﬁgi‘g f’g‘d ﬁg;iirgren:’ c')sf F:ﬁir;orsmsgc?tg?n\litc:?al suming, off-line process. Nevertheless, thestational probes
analysis Ft)ool are reported for s?xppatient cases provﬁjing mezfsures have y"?'ded accurate results for mass e}nd volume Calgulatlons
of left ventricular volumes and ejection fraction. of cardiac chambers [3], [4] and described well a variety of
cardiac lesions [5]. However, because of inherent difficulties
these systems have not become clinically applicable. In order
to circumvent the problems associated with the previous forms
of 3-D imaging, a third-generation of volumetric imaging

|. INTRODUCTION (Volumetrics Medical Imaging, Durham, NC) was developed

ARDIAC three-dimensional (3-D) imaging was conle’]_cglﬁt] intrfodtacing rtea}:-tig?f? 3-Dt fultrast?]und (RT3D). This
ceived as a method to circumvent the shortcomings grodallly 1S fundamentaily difterent from the previous genera-

two-dimensional (2-D) echoplanar imaging. Volume quantifit_lons of 3-D systems as a true volume rather than a summation

cation and performance assessment of irregularly shaped £ n|\t/|e|-r|p0|at|?'n of 2-D tplantzs 'S afr?tf['red' Tf1t|s s]}/szteDm l;sesg
cardiac chambers or the description of valve morphology usifif £ matrix-array transcucer that consists ot =-L phase
2-D images is inherently problematic because of the dynanfth &YS and offers steering in both the azimuth and elevation

nature of the heart. There has been a tremendous effort wit&gthe beam, permitting interrogation of a pyramidal volume

the ultrasound community over the last decade dedicat ough the body. In each of these 2-D arrays, 512 elements

to the development of new cardiac 3-D echo technology. fpnnect to the system, 256 of the 512 elements are used for
the first generation of 3-D echo systems (3D FreeScan) transmission, and 256 are used for reception. Because the RT3D
spatial locator was incorporated on the ultrasound beam for m@ste_n: hafslG:lnggéallﬁl procI:essm_g, the tvolumZeStgc Tcann?r
reconstruction of a 3-D representation of the heart. A sound%%ns's s of a > channel-receive system ( elements
magnetic signal-emitting device was positioned ifteze-hand pa_rallel prqcessmg). The RT3D transducer can accomplish
ultrasound transducer, allowing the position of any particul% ty_p|cal cardiac scan at a rate of 20_vo|umes/ s at a depth
setting of 15 cm. Therefore, for a typical heart rate of 60
beats/min, 1 s is required to obtain an entire cardiac cycle with
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Recent publications in the literature on 3-D segmentation
of 4-D freehand (first-generation) and rotational (second-gen-
eration) ultrasound include the work of Salustti al. [26],
Rohlinget al.[27], Treeceet al.[28], Ofili et al.[29], Nobleet
al. [30]. Stetteret al. developed a medial-node model for rapid
identification and measurement of objects in RT3D ultrasound
data [31].

Our spaciotemporal analysis tool is based on phase informa-
tion rather than intensity. This strategy is best suited for de-
{a) ) noising and cardiac boundary enhancement as first suggested
by Nobleet al.[32] with directional Gabor filters. In this paper,

Fig. 1. RT3D acquisition and clinical interface. (a) Volumetric scanning ajve use a new set of basis functions called brushlets, introduced
the left ventricle with steerable sectors. Two adjustable orthogonal B-sc Coifman and Meyer in 1997 [33]

perpendicular to the transducer and three adjustable C-scans parallel to the face™ ™~ . . .
of the transducer are displayed. (b) Initial views of RT3D echocardiography Spatiotemporal analysis of 4-D cardiac volumes with brushlet

w@th two parallel C-scans and two orthogonal B-scans obtained from an apigrdsis functions provides projected coefficients that are associ-
window. ated with distinct “brush strokes” of a particular size and orien-
tation in four dimensions (3-D volume Time). Brushlet coef-
detection from ultrasound data have been reported durifiients may be modified in the transform domain via resetting
the past decade with partial success. Recent studies inclggifiigh frequency and nonlinear enhancement of low frequency
methods based on statistical Markov random field modelgefficients.
[12]-[15], fuzzy logic [16], [17], neural networks [18], [19], |n 1996, McInerney and Terzopoulos published an extensive
morphological filters [18], [20], active contours, and levekyryey of the use of deformable models in medical image anal-
sets [21]-[25]. A common motivation for these efforts, whiclsis [34]. More recently, several papers on cardiac echocar-
have focused on the development of new methods of volumgraphy with deformable models have been published. Cha-
extraction, is that existing segmentation tools are not adapteddfaet al. [22] used active contours to detect both epicardium
this type of data and do not meet the accuracy requirementsa@ti endocardium borders on echoplanar ultrasound images, Pa-
clinical applications. Existing segmentation methods perforghdemetriset al. [35] used integrated deformable models to
poorly on RT3D ultrasound data because of the low spat@gmentn vitro ultrasound of dog hearts acquired with a rota-
resolution of this modality, attenuation artifacts that lead tgonal-probe; Montagnagt al.[36] used 3-D deformable models
ill-defined myocardial borders and the addition of frequencywith constrained deformations on cylindrical echocardiograms.
dependent speckle noise that corrupts the specificity of grgthis study, segmentation was performed on denoised volumes,
level values to characterize the presence of an interface osfer enhancement and denoising in the transform domain. A
particular tissue type. These characteristics of ultrasonic dagap deformable model performed segmentation of the endocar-
inherent to the physics of acquisition, impede simple regiogiial borders and LV volumes were then reconstructed for quan-
based or boundary-based methods from performing correcyative measures. This segmentation was tested and validated on
Indeed, the underlying physics and mathematical assumpti¢ifantom and clinical RT3D data sets. Quantitative measures of
supporting these methods are often violated during the acde extracted volumes are reported for both validation studies.
sition of in vivo RT3D ultrasound data. This motivated our The remainder of this paper is Organized as follows. Sec-
development of a new framework to recover information Wlthlﬂon Il describes the methodo]ogy for multidimensional space—
a nontraditional domain where speckle noise is decorrelatedfrequency analysis with brushlet functions, nonlinear denoising-
The recent development of a RT3D imaging modality tha&hancement schemes and a deformable-model segmentation
captures an entire left-ventricular (LV) volume instantaneousigorithm. Section Il first presents results on denoising perfor-
with fixed geometric parameters for an entire data set raises ngiince of the brushlet analysis and then describes quantitative
issues and challenges for denoising and volume extraction. §8gymentation results obtained from phantom and clinical RT3D
one hand, resolution of RT3D is even lower than in previous 3itrasound data sets. Section 1V discusses the quality of anal-
generations and the level of speckle noise is very high. But, gsis and segmentation. Section V concludes with an emphasis
the other hand, the amount of information recorded per cardiag future work for validation and possible enhancements of this
cycle is much greater than with any other ultrasonic modalityesearch.
And there exists a strong coherence of surfaces in 3-D space and
time for echos recorded from cardiac tissue. Also, RT3D elimi- Il. METHODS
nates the need for slice registration and reconstruction, leaving
segmentation as the only barrier to a rapid, accurate and, théte-
fore, clinically applicable automated calculation of LV cavity Speckle noise corrupts ultrasonic data by introducing sharp
volume and quantification of LV function. changes in an image intensity profile, while attenuation alters
Pedagogically, our approach was to construct a denoising dhd intensity of equally significant cardiac structures. These
enhancement method tailored to the nature of RT3D ultrasoumidperties introduce inhomegenity in the spatial domain and
that allows asimplesegmentation tool to extract cardiac volsuggest that measures based on phase information rather than
umes in real-time and construct a computer dynamic modeliofensity profiles are more suited for analysis of cardiac vol-
the beating heart. umes. Brushlet functions are a new family of steerable wavelet

Multidimensional Space—Frequency Analysis
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packets based on the expansion of the Fourier transform (FT) of I
a signal onto windowed complex exponential functions. These T f'
functions, first introduced by Coifman and Meyer [33] for
compression of highly texturized images, are well localized in
both time and frequency. However, we point out that the goals
of compression are completely opposite to this application. We 0 ¥y v LS
modified this original expansion to provide an overcomplete T E Gy @ FE :3"*"1,;"1-"_?'-":""
(redundant) representation. Such intentional redundancy has =+
been shown beneficial for denoising applications [37]-[41].

1) Definition of Brushlet Basis Functions in One DimenFig. 2. Windowing functions,, defined on[—1,,/2 — ¢,1./2 + ¢] andv
sion: An initial goal of the construction is the desire to buildfefined onl—e.«].
an orthonormal basis of transient functions with good time— : _
frequency localization. For this purpose, windowed complex |
exponential functions for Lapped orthogonal transforms have | ‘ |
been used for many years in the context of sine-cosine transforms  j - — ik { | IR N
[42], [43] and Gabor functions. Following the Balian—Low ! i
theorem there is no differentiable and compactly supported
window g such thatVuo and (o, {g(t — nuo)e™*°t}(, 1ycz2 oy i .
forms an orthonormal basis &f (R). In order to overcome this o b
limitation while working with complex exponentials, Meyer anct:B

. . s . : ig. 3. Brushlet synthesis functidi’,, ; forl,, = 32,7 = 4, and (ay = 16,
Coifman introduced a division of the real axis into subintervag) - — g. ’

[ar,ant1], @long with a new set of analysis basis functions

that constrains wavelet packet resolution and all other methods

Ui n(2) =bn(z — cn)ejn (@) +v(z — an)e;n(2a, — ) ; 3
of time—frequency analysis.

— 0@ = ant1)ejn(20m41 — ). @ _Letus call a given one-dimensional (1-D) sigfabnd its FT
The two window funtions,, and are defined from the ramp /- Ve can projecyf on a brushlet basis
function . .
_ F=3"3" fajtin 7
[0 it @ P
"WEL ife>1

with w,, ; the brushlet analysis functions arfgl; the brushlet

and coefficients. By doing so, the FT of the signal is divided into
7’2(t) + 7’2(—t) —1, VteR. @) _subintervals. Eac_h interval, indexed hyand of sizd,, is pro-
jected ontay,, j, with j = 0,1/1,,...,(l.—1)/1,. By applying
The functionv is defined as an inverse FT, we can then compute a decompositigh of
t —t 7
v(t) =7 <;> T <?> , tel[—ee] (4) = Z Z Jn,jwn,j (8)
noj
The functionb is defined or{~1,,/2 —¢,1,,/2 + €] as on the orthonormal basis,, ;, inverse FT ofu,, ;. The basis
f i p
.2 (ng) Cfte [_21 e _2171 +e unctionsw,, ; are expressed as
_ i —l, Ly
b(t) =9 1L, ifte [ +e % — ®) wp_;(x) =/, exp [2i7ran—%nx}

7,2 (ln/f*t) ; if t e I:% — £, % +€] i
« {(—1)]b,,(ln,a:—j) -2 sin(ﬂln,a:)ﬁa(lnx‘i‘j)} .

wherel,, = a,+1 — a, andc, = 1,,/2. )
The complex-valued exponentia|,, is defined as

1 C (z—an) We observe here the wavelet-like structure of #hg; syn-

ejn(z) = W €xp [—217{717} (6) thesis functions with scaling facté; and translation factoy.

The major difference between the brushlet basis and wavelet
The windowing function$,, defined on—1,./2—¢,1,,/2+<] packets is the arbitrary tiling of the time—frequency plane and
andv defined on[—e¢, ¢] are displayed in Fig. 2. The param-the perfect localization of a single frequency in one coefficient.
etere controls the degree of localization of the brushlet func- The projection off on the analysis functions, ; can be im-
tion and its inverse FT in time and frequency. As illustrated iplemented efficiently by a folding technique and fast Fourier
Fig. 3, the smaller the value efthe better the localization in fre- transform (FFT). The folding technique, described by Wick-
quency (smaller second peak) but localization in time becomexhauser [44], consists of folding the overlapping parts of the
less (spread of the central peak). This tradeoff in time—frequeneindow functionb,, and the bump functiom across the end
resolution is analoguous to the Heisenberg uncertainty princigleints of the interval, back inside itself.
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tation, we followed the sugestion of Coifman and Meyer and
* defined

b(t) = X[—1/4,0/ %X [t/ 4,0/ 415X [~ 1/4,0/4 %X [-1/4,/4]  (13)

(ak e T ) with x[_i/4,1/4) the characteristic function defined on the in-
_ o terval [-1/4,1/4]. In this case) is compactly supported on
N [ [-{,1] and we write

ban - i . i 4
Ly L J -II b(ﬁ) — <M) > 0. (14)
1 &, AL - y 71'5
(22 b i ih2j s The synthesis functions,, ; are defined as stated in (9) with

the cubic spline window functioh and associated bump func-
Fig. 4. Pairs of (a) analysis and (b) synthesis brushlet functions associated wjthn The dual analysis functions. . are defined in (1) b
intervals of different length but centered at the same frequency. (a.1=b-1): U'. Ay . . m””. ( ) y
64,z = 32, andj = 16: (a.2-b.2)l,, = 32, = 16, andj = 8. replacingb andv by 6 andv defined with the new ramp func-

tion
If we call 7, ., ,, afolding smooth periodic restriction op- F(t) = r(t) (15)
erator andly; ,  its adjoint unfolding operator, we have the o2t +r2(—t)

following properties for the projection of a signﬁbn the func-

tionsu;
(f, Ujn) = (f, T;n,an+16j7n> _ <Tan,an+1fa ¢in).  (10) the following ste_ps are involyed in 'Fhe analysis (expansion).
a) Computation of the:-dimensional 4—D) FFT of the
This shows how folding and unfolding operators can be com-  signal.
puted efficiently to project a signal on the complex expone- b) Tiling of the Fourier domain with arbitrary subvolume
tial functionse; ,, with an FFT instead of computing the inner sizes along each dimension.
product of the original signal with the brushlet basis functions. ¢) Folding along each dimension,
The reconstruction can be simply computed in the same manned) »n-D FFT on each subvolume to project a folded signal on
by an inverse FFT and an unfolding operation. complex exponential terms of the brushlet functions.
Brushlet functions constitute an orthogonal basis of a domainSynthesis (reconstruction) of the signal includes:
divided into sub intervals. There are as many basis functions ag) ,,-p inverse FFT on each subvolume;
there are subintervals defining brushstrokes associated with thg) ynfolding along each dimension;
center frequency of each interval. The resolution of each brushz,) reassemble the subvolumes according to the original tiling
stroke is inversely proportional to the size of the interval. This ~ of the Fourier domain:
property is illustrated in Fig. 4, where two examples of pairs g) 5-D inverse FFT of the signal.
of analysis and synthesis brushlet functions associated with twq;,) Tiling of Fourier Domain in Multiscale AnalysisThe

intervals of different length but centered at the same frequengy,sniet basis offers the possibility to decompose and represent
are plotted. o n-D signals in terms of texture patterns with different orienta-
In order to control the oscillations of the brushlet synthesig,s and resolutions. The original work of Meyer and Coifman
functionw, ;, it is desirable to have a positive FT of the winyoc sed on image compression and showed that brushlets are a
dowing functionb. This condition is not compatible with the ,,\verful tool for efficiently representing richly textured images
original construction of the,, ; functions. Meyer and Coifman [45], [46]. In this paper, we exploit this oriented-frequency
then_introdu_ced two biorthogonal wi_ndowed_ Fourier bases: SYi¥presentation to accomplish 4-D volume denoising prior to
thesis functionw,, ; and dual analysis functions, ;. In order  gegmentation. The tiling of the Fourier domain determines the
to haveb, the FT ofb, positive, they relaxed conditions on th&:enter frequencies of the decomposition and the resolution of
ramp function defined in (2)—(3) and defined a new ramp fungye analysis. In other words, the tiling of the Fourier domain
tion with the following properties: determines entirely the structure of the transform domain and
] . can be viewed as a hyper-dimension of the analysis. The choice
r)=0, if t<1 (11) of the tiling determines at which frequencies the original signal
is analyzed and at which resolution it is expanded. This addi-
tional dimension in the analysis process is illustrated in Fig. 5.
() +7r°(—t) >0, VteER (12) In this figure, we illustrate in 3-D tiling in the FT domain with
arbitrary sampling along each direction and the corresponding
Itis important to point out that since the second derivative @fructure of brushlet coefficients in the transform domain. This
bisib (t) = —4n? [77_£2b(£)e* ™ d¢, the constrainb > 0 flexibility in partitioning the transform domain is extremely
implies thatb™(0) = —4x? [ £2b(¢)d¢. This verifies that powerful as it allows us to accommodate and precisely match
b™(0) < 0 and, thus, the bell functiohis not flat around zero. the sampling rates of each dimension obtained during acqui-
This condition further imposes that= [,,/2. In our implemen- sition (sample spacing in, y, 2z, andtime). By comparison,

2) Brushlet Basis Functions inrD: We can extend brushlet
analysis ton-D via separable tensor products. Fot-® signal

and
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Arbitrary liling of 483 cubes of
Fourter Dasmain hrushlel coelMicients in
in 4=5:3 cubes Trarrsform domain

. =
| sxrm e E?_-:["
#_,:r — () 1)
H r.l I .
ST e wiE samples Fig. 6. Decimated and overcomplete brushlet analysis witk @) tiling of

the Fourier plane. (a) Original slice of clinical RT3D ultrasound data. (b) The 16

coefficient planes for a decimated brushlet analysis. Each coefficient quadrant
Fig. 5. Tiling of 3-D Fourier domain with arbitrary sampling along eachs of dimension 16x 16, four times smaller than the original data. (c) The
direction and corresponding structure of brushlet coefficients in 3-D transforng coefficient planes for an overcomplete brushlet analysis. Each coefficient
domain. quadrant is of dimension 64 64, the same size as the original data.

less optimal approaches, usually based on some interpolafigi be efficiently implemented with fast algorithms similar to

scheme are required to accommodate the nonisotropic sampﬁf‘l% 2-D FFT.
rates needed in each dimension of ultrasound acquisition. B. Nonlinear Modification of Brushlet Coefficients in the

4) An Overcomplete FrameworkA problem of particular ;
. . . . Transform Domain
interest for us is the manipulation of an overcomplete decom-
position on brushlet basis. Overcomplete multiscale represenin order to extract features of interest and eliminate speckle
tations are well suited for image analysis and enhancemetise components, we applied nonlinear thresholding on coef-
because they avoid aliasing effects introduced by critical saftfients in the transform domain, in a similar fashion as pre-
pling [47] and yield a translation-invariant representation. Thigous works in cardiac denoising [48]—{50]. Recall that over-
property is crucial for feature analysis such as edge (surfacecompleteness of the analysis guarantees that no distortion is
volume) enhancement. Indeed, without this translation-invaridftroduced and a direct correspondence of feature location in
property, manipulation of the coefficients for feature extractiopoth the spatial and transform domains exists. Because of the
in the transform domain or thresholding for selective reconstru@igh frequency nature of the speckle noise and the absence of
tion could not be accurately carried out. In our case, the aliasig@relation in space and time we chose to decompose each di-
effects arise from the selection of overlapping subintervals Bfension into four equal length intervals to divide the frequency
the Fourier plane expanded into a local Fourier basis. To av&gectrum of the signal into low frequencies (two inner intervals
this and at the same time increase the number of coefficients égntered around the zero frequency) and high frequencies (two
the same subinterval size along each dimension, we project ofter intervals). For an-D signal we apply a” tiling of the
an extended Fourier basis. The overcomplete projection is effiourier domain (four subintervals/dimension) and extract only
ciently implemented by padding the folded signals with zerdge2"™ inner subvolumes centered around zero frequency. These
along each dimension and computing its FT. Since paddingdbvolumes encode only the low frequency components of the
signal will increase the resolution of the FT, overcomplete préignal along 45 diagonal directions im-D. Since we wanted
jections increase the number of coefficients for the same interf@idetect rather isotropic endocardial and epicardial borders, we
and, therefore, increase resolution in the transform (coefficieflifl not privilege any specific direction with tiling of the Fourier
plane. For an overcomplete projection, each subinterval of t@main. Denoising in each subquadrant was performed via hard
Fourier domain is projected onto a brushstroke of dimensidfresholding of the coefficients at 25% of maxima in the spa-
equal to the original number of elements. The orientation afi@!l domain and soft-thresholding at 15% in the time direction.
size of the original brushstroke are preserved, as the phasd Bese levels were selected via experimentation with a judicious
the brushstroke is not modified. However, the number of poirfi&de off between attenuation of noise components and enhance-
defining each brushstroke inD is increased to match the orig-ment of directional features. Reconstruction was then performed
inal size of the volumetric data. Inside a subvolume of the FWith these thresholded coefficients and segmentation, described
the coefficients are stored in the same manner as the data poi§t, was then applied on the resulting reconstructed volumes.
in the original signal. Therefore, in the overcomplete case, there
is a perfect homomorphism between the location of data poir%
in the original set and the position of the coefficients in each Segmentation of anatomical (and functional) structures re-
projected subvolume. This bijection:{ mapping) introduces mains in practice the most time consuming part of modeling a
redundancy in the transform domain, which results in a dramatignamic process. Automatic segmentation of anatomical struc-
improvement in feature representation in each dimension, as tilres in medical images remains an open problem. In clinical
served in Fig. 6. practice, manual segmentation is often considered the most reli-

We point out that extension of brushlet analysis in four dable technique (i.e., the gold standard). Efforts by researchers in
mensions and overcompleteness of the expansion are twothis field have shown the advantagedsfformable modeland
novations from the initial 2-D decimated implementation. Theemplates coupled with object parameterization, such as those
computational cost added is not prohibitive since thB® FT reported by Mclnerney and Terzopoulos in a recent survey [51].

Deformable-Model Segmentation

Authorized licensed use limited to: Telecom ParisTech. Downloaded on June 15, 2009 at 08:05 from IEEE Xplore. Restrictions apply.



462 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 20, NO. 6, JUNE 2001

Along these lines, techniques based on the use of deformaibltates the snake aslzalloon This prevents the curve from
models for reconstructing 3-D surface shape and motion of thlerinking or being trapped by spurious isolated edges and makes
left ventricle from computed tomography and magnetic restite minimization process less sensitive to the initialization. The
nance imaging data have been developed [51], [52]. Our aecond term normalizes the potential force to simulate a local
proach more closely follows the work of Metaxas [53] and uséigne step. This applies the same speed to every point in the snake
a balloon deformable model first introduced by L. Cohen [54}o overcome issues related to the selection of a common time

The class of deformable models originated with the introdustep for every snake point. Coefficieritsandk; are chosen of
tion of the “snake” by Kass, Witkin, and Terzopoulos [55] anthe same subpixel order with> k%; to let the snake stop at edge
has been widely used to detect smooth contours in 2-D imaglegations. In our work, in order to keep implementation simple,
Deformable models were then applied for 21/2 D and 3-D olhe balloon snake was programmed using a finite difference
ject extraction from 2-D slice images [56]. approximation scheme as in [58] and [59] with similar parameter

A “snake” can be viewed as a curve that deforms under thelues as suggested in [59]. However, rigidity was increased to
influence of internal and external forces. Internal forces depedininish the time step of the dynamic equations and ensure the
on the snake’s intrinsic properties such as its elasticity and cemoothness of a contour in situations where part of the LV wall
vature. External forces are derived from image properties (iwas missing (aswas oftenthe case inour data). The edge mapwas

tensity gradient and edge maps). defined as the gradient of the image blurred with 2-D Gaussian
Let a curvev be defined orf2 = [0, 1] through the following filter of standard deviatiom = 2. Three-hundred iterations
mapping: were run for each short axis slice in the transform domain.
@ - . R
. REsuLTS
s —u(s) = (z(s),y(s)) . (16)

A. Comparison of Denoising Performance in Three and Four
We define a snake as the space of admissible deformati@highensions

that minimize the functionakl I .
To quantitatively evaluate the performance of dynamic 4-D

E(v) = / o[ ()12 + Bl ()||? + Pt (v(s))ds  (17) @nalysis in decorrelating noise components in low spatial fre-

Q guencies, we first experimented with mathematical phantoms

with o and3 weighting parameters that control respectively thgorrupted with white or speckle noise. The phantom consisted
elasticity and rigidity of the snake arfél,; the potential of ex- _Of an ovoid volume growing in time th_at Sch_ematlcally mim-
ternal forces, derived from the image edges. tdie a local icked the aspect of the left ventricle with an inner gray cavity

minimum OfE, the associated Eu|er_|_agrange equation Veﬁ.urrounded by a thick white wall on a black baCkgrOUnd. The
fied for v is size of a single volume matrix was 64 64 x 64 and there

” o were 16 volume “snap shots” growing in time. The volume size

{ —(av') + (v /) N Vpext/(”) =0 (18) increased by 70% over 16 time frames, similar to the average

for somev(0),v(0), v(1), v'(1). ejection fraction in normal patients. We corrupted the volumes
The first two terms represent the internal force that impose redjith 1) additive uniform white noise; 2) multiplicative speckle
ularity to the curve, and the last term represents the potential§fise derived from uniform distribution; and 3) multiplicative
the external force that attracts the curve to features of intere&ieckle noise derived from Rayleigh distribution. All noisy sig-
There are several approaches for defining this potential. In ordis were constructed with a SNR equattb5 dB. Corrupting
to attract the snake to minima of the potential force, a simpl®ise is commonly modeled as Gaussian white noise. Ultra-

model is to define an edge map sound noise has been extensively studied in the literature. Be-
) cause the ultrasound signal acquired by a transducer is not the
P(v) = —[|[VI(v)]] (19) raw wave signal itself but the envelope of the complex radio fre-

guency signal, it can be shown that the initial Gaussian random
noise is transformed into a signal dependent noise that follows
Pw) = —||V(GoxI(v)) ||? (20) aRayleigh distribution in the case of fully formed speckle noise
[60]. This Rayleigh distribution tends to a Gaussian white noise
with G, a Gaussian kernel of standard deviatorEven though  distribution when spatial resolution is increased. We have tested
the convolution of the image with a Gaussian kernel blurs thgis hypothesis of Rayleigh distributed noise in data acquired
edges it has the effect of increasing the capture range of an activgn RT3D transducer and we found that it was indeed ver-
contour so that the initialization does not need to be close to tified with good agreement. Brushlet analysis was performed
correct position to converge. Cohen and Cohen [57] modifiggith four subintervals in each direction. Denoising was per-
the traditional gradient-based potential force to produce mde@med via resetting of the higher frequency components and
stable results. They proposed to define an external force as hard-thresholding of the lower frequency coefficients at 15% of
VP (u(s)) coefficient maxima in each 3-D or 4-D subvolumes. In order
W (21) to compare denmsmg .perfo'rmar.lce to .met.hods qf referenge we
also performed denoising with Wiener filtering. Wiener filtering
wherefi(s) is the unit vector normal to the snake curve at poing optimal for denoising of additive white noise in the mean
v(s). The first term represents an internal pressure force ttegfuare error sense. We further adapted the filter to use variance

on the imagd, or

F = klﬁ(s) -k
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(n.1) (k) (e.1)

(b2} [e.2) {a.d] (bl) {e.2)

Fig. 7. Comparison of denoising performance for white noise. (a.1) Originglg. 9. Comparison of denoising performance for speckle noise with Rayleigh
slice, (a.2) noisy slice (SNR —15 dB). (b.1) Denoised slice with 3-D brushlet distribution. (a.1) Original slice, (a.2) noisy slice (SNR —15 dB). (b.1)
analysis (SNR= —14.16 dB), (b.2) denoised slice with 4-D brushlet analysi®enoised slice with 3-D brushlet analysis (S¥R—13.35 dB), (b.2) denoised
(SNR= —8.5dB). (c.1) Denoised slice with Wiener filtering for white noiseslice with 4-D brushlet analysis (SNR —6.75 dB). (c.1) Denoised slice with
model (SNR= —14.84 dB), and (c.2) denoised slice with Wiener filtering forwiener filtering for white noise model (SNR —14.98 dB), (c.2) denoised
Rayleigh noise model (SNE —14.7 dB). slice with Wiener filtering for Rayleigh noise model (SNR—14.84 dB).

after brushlet analysis in three and four dimensions, and

n . Wiener filtering with white and Rayleigh noise models.

(al) (bd) (1) Visually, 4-D brushlet analysis clearly performed better

at denoising the data. Quantitatively, significant SNR im-
n

provement of 55% was achieved by 4-D brushlet anal-
(b2 (e2)

« In the case of multiplicative speckle noise derived from
a uniform distribution, the SNR of the noisy volume was
again—15 dB. In Fig. 8, denoised results are displayed

ysis while the other methods only achieved negligible im-
provements.
¢ In the case of multiplicative speckle noise derived from a
Rayleigh distribution, the SNR of the noisy volume was
again—15 dB. In Fig. 9, denoised results are displayed
Fig. 8. Comparison of denoising performance for speckle noise with uniform ~ after brushlet analysis in three and four dimensions, and
distribution. (a.1) Original slice, (a.2) noisy slice (SNR —15 dB). (b.1) Wiener filtering with white and Rayleigh noise models.
Denoised slice with 3-D brushlet analysis (SHR—13.21 dB), (b.2) denoised ; _ ;
slice with 4-D brushlet analysis (SNR —6.85 dB). (c.1) Denoised slice with Vlsually_, 4 D brushlet analys_ls _clearly_ pe_r_formed be’Fter
Wiener filtering for white noise model (SNR —14.97 dB), and (c.2) denoised at denoising the data. Quantitatively, significant SNR im-
slice with Wiener filtering for Rayleigh noise model (SNR—14.81 dB). provement of 55% was achieved by 4-D brushlet anal-
ysis while the other methods only achieved negligible im-

(a2)

estimated from a Rayleigh noise model as presented in [61] to Provements.

improve the performance on noisy data corrupted with speckle

noise. A single slice from the original volumes, noisy volumeB. Segmentation for Volume Extraction

and denoised volumes processed with the four different methodSegmentation was executed on two types of datavitro

is displayed in Fig. 7 for white noise, Fig. 8 for speckle noisRT3D contrast echocardiogram phantoms, andivo clinical

derived from uniform distribution and Fig. 9 for speckle nois@T3D volume data sets.

derived from Rayleigh distribution. Detailed results for the three 1) In Vitro Contrast Echocardiogram Phantoms: In vitro

different types of noise are summarized in Table | and comontrast echocardiogram phantoms consisted of balloons filled

mented below. with human albumin. A layer of bubbles was artificially created

* In the case of additive white noise, the SNR of the noigyn the surface of the internal balloon wall to mimic the appear-

volume was—15 dB. In Fig. 7, denoised results are disance of the white myocardium and increase the contrast at the
played after brushlet analysis in 3-D and 4-D, and Wienevall interface. Ultrasonic RT3D data was acquired with a set
filtering with white and Rayleigh noise models. Visuallyup identical to clinical conditions. The phantom database used
4-D brushlet analysis clearly performed better at denoisimg this study consisted of two balloons of 35.0 ml and 65.0 ml.
the data. Quantitatively, we measured a SNR improvemdedch RT3D volume had a size of 6464 x 258 voxels. Since
of 51% with Wiener filtering using white noise model andhe volume spanned by the transducer beam is conic, voxel
43% with 4-D brushlet analysis. Quantitative SNR imposition is determined in cylindrical coordinates. Each sample
provement with 3-D brushlet analysis and Wiener filteringlice in thez direction (depth) was separated by 0.308 mm.
for speckle noise was negligible. For each slice, 64 64 points were recorded spanning a total
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TABLE |
QUANTITATIVE COMPARISON OFDENOISING PERFORMANCE ON4-D MATHEMATICAL PHANTOM CORRUPTED WITH1) WHITE NOISE, 2) SPECKLE NOISE DERIVED
FROM UNIFORM DISTRIBUTION; AND 3) SPECKLE NOISE DERIVED FROM RAYLEIGH DISTRIBUTION. MEASURES OFSNR ARE REPORTED FOR ASINGLE SLICE OF
THE PHANTOM DATA FOR THE ORIGINAL NOISY SLICE AND AFTER DENOISING WITH 1) 3-D BRUSHLET ANALYSIS; 2) 4-D BRUSHLET ANALYSIS; AND 3) WIENER
FILTERING FOR WHITE NOISE, AND 4) WIENER FILTERING FOR RAYLEIGH NOISE

b | iD brashlet | 4D bnushlet | Wiener fikering | Wiener Glening
G |  analyss arabyais {White poese) | (Rayleigh noise)
White fiinze 15 4 1: 14,16 4B .5 dB 14 8 dB 7.3 dB
" |
Eﬂﬁm* A5a8 | 13248 4.3 dB 4.9 dB 14 3 4B
Speckde nuase v | 1134 - ;
i 2 -13 6.7 db -14 0 dB 143 4B
{Rayiagh) !

azimuth and elevation angles ofewith 1° increment. With a

total depth of acquisition of 7.92 cm, the optimal resolution in

the short axis direction (perpendicular to the transducer) wa

1.736 mm/pixel.
Brushlet analysis was performed in three dimensions with i

tiling of the Fourier domain partitioned by » 4 x 4 cubes as

described previously in Section Il. Denoising was performed ir

space via hard-thresholding of the lower-frequency coefficient

as described in the previous paragraph. Segmentation was ci

ried out using deformable-model on each slice. The snake we

initialized with a four-pixel-radius circle inside the cavity to seg- i

ment. The center of the circle was identified by a circular Hougt b.1) ib.2)

transform applied on the edges extracted with a Prewitt filter for

every ten slices of the volume. For each inspected slice, if mafig. 10. Segmentation on balloon phantom data for the two data sets. (a.1-b.1)

than one circle was detected, no center point was selected &pginentation on original data via manual tracing. (a.2-b.2) Corresponding

the next slice inspected. In his fashion, for every group of tes e enisng a0 bushlet anayssusng deformable macel (¢ One

slices we either selected one center point or none. We then com-

puted parameters of the best linear fit in the least square sense TABLE I

over the entire set of center points detected. We, thus, obtainedyeasures oFBALLOON VOLUMES WITH MANUAL SEGMENTATION ON

two linear modelsr = az + b andy = az + b to determine the  ORIGINAL DATA AND DEFORMABLE-MODEL SEGMENTATION ON FILTERED

= andy coordinates of the center points for each skc&he DATA. TRUE BALLOON VOLUMES ARE REPORTED FORCOMPARISON

circular Hough transform has been applied previously to RT3~

Ml amual Defomnable-maodel R.enl
data by Stettent al.[62], [63] for vqlume measurements_ on bal- wolenis Gl voloas Gial) volune bel)
loon phantoms. Because of the high incidence of spurious ed:

Balleonl 31.85 27.31 35

in ultrasound data, a simple Hough transform on single slic
might detect several different circles. Missing edges on the ott g;11p0m2 5356 54 33 &3
hand can lead the Hough transform to shift the position of the
center of the circular cavity. The linear best fit on the series of
center points was observed to be well suited to handle theseteaist. From its construction and the constraints applied to it, the
rors and provided a more robust initialization than a single slieetive contour is forbidden to go inside the white-appearance
Hough transform. bubble layer, so that the final contours always underestimated

Parameters values for the active contour were set t8:0.2, the real balloon cavity. Testing on the balloon data sets allowed
f=1,~v=2,K =3,k =0.2,ands = 2. An expert cardiol- us to tune the deformable-model parameters on denoised data
ogist performed manual segmentation of the inner balloon wédlading to a stable behavior in situation where part of the wall
on the original volumes. Table Il reports volume measures fborders is missing. This situation is illustrated in Fig. 10.
manually traced balloon and deformable model segmentation2) In Vivo Clinical RT3D Volume Data Set#A database of
Examples of segmentation of the inside cavity of the two badix patients co-screened with cardiac functional MRI was used
loons are displayed in Fig. 10 for two slices. for validation of LV volume segmentation and measure. Clinical

In both cases, there is a consistent underestimation of voludeda sets consisted of either: 21 time frames of size{®4 x
estimation when using the deformable model while manuar3) voxels (two cases), 26 time frames of size X684 x 438)
tracing estimations were within 5% of accuracy. This differencmxels (one case), or 21 time frames containingXa¥ x 438)
can be explained by the fact that the expert cardiologist knewwxels (three cases).
that the real balloon wall borders were actually located inside Brushlet analysis was performed in three dimensions for spa-
the thin layer of bubbles that was inserted to increase the caial denoising followed by 1-D analysis along time for enhance-
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ment of cardiac structures. Tiling of the Fourier domain was se
to four subintervals in each direction. Denoising in space wa
performed via hard thresholding of the lower frequency com-
ponents at 25% of coefficient maxima. Enhancement was the
performed in time via soft-thresholding at 15% of coefficient
maxima. Threshold values in space and time were empiricall
set via testing on clinical data sets to achieve a good tradeo
between removal of noise artifacts and enhancement of cardi:
structures.

Rescaling of the volumes from spherical coordinates to Carte
sian coordinates via linear interpolation was performed prior tc ;
segmentation. Rescaling produces isotropic volumes with ider (b1}
tical resolution in each of the three dimensions. The best spa-
tial resolution in the acquired volumes is a|0ng the |ong_ax@. 11 Segmentation of th_e LV cavity in shor_t-axis and long-axis views for )
with pixel size of 0.308 mm with over 400 slices. Because Gl 4o s atend dasiole Seqmentaton was perormed on shot s
the computational time needed for the segmentation procgs3-b.2) Corresponding slices after denoising via 4-D brushlet analysis and
whether manua”y or with the deformable model, we decided $ggmented contour using deformable-model. (c) The LV cavity_ reconstr_ucted
downsample the rescaled volumes. We initially downsampléram deformable-model contours at end-systole (left) and end-diastole (right).
by a factor of four but manual tracing ended up too far off from TABLE Il
the correct values. We finally opted for a downsampling by aguantiricarion o EDV, ESV,AND EF FOR Six CLINICAL CASES WITH
factor of two, reaching an acceptable compromise between act) MANUAL TRACING ON ORIGINAL DATA AND 2) DEFORMABLE-MODEL

(bZ) (€]

curacy of tracing and processing time. On average, 100 slices SEGMENTATION ON DENOISED DATA
were segmented for each volume with a voxel resolution of Marual tracing 10 Dformable MEL
x 0.308F = 0.23 . el
End-diastole and end-systole time frames were identifie
and manually segmented by an expert cardiologist. Mant EDV | E5V | EF |EDV | ESV | EF | EINV | ESV | EF

tracing was performed on the unprocessed data while ¢ () | () | 09 | (i) | ) | O | () | Gu) '“""_

formable-model segmentation was performed on the denoisVolsmel | 8700 | 431 | 303 | 996 411 | 588 | 974 | 416 | 370
dgta. The d_efo_rmable mo.delwas initialized with a five-pixel-réy; 1= o |95 | 249 | 901 | 178 | 422 | ;1.2 | 369 | oz
dius circle inside the cavity to segment. An operator manual

. . . ohmned | TSE | 2085 (&S00 | @00 170 ) TRT | G0 | 220 | &09
selected the centers of the circle for every ten slices since | | l |
circular Hough transform applied to the balloon data sets fail Vehsmed (1351 | 61.5 | 545 | 535 391 | 583 (1112 | 473 | =42
to produce accurate center estimations in this case. Ceryjumes | m4 | 375 | 527|781 256 | 660 | 77 | 262 | 660
locations for in-between slices were determined via linew, o et e ™ e e [en s | 136 | 284 | T | 328 | 254
best fit. By identifying the best linear fit to the center points
detected inside the LV cavity we defined an approximation of
the LV medial axis. Parameters values for the active contour .~ INQUANI{'\F‘?C';\ED':‘/OF VOLUMES AND EJECTION
were set torv = 0.07,5 = 2,~ :_1' K =2k = 0-09’ and  FracTion FOR THESIX CLINICAL CASESREPORTED INTABLE 111, “M ANUAL”
o = 2. Examples of LV endocardium segmentation via manuakerers TOMANUAL TRACING BY AN EXPERT CARDIOLOGIST ON ORIGINAL

tracing and deformable model are displayed in Fig. 11 for oneRXT3D ECHO DATA, *MRI” R EFERS TOMANUAL TRACING BY AN EXPERT
CARDIOLOGIST ON MRI DATA AND “D EFORMABLE-MODEL” REFERS TO

Short-a.XIS and one long-axis view. After segmentation, th€pEFoRMABLE-MODEL SEGMENTATION ON DENOISEDRT3D DATA. ERROR
LV cavity was reconstructed to compute end-diastolic volume MeASURESWERE COMPUTED FOR THESIX CASES THE MEAN ERROR

(EDV) and end-systolic volume (ESV). An example of L\V(MEAN), STANDARD DEVIATION (STD) AND MAXIMUM AND MINIMUM ERROR
volume reconstruction is also provided in Fig. 11. VALUES (MAX-MIN) ARE REPORTED FOREDV, ESV.AND EF
Ejection-fraction (EF) was then computed as

Pl mrmad Dreformah] &-meodie]
EDV — ESV Error i MEL va. MEI
BE = <W) x 100. (22) EDYV | ESV | EF |EDV | ESV | EF

(mby | {ml) | () | {mly | (md) | {2

The six patients were co-screened with cardiac functional Mem we | 72 | 67 | 54 | 29 | 26

MRI, which is considered as the method of reference in this —
study. An expert cardiologist performed manual tracing on the Sid “rf [ 54 | 39 ( 63 | 33 ) 31
MRI data. Quantitative measures and errors for the six clinical Max | 239 | 142 | 132 | 174 | 82 | 84

cases are reported in Tables IlI-V.

Absolute errors of quantitative measures were computed for
volumes and ejection-fraction. We evaluated mean-error values
and standard deviation over the six cases for the three quantithvariability achieved by the different segmentation methods.
tive measures. These results are reported in Table IV. MaximWfe also report in Table V percentage mean error for volumes
and minimum error values are provided to better assess the raagé ejection-fraction measures over the six cases. We observed

Wlin 0.3 07 L8 k1 LUK AR
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TABLE V ical data set. It is interesting to note that Wiener filtering pro-

MEAN PERCENTAGEERROR IN QUANTIFICATION OF END-DIASTOLIC VOLUME i i iQing i —_ayis vi i
(EDV), END-SYSTOLIC VOLUME (ESV) AND EJECTIONFRACTION (EF) FOR duced a high quality denoising in long-axis views but introduced

THE SIX CLINICAL CASESPRESENTED INTABLE Il significant blurring that corrupted the data when displayed in
short-axis views. Blurring of the data, which is a common ar-

Manisl Defomialie-sodel tifact with denoising filters, prevents segmentation from real-

Ertor ve. MR va. MR izing accurate volume quantification. Such blurring was not ob-
EDYW | ESV | EF |EDV | ESV | EF served with brushlet expansions. When comparing 3-D and 4-D
(ml) | {ml} | (%} | (ml) | (md} | (%) brushlet denoising we observed that the introduction of the tem-
Mean %) | 108 | 225 | 107 | 59 | 89 | 4.1 poral dimension improved the contrast of the denoised data with

enhanced myocardial wall and a more homogeneous inside LV
cavity. We observed that segmentation performance was en-

with these results a significant improvement of quantitative a@anced by such contrast improvement as the deformable model
curacy with the deformable model when comparing to manu4fS not trapped in local minima inside the cavity, moved faster
tracing. EDV accuracy was improved by 50.1%, ESV accura@"’ard the myocardial border, and localized border edges more

was improved by 60.6%, and ejection fraction measure accuré’éiFurately- The main power of brushlet analysis is its flexibility
improved by 61.4%. in'decomposing-D signals and its ability to accommodate and

precisely match nonuniform sampling rates of each dimension
obtained during RT3D acquisition (sample spacing,in, » and
time). The tiling of the Fourier domain determined the orienta-

This paper presented a method for feature extraction fraion and the resolution of the brush strokes on which the signal
RT3D ultrasound that combines 4-D directional denoising amehs projected. In different terms, the tiling selected the textural
model-based segmentation. patterns used for the analysis of the original signal. From this

Denoising of ultrasound data was performed via space—ffgint of view, tiling can be considered as an added dimension
guency brushlet analysis of theD Fourier domain and thresh- of the analysis. As described in Section II, brushlet analysis
olding of the coefficients to remove speckle noise and enhangas performed for a fixed tiling of the FT that divided each di-
coherent anatomical structures in space and time. Brushlet amaénsion into four intervals. This choice allowed us to extract
ysis identifies efficient tilings of the Fourier domain, along eacand denoise only the lower frequency components without se-
dimension of a signal. Through characterization of coefficienkscting any specific direction. This approach was originally mo-
within sets of redundant articulated (orientation rich) bases weated by the isotropic nature of the LV myocardium shape in
can separate signal and noise components. The performancspafce and identification of low-frequency movements in time
brushlet analysis to decorrelate signal from white additive affide., slowly moving structures). The next step is to investigate
multiplicative speckle noise components was demonstrated mathematical and empirical methods for identifying the most
a 4-D mathematical phantom. These examples also showed #féicient” brush stroke sizes and orientations for decomposi-
superiority of 4-D brushlet denoising over 3-D for 4-D data setdon and reconstruction. From an empirical point of view, the
We have previously shown that we can characterize and ishape of the left ventricle is highly isotropic in short axis planes
late features of interest in LV volumes by selection of specificircular wall) while rather elongated in long-axis views. This
brushlet coefficients [64]. Since decomposition on a brushlebservation suggests that a selective tiling for horizontal fea-
basis can efficiently isolate directional features at specific freures might be more appropriate in thedimension. A math-
guencies, preprocessing of RT3D volumes via thresholding éatical framework for identifying an optimal basis was in-
lower frequency brushlet coefficient can assist segmentationtogduced by Coifman and Wickerhauser [65] for the wavelet
removing noise components and enhancing anatomical featupsckets and cosine transforms. By measuring a predefined cost
The RT3D clinical data sets suffer from very low spatial resoldunction, such as entropy, the algorithm selects an optimal tiling
tion due to subsampling by the transducer during acquisition @f the Fourier domain where the energy of the signal is “best”
the echo, the high level of speckle noise and the motion of tdecomposed. Meyer and Coifman [33] applied this algorithm on
cardiac muscle. These three factors diminish the resolutionlwfishlet functions for compression of highly textured images. In
the acquisition and create artifacts that can either remove pahis current application, optimal speckle noise removal is desired
of the myocardial wall or introduce “myocardium-like” brightand a cost function adapted to denoising performance should
signals inside the LV cavity or outside the ventricle. Since thee designed to carry out an optimal-basis search. We presented
temporal resolution is much better compared to the three sgame preliminary work in that direction [61] with qualitative
tial dimensions, the inclusion of time in the analysis of the datvaluation of denoising quality as a function of the tiling. How-
was a tremendous advantage. It helped to remove artifacts eatr, optimization of the tiling needs to be studied further and
persistent in adjacent time frames and added myocardial consuld enable us to systematically adjust specific brushlet coef-
ponents (fill in holes) when the cardiac surface was presentficients for noise reduction and selective reconstruction of more
adjacent time frames. We qualitatively compared denoising psglient cardiac temporal features. Computation time for the 4-D
formance on clinical data using 3-D or 4-D brushlet analysksushlet analysis applied to clinical data sets will also need to be
and Wiener filtering adapted to speckle noise. Results for thptimized for future real-time applications. Currently, the whole
different denoising schemes are illustrated in Fig. 12 for foprocess of analysis and segmentation takes less than one hour,
long-axis and four short-axis slices extracted from one clinunning on a Pentium Il 400 MHz under Matlab.

IV. DISCUSSION
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Fig. 12. Qualitative comparison of denoising and enhancement performance on RT3D clinical data. Denoising/enhancement results are presented for f
long-axis and four short-axis views from a single clinical data set. (a) Original data, (b) denoising with Wiener filtering adapted to Rayldeghaipeckodel,
(c) denoising with 3-D brushlet analysis, and (d) denoising with @ + Time) brushlet analysis.

Regarding volume quantification using RT3D, we showetibn. To fully validate our methods we need to carry out fur-
that the deformable model could accurately segment ballotiver testing on a larger database of patients to evaluate the clin-
phantom data with consistency in observed behavior. Quantal significance of these results. We are currently working on
tative measures obtained from manual tracing were biasedtlas implementation of a deformable model in three dimensions
detailed in Section Il such that validation of volume measurésllowing the work of Jones and Metaxas [67]. Three-dimen-
ments could not be obtained on this data. sional deformable surfaces applied to medical image segmenta-

Testing of volume quantification using a database of six pien have drawn a lot of interest in recent years. A good survey
tients showed that simple 2-D deformable-model segmentatioithe different approaches and implementations developed for
applied on denoised data improved by over 50% the accurabgse surfaces is provided in [68]. We believe that extending
of volume and ejection fraction measures when comparedtte segmentation algorithm to true three dimensions will have a
manual tracing by an expert cardiologist. The gold standard uggeat impact on the quality and the robustness of the extracted
in this clinical study was functional cardiac MRI. Takumizal. volumes. When using 2-D deformable models there are cases
[66] reported an inter-observer variability of 8.3% and intra-olwhere the model is stopped by false edges inside the cavity
server variability of 3.7% for LV volume estimation with par-and does not fully expand to reach the actual myocardium wall
allel-plane-disks summation on RT3D echocardiograms. Thdasarder. This can be avoided with 3-D deformable models whose
values set the variability limits for acceptability of automaticleformations are controlled in 3-D space, ensuring smoothness
volume extraction. Any segmentation method should achiewéthe contours in every dimension.
this range of accuracy in order to be used in clinical settings.After building a 3-D deformable model, we plan to further
As reported in Table V, mean percentage errors for volumadapt the method for segmentation of the epicardium borders.
and ejection fraction measures are higher than these valuesfdong-term goal of this research project is to extract the my-
manual tracing while they fall below 8.7% with deformableecardium wall borders and analyze wall deformation in time
model-based segmentation. as studied during stress-echo examinations. As true volumetric

These results are quite encouraging and suggest that a diga is acquired in time, usual post processing tasks such as in-
formable model applied to denoised RT3D ultrasound could berpolation for volume reconstruction and registration of vol-
used in clinical practice for rapid quantification of cardiac funaimes from different times is not required, leaving segmentation
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as the final step to realize a patient-specific dynamic model of{4]
the left ventricle. This property makes RT3D ultrasound a very
strong candidate for becoming a powerful echocardiographic
screening modality that would enable fast and accurate compugs)
tation of dynamic computer heart models for standard screening,

patient monitoring and stress-echo testing.

This paper presented a spaciotemporal analysis method fol]
feature extraction using a third-generation RT3D ultrasound
system. The challenge of developing a segmentation tool for
guantification of cardiac function from RT3D ultrasound lies [8]
in the novelty of the data itself and the wealth of dynamic
information that can be extracted despite low spatial resolution
and high levels of speckle noise. Overcomplete wavelet-like[®]
brushlet functions were used to analyze the multidimensioneHLo]
FT of echocardiographic data and perform denoising and
enhancement on
Speckle noise was decorrelated well from the original signafll]
and anatomical structures were enhanced at the same time
via nonlinear thresholding of analysis coefficients. The de-
formable-model based segmentation method was performed oy

V. CONCLUSION

low-frequency directional

the denoised data in two dimensions.
We illustrated the superiority of 4-03-D + Time) over

3-D analysis in decorrelating white and speckle noise from 4.0
phantom and clinical data. We have shown that we can extract
LV endocardial borders using 2-D deformable models and quari14]
tify volumes of interest with a higher degree of accuracy than
those achieved with manual tracing. Future work will extend the
segmentation process itself to higher dimensions to integrate tH&5]
continuity of the echo data in space and time. Finally, we plan,
to investigate mathematical and empirical methods for identi-

fying the most “efficient” brushlet analysis tiling for denoising
and enhancement.
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