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a b s t r a c t

A differential analysis framework of longitudinal FLAIR MRI volumes is proposed, based on non-linear
gray value mapping, to quantify low-grade glioma growth. First, MRI volumes were mapped to a common
range of gray levels via a midway-based histogram mapping. This mapping enabled direct comparison of
MRI data and computation of difference maps. A statistical analysis framework of intensity distributions
in midway-mapped MRI volumes as well as in their difference maps was designed to identify significant
difference values, enabling quantification of low-grade glioma growth, around the borders of an initial
segmentation. Two sets of parameters, corresponding to optimistic and pessimistic growth estimations,
were proposed. The influence and modeling of MRI inhomogeneity field on a novel midway-mapping
framework using image models with multiplicative contrast changes was studied. Clinical evaluation
was performed on 32 longitudinal clinical cases from 13 patients. Several growth indices were measured
and evaluated in terms of accuracy, compared to manual tracing. Results from the clinical evaluation
showed that millimetric precision on a specific volumetric radius growth index measurement can be
obtained automatically with the proposed differential analysis. The automated optimistic and pessimistic
growth estimates behaved as expected, providing upper and lower bounds around the manual growth
estimations.

� 2011 Published by Elsevier B.V.
1. Introduction

Magnetic resonance imaging plays a prominent role in the fol-
low-up of patients harboring a grade II gliomas. Together with an
increase in seizures frequency, radiological growth is the most reli-
able mean to assess disease progression. A recent study for exam-
ple in (Caseiras et al., 2009) has shown that low-grade gliomas
tumor volume growth over the course of 6 months was the best
predictor of time to transformation into higher grades, indepen-
dent of relative cerebral blood volume, DTI information, age, sex
and histological findings. As an alternative to tumor volume, it
has been shown in the past few years that grade II glioma kinetics
can be estimated by monitoring the mean tumor diameter, de-
duced from total tumor volume (Mandonnet et al., 2008). The
mean tumor diameter was studied in various clinical settings such
as before any treatment (Mandonnet et al., 2003), after surgery
(Mandonnet et al., 2010), after chemotherapy (Ricard et al.,
2007), or after radiotherapy (Pallud et al., 2009). The clinical
importance of individual assessment of the radiological kinetics
of tumor growth before any treatment cannot be over-emphasized.
Indeed, the prognosis of patients with a velocity of diametric
Elsevier B.V.
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expansion (VDE) greater than 8 mm/year is similar to patients
harboring a high grade glioma (Pallud et al., 2006). This finding
underlines the need of an automated and reliable tool to accurately
measure glioma growth. Such tool could enable to discriminate fast
progressors (VDE > 8 mm/year) from slow progressors (VDE <
8 mm/year) from two MRI exams acquired over a 3 months period.
The aim of this paper is to provide a new computational framework
to address this challenge. A simple difference map of two co-
registered MRI volumes will likely fail to detect any tumor changes,
due to contrast differences between the two images, generated by
field inhomogeneity and differences in scanner sensitivity. Longi-
tudinal comparison of MRI exams needs to be insensitive to typical
scanning differences, including head position, scanner noise, dy-
namic range and voxel size, while being able to detect biological
evolutions of the tumor (and eventually other cerebral brain
structures) depicted as morphological and signal changes. Before
presenting our method, based on the statistical analysis of differ-
ence maps after non-linear normalization of the MRI intensity data,
we first provide an overview of the literature on the topic of change
detection in longitudinal image acquisitions, focusing on monitor-
ing of brain pathologies with MRI.

Monitoring change detection on series of image acquisitions has
been getting a lot of attention recently for applications such as re-
mote sensing and video processing, as reviewed in (Radke et al.,
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2005). For brain imaging, this problem has been addressed in sev-
eral contexts: mapping longitudinal changes of brain structures for
Alzheimer disease (Thompson et al., 2004), diameter measure-
ments to monitor responses to tumor treatment (Therasse et al.,
2000), formulation of the evolution of tumor delineation observed
on longitudinal MRI to adapt a generic dynamic tumor model, to a
patient-specific case (Hogea et al., 2008; Konukoglu et al., 2010a,b),
or image comparison to quantify the evolution of white matter le-
sions for multiple sclerosis (MS) disease (Nyul et al., 2000; Bosc
et al., 2003; Prima et al., 2002).

Regarding the underlying methodology enabling comparison of
image information, we can distinguish three types of approaches:
direct image comparison, segmentation-based comparison and
registration-based comparison.

For direct image comparison, previous work from Nyul et al.
(2000) proposed an MRI standardization protocol based on histo-
gram mapping on a generic mean histogram determined through
training. In addition, landmark gray values were identified on the
histogram to perform separate histogram matching for landmark
intervals. Bosc et al. (2003) proposed a histogram mapping of longi-
tudinal MRI exams maximizing their joint histogram with a median
value estimator. They made the observation that optimizing joint
histogram values was very sensitive to image noise. Non-parametric
image difference analysis using scattergrams (i.e. series of condi-
tional histograms pairs of intensity values) was studied in Bromiley
et al. (2002), relying on the probabilistic detection of abnormal pairs
of intensity values, which is computationally costly and might not be
robust to small spatial clusters of slow intensity changes. Prima et al.
(2002), used polynomial fit of longitudinal MRI scans onto a target
average scan, via least trimmed square approximation, which re-
quired complex numerical implementation. In Jager and Hornegger
(2010), a non-rigid joint histogram mapping was proposed to nor-
malize intensities of multi-modal MRI exams onto a reference mul-
timodal exam. Several applications were illustrated, demonstrating
the robustness of the mapping to the presence of a brain pathology
with increasing areas. While this approach provides an elegant solu-
tion to global MRI mapping, robust to the presence of localized
pathologies, it was not evaluated in the context of pathological
growth quantification. In addition, the use of non-rigid histogram
registration involves some risks in terms of contrast modification,
non-convergence of the intensity normalization process and atten-
uation of the contrast of pathological structures.

In the specific context of brain tumor change detection, an
interesting approach was proposed by Liu et al. (2003) to select
only significant changes on SPGR, T2-weighted and FLAIR longitu-
dinal brain MRI exams using an elaborated processing framework
on direct difference maps. This processing involved noise level
map estimations from repeated exams on a given subject, based
on previous work by Lemieux et al. (1998), thresholding of the dif-
ference maps above noise level and filtering of the remaining val-
ues with a learned anatomical map of artifacts, computed via
spatial normalization of difference maps from 40 subjects. In com-
parison, our proposed method avoids the needs of repeated MRI
exams and offers a framework likely to be more easily reproducible
and consistent across different clinical studies.

For segmentation-based longitudinal brain MRI studies, previous
works include Meier and Guttmann (2003) for MS disease and
Prastawa et al. (2003) for tumor growth. For brain volume change
detection, a consistent longitudinal alignment approach was pro-
posed by Xue et al. (2006) which incorporated adaptive image clus-
tering, spatio-temporal smoothness constraints, and image
warping to jointly segment longitudinal MRI brain data sets of
individual subject and characterize temporal changes due to devel-
opment, aging, or disease. In Clark et al. (1998), an automated tu-
mor segmentation was tested on longitudinal series of four exams
for patients with glioblastomas multiforme. They reported very
high true-positive values when comparing tumor volumes to man-
ual tracing. They also observed errors in growth or shrinkage pre-
dictions based on tumor volume measurements from the
segmented data.

For registration-based longitudinal brain MRI studies, displace-
ment fields obtained via non-rigid registration of longitudinal MRI
were used to detect regions corresponding to growth and atrophy
(Rey et al., 2002). These methods provided accurate localization of
MS lesion changes, but inaccurate segmentations of the lesion mor-
phology. More recently, smooth diffeomorphisms were proposed to
quantify shape changes, as reviewed in Miller (2004). These meth-
ods offer the great advantage of being invariant to small rigid regis-
tration errors, but have a high computational complexity, when
performed in 3D, and typically require a spatial resolution superior
to the one available with FLAIR data. In addition, these methods are
limited to global growth indices and are not suited for precise
growth area boundaries. A study in Konukoglu et al. (2008) com-
pared direct image comparison to a registration-based method, for
global growth quantification of brain meningiomas.

We finally point out an original approach, based on time series
analysis taking into account the characteristic time function of var-
iable lesions, that was proposed for MS disease in Gerig et al.
(2000), involving a large set of longitudinal MRI scans, and a train-
ing phase to learn the different types of lesion evolution.

Brain tumor segmentation remains a challenging task, requiring
to include necrosis, edema, infiltrations and eventually post-sur-
gery cavities. Since inter-observer variability for manual tracing
of brain tumor can range up to 15% (Kaus et al., 2000), our goal
was to propose a direct differential MRI analysis framework, rely-
ing on longitudinal gray-values normalization. Grade II glioma are
better delineated on FLAIR MRI sequences (Bynevelt et al., 2001),
and we focused our study on this protocol, although a 5–6 mm
slice thickness coupled with the fact that axial planes orientations
may change between two successive MRI exams will obviously
limit the accuracy of tumor growth measurement (both for the
manual and automated methods).

In this paper we present a novel method for detection and
quantification of low-grade tumor evolution in longitudinal sin-
gle-protocol MRI studies. A methodology for differential analysis
of longitudinal MRI volumes is proposed, based on non-linear gray
value mapping and detection of statistically significant differences.
The proposed method is designed to avoid severe limitations from
previously proposed normalization methods, including:

� Avoiding training for histogram learning so that the method can
be applied in a generic fashion to any type of longitudinal MRI
of different body parts.
� Avoiding the use of a template histogram shape.
� Avoiding the use of joint histograms, reported to be very sensi-

tive to image noise.

A clinical study was performed on 32 FLAIR longitudinal clinical
cases from 13 patients. Several growth indices were measured and
evaluated in terms of accuracy, compared to manual tracing. Re-
sults from the clinical evaluation show that millimetric precision
on a specific growth index measurement can be obtained automat-
ically with the proposed differential analysis.
2. Materials and methods

2.1. Midway mapping theory

2.1.1. Invariance to contrast change
The initial midway mapping framework was proposed in Delon

(2004) to enable comparison of a pair of images (I1, I2) representing



Fig. 1. Illustration of the general framework for midway-based image intensity
mapping.
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the same scene, while remaining independent of image contrast
changes. The basic idea was to assign to the pair of images (I1, I2)
a common gray level distribution, defined as a single target histo-
gram corresponding to a reasonable midway (i.e. average) between
the original gray level histograms of I1 and I2, as illustrated in Fig. 1.
In the original paper (Delon 2004) the author discusses alternative
normalization approaches, such as histogram mapping on a generic
target, and demonstrates the superiority of the midway framework
in terms of information preservation.

In order to go into further details regarding the mapping meth-
od, let us denote by hI the gray level histogram of an image I and by
HI the corresponding cumulative histogram (or cumulative distri-
bution). Recall that if / is a continuous and strictly increasing
contrast change function, the cumulative histogram of /(I) can be
written as:

H/ðIÞ ¼ HI � /�1: ð1Þ

Indeed:

8k;H/ðIÞðkÞ ¼ #fx;/ðIðxÞÞ � kg ¼ #fx; IðxÞ � /�1ðkÞg ð2Þ

where # denotes the cardinal of a set. It follows that the histogram
h/(i) of /(I) can be written:

h/ðIÞ ¼
hI � /�1

/0 � /�1 : ð3Þ

In particular, if / and HI are both continuous and strictly
increasing, the cumulative histogram of the image /�1 � HI(I) is /,
which means that I can be mapped onto any gray level distribution
with a well chosen contrast change function.

In (Delon 2004), the notion of midway gray level distribution
was derived empirically in the case where both images shared
the same geometry, i.e. when there exists two strictly increasing
functions f and g such that I1 = f(I) and I2 = g(I). The functions f
and g were assumed to be increasing to preserve gray level
ordering (i.e. level sets). In this particular case, a midway image
was defined between I1 and I2 instead of just a midway histo-
gram. For this purpose, it was assumed that there exists a func-
tion w : R2 ! R, independent of f, g and I and such that the
midway image between f(I) and g(I) can be written w(f(I),g(I)).
If we add the hypothesis that the midway image between I
and I þ k should be I þ k=2, the only solution for w is the
function:

w : ðx; yÞ ! xþ y
2

: ð4Þ

This leads to a midway image defined as:

Imidway ¼
f ðIÞ þ gðIÞ

2
ð5Þ

The cumulative histogram of this midway image is expressed as:

Hmidway ¼
f � H�1

I þ g � H�1
I

2

 !�1

ð6Þ

In the general case, when we don’t know the contrast change
functions f and g nor the original image I, this framework leads
to the following definition of the midway histogram between
two observed cumulative histograms HI1 and HI2 :

Hmidway ¼
H�1

I1
þ H�1

I2

2

 !�1

ð7Þ

We note that strictly speaking, we should use here the ‘‘pseudo in-
verses’’ of HI1 and HI2 when these cumulative histograms are not
invertible.

The images I1 and I2 mapped on this midway histogram become
respectively:

Imidway1 ¼ H�1
midway � HI1 ðI1Þ ¼

I1 þ H�1
I2
� HI1 ðI1Þ

2
ð8Þ

and

Imidway2 ¼ H�1
midway � HI2 ðI2Þ ¼

I2 þ H�1
I1
� HI2 ðI2Þ

2
: ð9Þ

In Angelini, Atif et al. (2007), we presented an initial applica-
tion of the midway framework to compare longitudinal brain
FLAIR and SPGR MRI data of patients with low-grade gliomas
with promising results on the quantification of tumor’s evolution.
Several aspects of the specific problem of MRI normalization
were not addressed in this initial paper, and are discussed in
the following paragraphs.

2.1.2. Invariance to MRI inhomogeneity
As reviewed in (Vovk et al., 2007), MRI inhomogeneity fields are

typically modeled as multiplicative spatial fields:

I1ðxÞ ¼ IðxÞ � kðxÞ: ð10Þ

In this case, the arithmetic mean xþy
2 in Equation (4) can be replaced

by a geometric mean
ffiffiffiffiffi
xy
p

. Theoretically, this corresponds to impose
that given a real (non-zero) value k, the midway-mapped image be-
tween kI and 1

k I should be I.
This mapping leads to the following expression for the midway

histogram:

Hmidway ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H�1

I1
H�1

I2

q� ��1

ð11Þ

With such mapping, images I1 and I2 become respectively:

Imidway1 ¼ H�1
midway � HI1 ðI1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1 � H�1

I2
� HI1 ðI1Þ

q
ð12Þ

and
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Imidway2 ¼ H�1
midway � HI2 ðI2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 � H�1

I1
� HI2 ðI2Þ

q
ð13Þ

Since inhomogeneity fields are generally assumed spatially uni-
form and slowly varying, kðxÞ in Equation (10) locally corresponds
to a constant multiplier k0. Such model requires that midway map-
ping be applied on overlapping patches (blocks) where kðxÞ is as-
sumed constant. Overlap of patches and fusion of mapped
patches via averaging is used to enforce some spatial continuity
of the mapping of gray values in the resulting image. This approach
is similar to the general framework of block-based lapped trans-
forms (Malvar, 1992). In all our experiments, patches overlap
was set to 1/3 as a tradeoff between computational cost and visual
quality of the mapped data.

When applied to clinical data, the patch-based multiplicative
midway mapping cannot directly estimate the individual inho-
mogeneity fields from the two scans being mapped, but can nor-
malize these fields to identical values. This means that the
proposed midway mapping framework eliminates the need for
inhomogeneity correction prior to MRI comparison. More pre-
cisely, for a pair of MRI images (I1, I2), we model small image
patches data as ðk1I; k2IÞ. From Equations (12) and (13) we can
express the following ratios between pre and post midway
mapped images:

I1

Imidway1
¼ I1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I1 � H�1
I2
� HI1 ðk1IÞ

q ¼
ffiffiffiffi
I1
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H�1
I2
� HIðIÞ

q

¼
ffiffiffiffi
I1
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2H�1
I � HIðIÞ

q ¼
ffiffiffiffi
I1
pffiffiffiffiffiffiffi
k2I
p ¼

ffiffiffiffiffi
k1
pffiffiffiffiffi

k2
p ; ð14Þ

and
Fig. 2. Evaluation of the image data model for the multiplicative midway mapping on a c
time 1 and time 2. (c) Spatial map of the products of the ratios of the mapped versus th
values between [0.5–1.5], displaying values of one almost everywhere, especially in
inhomogeneity fields and the image models with piecewise constant multiplicative inhom
of images at time 1 and time 2, displayed with the same colormap, estimated on the or
I2

Imidway2
¼ I2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I2 � H�1
I1
� HI2 ðk2IÞ

q ¼
ffiffiffiffi
I2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H�1
I1
� HIðIÞ

q

¼
ffiffiffiffi
I2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1H�1
I � HIðIÞ

q ¼
ffiffiffiffi
I2
pffiffiffiffiffiffiffi
k1I
p ¼

ffiffiffiffiffi
k2
pffiffiffiffiffi

k1
p ; ð15Þ
based on the fact that HI1 ðI1Þ ¼ HIðIÞ and H�1
I1
¼ k1H�1

I for I1 ¼ k1I,
(and similarly for I2).

Therefore, if we look at the product of the two ratios from Equa-
tions (14) and (15), we should obtain a flat image equal to one. We
illustrate the evaluation of this theoretical result on a clinical case
with two longitudinal FLAIR MRI scans, in Fig. 2. Using a multipli-
cative midway mapping with 4 � 4 patches overlapping by 1/3, we
obtained very high adequacy between the theoretical and experi-
mental results regarding the value of the product of the two ratios,
being equal or very close to one almost everywhere, especially in-
side the brain. Some inconsistencies occurred in the background,
corrupted with acquisition noise. This result was important as it
validated our data model and midway mapping framework on clin-
ical cases. We also estimated the inhomogeneity fields on the two
MRI cases with the N4ITK tool (Tustison et al., 2010) implemented
in the 3DSlicer software tool (Pieper et al., 2006), using 4 � 4 con-
trol points for the B-Splines, which is the default recommended
setting and corresponds to our patch-based midway normalization
setting. We compared the inhomogeneity fields of the two longitu-
dinal exams prior and after midway intensity normalization. We
observed in Fig. 2 that midway mapping of the two clinical exams
was indeed capable of mapping the two inhomogeneity fields and
removing all the spatial patterns of their initial differences. We ob-
served that for inhomogeneity fields with maximum value of 1.2,
and original difference values up to 0.15, the midway mapping
linical case. (a and b) Original corresponding axial slices of the FLAIR MRI images at
e original FLAIR data from the two longitudinal times. (d) Map (c) thresholded for
the brain. Values of one correspond to areas where midway mapping of the

ogeneity fields are correct. (e and f) Absolute difference of the inhomogeneity fields
iginal data (e) and the midway-normalized data (f).
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was able to homogenize the spatial outline of the differences to an
almost flat value of 0.07, within the brain. Larger differences (up to
0.15) were observed in the region of the evolving brain tumor
(where the working assumption of similarity between local image
content is not valid). Midway mapping was therefore capable of
implicitly mapping inhomogeneity fields with an error of 7%. This
error level is negligible compared to the level of differences in
tumoral growth areas.

2.2. Difference map processing

2.2.1. Difference map characteristics
In the experimental section, we illustrate that even though dif-

ference maps (after midway normalization) visually clearly detect
tumor region growths corresponding to high difference values, the
range of values of these differences is completely unpredictable
since tumoral tissue is rather heterogeneous and can vary greatly
between two exams. In addition, high difference values are also
observed on specific structures such as CSF ventricles and sur-
rounding tissues (skull bone, fat, gyri, etc.). In this context, simple
difference map thresholding is difficult to perform in an automated
fashion and provides a poor selectivity of ‘‘significant’’ difference
locations. Therefore, in order to automatically process the mid-
way-based difference maps, in a generic fashion, we derived a sta-
tistical test designed to select ‘‘significant’’ difference values
corresponding to potential tumor growth. This test was based on
individual Gaussian distribution models for normal brain tissues
(white-gray matter and CSF), as commonly assumed, for example
in Lemieux et al. (1998). In this context, because of the presence
of the tumor which is not correctly modeled with a Gaussian dis-
tribution, intensity values from the two scans being compared
were assumed to be either drawn from the same Gaussian distribu-
tion (i.e. there was no change in the tissue type and distributions
can be directly compared thanks to midway mapping), or drawn
from different distributions, because of a change in tissue type,
due to mis-registration or tumoral infiltration. These tests were
performed locally, for each voxel. In Lemieux et al. (1998), the
authors proposed to use a Generalized Likelihood Ratio Test (GLRT)
comparing the individual distributions estimated at time 1 and 2 to
a joint distribution estimated on the combined voxels from both
times. Values of the GLRT test were much greater than one if the
assumption of tissue change between the two times was true,
but typically remained around one if the assumption of similar tis-
sue types was true (due to the intrinsic variability of local statistics
estimations on the image data). Therefore, selection of voxels with
‘‘significant’’ changes required the identification of a threshold va-
lue, greater than one, which could be delicate to manipulate. We
propose an alternative approach, with the formulation of a differ-
ent statistical test, enforcing the equality of local mean values of
the voxels being compared.

2.2.2. Statistical test
We assume at this stage that we are given two images I1 and I2,

normalized with midway mapping and co-registered. For each pix-
el i, we want to know if the difference D(i) = (I1(i) � I2(i)) is mean-
ingful (i.e. due to a structural difference), or on the contrary simply
explained by the local statistics of the individual images. To answer
this question, we rely on a statistical hypothesis testing frame-
work, that we further detail in 2D but is straightforwardly extend-
able to 3D. Let us denote by Ki the (2s + 1) � (2s + 1) centered
neighborhood of the pixel i. We note n = (2s + 1)2. We assume that
the differences D(j) are realizations of independent and identically
distributed (i.i.d.) random variables following a given centered
Gaussian (normal) distribution when j belongs to Ki. This local
hypothesis is reasonable in practice if the images are well regis-
tered and intensity-mapped. More precisely, if we denote by Xj
the random variable corresponding to the gray level difference be-
tween I1 and I2 at j, we define the following null hypothesis:

Hi
0 : the random variables Xj, j e Ki, are i.i.d. and follow a cen-

tered normal distribution Nð0;r2
i Þ, where ri represents the stan-

dard deviation of the normal distribution.
Under the hypothesis Hi

0; the random variable XðiÞ ¼ 1
n

P
j2Ki

Xj

corresponding to the local average pixel value on the neighborhood
Ki also follows a normal distribution Nð0;r2

i =nÞ.
The probability that the random variable jXðiÞj is larger than a

given value d is therefore:

Fi½d� :¼ PHi
o
½jXðiÞj > d� ¼ 1�

ffiffiffi
n
pffiffiffiffiffiffiffi
2p
p

ri

Z d

�d
e
�nx2

2r2
i dx: ð16Þ

Assuming that we have a local estimation of the standard devi-
ation ri in the neighborhood Ki, the null hypothesis Hi

0 can thus be
tested by computing Fi½jDðiÞj�, where DðiÞ ¼ 1

n

P
j2Ki

DðjÞ is the ob-
served average gray level difference in the neighborhood Ki. If
Fi½jDðiÞj� is too small, the observed difference jDðiÞj cannot be ex-
plained by Hi

0 and we decide to reject the null hypothesis. More
precisely, the pixel i is detected as a meaningful difference if:

Fi½jDðiÞj� 6 p0; ð17Þ

where p0 is a pre-set threshold value (significance level). This is
equivalent to saying that, if the mean of I1 around i is too different
from the mean of I2 in the same region, the hypothesis Hi

0 is rejected
and we consider that there is a structural difference between both
images at pixel location i.

Now, observe that if we note Erf() the error function of the stan-
dard normal distribution, the probability Fi[d] can be rewritten:

Fi½d� ¼ 1� 1ffiffiffiffi
p
p

Z ffiffi
n
2

p
d
ri

�
ffiffi
n
2

p
d
ri

e�y2
dy ¼ 1� Erf

ffiffiffi
n
2

r
d
ri

� �
: ð18Þ

For a given threshold p0, Equation (17) is thus satisfied if:

jDðiÞÞjP ariffiffiffiffiffiffiffiffi
n=2

p ð19Þ

where a > 0 is the quantile of level 1 � p0 of the Erf() function (i.e.
the quantity which satisfies Erf(a) = 1 � p0). The threshold ariffiffiffiffiffiffi

n=2
p

depends on the neighborhood size n used to estimate the local
mean �DðiÞ and on the local standard deviation ri of the differences.
The first parameter corresponds to the random variable being
tested, the second one corresponds to the parameter of the distribu-
tion model. In practice, we estimate the local standard deviation ri

on a neighborhood K�i centered on pixel i and of size (2t + 1) �
(2t + 1) pixels. Working with a pre-set p0 value enables us to tune
the statistical test via the two parameters n and ri. Regarding the
estimation of the local average �DðiÞ, increasing the size n of Ki de-
creases the threshold in Equation (19), as well as extends the range
of influence of �DðiÞ around locally high differences. The first effect is
more significant and makes the thresholding test more permissive
(i.e. more easily verified and at more locations). This leads to sys-
tematic larger growth areas, and a more pessimistic growth estima-
tion. Regarding the local variance, increasing the size t of K�i leads to
larger variance values of D(i) and therefore increases the threshold
in Equation (19). This results in a more restrictive thresholding test,
identifying smaller growth areas and providing a more optimistic
growth estimation. For example, using the sequence of [Ki, K�i ]
window sizes [s, t] = [1, 4] ? [1, 2] ? [1, 1] leads to increasing
growth areas while using the sequence of [Ki, K�i ] window sizes
[s, t] = [4, 1] ? [2, 1] ? [1, 1] leads to decreasing growth areas. We
chose to work with a fixed K�i neighborhood size of t = 1 for the var-
iance estimation and two Ki neighborhood sizes s = 1, 4 to define
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optimistic growth estimates with [s, t] = [1, 1] and pessimistic growth
estimates with [s, t] = [4, 1].

Similarly to standard statistical thresholding tests, we fixed the
significance level (in this study p0 = 10�10 was set empirically and
was robust to all cases being tested) to threshold the p-values from
the test in Equation (16), which is equivalent to selecting a ’ 4.6 in
Equation (19). With this fixed thresholding framework, we manip-
ulate the size of the local patches used to estimate the statistics of
the tested variables and the observations, to implicitly manipulate
patient-specific thresholds. The use of local average rather than di-
rect difference values enforces spatial coherence in areas of large
values and a zero-mean Gaussian distribution in noisy areas. This
averaging is similar to the pre-smoothing tasks classically
performed in statistical parametric mapping (SPM) of noisy data
(Marchini and Presanis 2004). The size of the smoothing window
Ki is used as a parameter of the statistical test, and implicitly
affects the thresholding level in Equation (19), similarly to the Bon-
ferroni correction used to weight the false discovery rate in SPM.
Fig. 3. Illustrations of direct and midway-based difference maps between two longitudin
axial slices from two longitudinal data sets acquired on the same patient are displayed
difference maps (labeled as direct) and midway-based difference maps (labeled as midw
based difference maps appear more selective, inside and around the tumor. (For interpre
web version of this article.)
3. Experiments and results

We first performed a simple experiment to illustrate the apti-
tude of the proposed midway normalization and statistical testing
on midway-based difference maps to handle MRI field inhomoge-
neity and localize tumoral growth. We then performed a clinical
study on 32 FLAIR MRI cases, testing several growth indices. Preli-
minary results from this study were presented in Angelini et al.
(2010).

3.1. Clinical examples of difference maps

To process our series of clinical cases, we used multiplicative-
midway mapping, with a 2D 4 � 4 patch-based implementation
(with overlaps set to 1/3 of patch size), without pre-correction of
the inhomogeneity field. With this setting, we guaranteed that
the patch size was bigger than the tumor, limiting the influence
of evolving tumoral tissues in the mapping process. We chose to
al FLAIR MRI data sets, on two clinical cases with low-grade glioma. Corresponding
along with the manually traced contours at time 1 (green) and time 2 (red). Direct
ay) are also displayed. For these two cases, with no tumor evolution, the midway-
tation of the references to colour in this figure legend, the reader is referred to the
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perform midway mapping in 2D rather than in 3D. This choice in-
creases the computational time of intensity mapping but was
found to provide slightly more accurate results when computing
the difference maps and extracting statistically significant differ-
ences. This is likely due to the fact that the assumption of a piece-
wise constant multiplicative inhomogeneity field is more correct
on 2D patches than on 3D patches, with large variations of the
inhomogeneity field across thick slices. This issue was discussed
in (Leemput et al., 1999), who proposed a 2D polynomial bias field
estimation on each slice separately for optimal correction.
3.1.1. Midway-based difference maps
To illustrate the challenges raised by longitudinal scan compar-

ison, we computed in Fig. 3, on two clinical cases with low-grade
gliomas (with image properties detailed in the Clinical Study Sec-
tion), difference maps from direct subtractions of two pre-regis-
tered FLAIR MRI exams for the same patient.

The dynamic ranges of the longitudinal data sets were similar
between the two scans (up to 100 difference in maximal intensity
value). A direct comparison of the two exams, via computation of
difference map representing their absolute difference values, dis-
played large variations of intensity inside the tumor, which would
be misleading for any visual inspection. On the other hand, the dif-
ference map between the two midway-mapped scans provided a
much more selective difference map, with almost no difference in-
side the tumor. In both cases, no evolutions were measured on the
illustrated slices, based on manual tracings from a clinical expert,
and therefore the difference maps should not display any impor-
tant difference values around the tumoral border at time 1 (which
was the case).

This simple experiment confirmed that linear gray-scale map-
ping was not sufficient to bring longitudinal MRI exams to a com-
mon gray-scale range of values permitting direct comparison. On
Fig. 4. Selection of ‘‘significant’’ difference values between two longitudinal MRI FLAIR
difference map. (a and b) Original MRI FLAIR data at time 1 (a) and time 2 (b), along wi
Difference map after midway mapping. (d and e) Region of interest around the tumor on
statistical maps for parameter settings corresponding to pessimistic (large) growth estim
segmentation at time 1 is masked out for growth estimation. N.b. The difference maps a
references to colour in this figure legend, the reader is referred to the web version of th
the other hand, patch-based multiplicative midway mapping of
the two longitudinal MRI exams enabled direct comparison of
the data via the computation of a difference map where high differ-
ence values were only observed on structure borders (especially on
the skull, the CSF ventricles and some gyri) and on the tumor
growth area, but not inside homogeneous tissues such as the white
and gray matters or similar tissues such as the initial tumoral area.
3.1.2. Selection of significant differences
An illustration of manual tumor delineation and growth estima-

tions is provided in Fig. 4 for a clinical case, displaying correspond-
ing slices from two original longitudinal image data sets, manual
segmentation of the tumor from an expert clinician, the statistical
thresholding results for window sizes {[s, t]opt, [s, t]pes} equal to
{[1, 1], [4, 1]} corresponding to small optimistic and large pessimis-
tic estimations of tumor growth, targeted to encompass the manual
tracing estimation.

Some significant differences were still selected inside the tu-
mor, and on other tissues, illustrating the great challenge in han-
dling the variability in MRI appearance for longitudinal selection
of differences in tissue types, along with registration errors. There-
fore, to evaluate the proposed methodology, we needed to define a
growth mask around the tumor at time 1. This selection was per-
formed using a manual outline of the tumor at time 1, defined by
a clinical expert. Obtaining an automated detection of the tumor’s
contours (at either time 1 or time 2) was beyond the scope of this
study and still represents a very challenging task, as reviewed in
Angelini, Clatz et al. (2007).

It is important to point out that the proposed test required that
the MRI data sets were mapped to a common range of gray scale
intensity values (as performed by the midway mapping) to be
compared in terms of pixel intensity distributions or pixel intensity
difference values.
scans with a low-grade glioma, based on statistical testing of the midway-based
th the manual segmentation of the tumor at time 1 (green), and at time 2 (red). (c)
the MRI FLAIR data at time 2 (d) and on the difference map (e). (f and g) Thresholded
ations (f) and optimistic (small) growth estimations (g). The shaded area inside the
re displayed in inverted contrast for better visualization. (For interpretation of the
is article.)
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3.2. Clinical study for tumoral growth quantification

3.2.1. Setup
A clinical study was performed on 32 clinical FLAIR pairs of

longitudinal scans from 13 patients, to automatically measure tu-
mor growth, given an initial segmentation. The FLAIR MRI exams
were performed on a 1.5 T GE SIGNA scanner, with a 2D IR brain
scanning protocol with the following parameters for fluid attenua-
tion: TR = 10,000 ms, TE = 149 ms, TI = 2400 ms, Flip angle = 90o,
FOV = 240 cm � 240 cm) with or without injection of Gadolinium
contrast agent. Seven patient cases included only two consecutive
scans, and the remaining six cases included 4, 7 or 9 longitudinal
scans. These data sets were of dimension either 512 � 512 or 256 �
256 in axial slices (spatial resolution of 0.5 � 0.5 or 0.9 � 0.9 mm)
and included 20 slices (corresponding to a standard FLAIR slice thick-
ness of 6.5 mm). All data sets were manually traced for tumor delin-
eation by an expert neurosurgeon, without midway mapping. A
second expert neurosurgeon traced three additional cases (one with
5 times and two with 2 times) to evaluate inter user variability.

Experiments reported in this section were performed on pre-
surgical or post-surgical data, in the context of monitoring the evo-
lution of low-grade gliomas as a primary tumor or as a residual
tumor after surgery.

MRI registration was performed with the free software tool FSL
(Smith et al., 2004), using correlation similarity measures and 7 de-
grees of freedom (translation, rotation and one global scale param-
eter), to constrain intra-patient deformations.

Four tumor growth indices were tested to compare midway-
based automated and manual estimations:

1. Growth of the tumor’s volume V in milliliters (ml).
2. Growth of the tumor’s volume in %.
3. Growth of maximal 2D radius R, estimated as the radius of max-

imum erosion of the growth area, over each slice.
4. Growth of the radius of the equivalent sphere Rs, defined as the

sphere with the same volume as the initial tumor plus the
growth area (in 3D).
The 2nd growth index is related to the RECIST and WHO tumor
growth measures, while the 3rd index was shown to be a reliable
and sensitive measure to evaluate growth rate on patients with
low-grade gliomas (Mandonnet et al., 2003).

All cases were processed automatically, with the following se-
quence of processing steps:

1. Intensity-based affine registration of the two longitudinal MRI
data sets (in 3D). Simultaneous registration of the manual
segmentations.

2. Midway mapping with multiplicative image model on 4 � 4
patches (2D).

3. Statistical selection of significant differences between the mid-
way mapped data with two sets of parameter settings for opti-
mistic and pessimistic growth estimations (2D).

4. Post-processing of the selected significant differences to preserve
only components inside a growth region of interest (ROI) defined
around the contours of the tumor at time 1, and remove compo-
nents corresponding to dark intensity values (2D).

5. Definition of the tumoral growth areas by removing the area of
the tumor segmented at time 1 from either the area of the
tumor segmented at time 2 (manual growth area) or the
selected significant differences (automated growth area).

6. Computation of the four growth indices for the manual and the
automated growth areas.
3.2.2. Localization of tumoral growth
In step 4, when selecting statistical significant difference values,

we needed to automatically select values only related to tumor
growth, and not to registration errors. Tumor growth patterns
are not necessarily connected to the tumor borders at time 1 and
can spread by a certain amount beyond the initial tumor margins.
To localize the tumor growth patterns, we created a growth region
of interest (ROI) by dilating the segmentation from time 1, with a
circular structuring element of radius 4 mm, defining a ROI around
the initial tumor borders. This value was defined based on the facts
that average spontaneous growth-rates and minimal post-opera-
tive growth rates of low-grade gliomas were manually estimated
around 4 mm/year (Mandonnet et al., 2003; Mandonnet et al.,
2010). For each slice, 2D connected components from the selected
significant differences masks were extracted and their connexity
with the growth ROI was tested.

Rather than relying on 3D connectivity with the growth ROI
mask, we combined mask shapes from adjacent slices to handle
the large slice thickness in FLAIR MRI data. The fact that we were
studying low-grade gliomas with slow growth patterns was critical
here, to rely on regions of interest close to the tumor.

A final correction of the selected connected components of the
difference mask was performed to remove dark components corre-
sponding to large registration errors in the CSF (especially in the
ventricles and on the gyri). Based on the weak assumption of a
Gaussian distribution of the pixel intensities inside the tumor,
we computed tumor statistics under the manually segmented area
at time 1 and removed difference mask components with intensi-
ties at time 2 below the mean tumor value minus four standard
deviations (corresponding to pixels much darker than inside the
tumor).

3.2.3. Tumoral size and growth measurements
Average, minimal and maximal growth measurements are re-

ported in Tables 1 and 2, along with the initial tumor volumes
and radii, estimated from the manually traced contours. As can
be inferred from these initial values, the tumors were quite large,
with a large range of values for the volume and a narrow range
of values, well centered around the average value, for the radii.
Growth measurements are reported based on manual tracing
(man.) and based on statistical selection of significant differences
(auto). The two tables report average growth values for large pes-
simistic estimations (Table 1) and small optimistic estimations (Ta-
ble 2), corresponding to the two sets of parameters proposed for
local statistics estimations on the midway-mapped data.

We obtained a large range of values for volume growth mea-
surements (especially in %), and a smaller range of values for the
radii. The automated method behaved as expected, providing
upper and lower bounds of manual average growth estimations.
These upper and lower bounds were well constrained. There was
also a very high similarity between manual maximal and minimal
growth values and, respectively, the maximal pessimistic estima-
tions and the minimal optimistic estimations.

Inter-user variability was evaluated for the measurements of
tumoral size and growth with manual tracing and for the sensitiv-
ity of the growth indices measures with respect to the manual
delineation used for time 1. For the tumoral size, inter-user vari-
ability was measured equal to: 3.1 ± 1.9 ml for V, 0.7 ± 0.8 mm
for R and 0.9 ± 0.4 mm for Rs. The volume variability corresponds
to 15% of the average volume value. For the manual growth estima-
tion, inter-user variability was measured equal to: 1.7 ± 1.3 ml for
V, 1.9 ± 1.3 mm for R and 0.8 ± 0.3 mm for Rs. These results showed
that both manual volumes and maximum radius measures were
quite sensitive to manual tracing, even for growth estimations
which might cancel potential tracing bias of under or over estima-
tion of the tumoral region. Comparing manual radius-based
growth measures, inter-user variability was higher for maximum
radius growth than for instantaneous values, while the two were
comparable for the sphere equivalent radius. Finally, regarding



Table 1
Average pessimistic (i.e. large) tumoral growth measurements over 32 cases, between two longitudinal FLAIR MRI data sets. Growth indices are: volume (V) in ml, value of
maximal radius (radius R) and radius of equivalent sphere (radius Rs) in mm. Average initial volume and radii values at time 1 are provided, based on manual tracing.

Tumor volume,
V (ml)

Tumor radius,
R (mm)

Tumor radius,
Rs (mm)

Tumor growth, V (ml) Tumor growth, V (%) Tumor growth, R (mm) Tumor growth, Rs (mm)

Auto Man. Auto Man. Auto Man. Auto Man.

Average 48.1 12.6 21.1 15.0 8.1 37.7 21.8 6.4 4.7 2.2 1.2
Std 35.0 4.1 5.7 9.8 10.2 19.5 26.6 2.8 2.8 0.9 1.3
Max 123.6 20.6 30.9 36.7 39.8 98.5 111.8 15.9 15.0 4.4 5.0
Min 6.2 5.6 11.4 1.3 0.3 13.5 0.5 3.3 0.9 0.7 0.1

Table 2
Average optimistic (i.e. small) tumoral growth measurements over 32 cases, between two longitudinal FLAIR MRI data sets. Growth indices are: volume (V) in ml, value of maximal
radius (radius R) and radius of equivalent sphere (radius Rs) in mm. Average initial volume and radii values at time 1 are provided, based on manual tracing.

Tumor volume,
V (ml)

Tumor radius,
R (mm)

Tumor radius,
Rs (mm)

Tumor growth, V (ml) Tumor growth, V (%) Tumor growth, R (mm) Tumor growth, Rs (mm)

Auto Man. Auto Man. Auto Man. Auto Man.

Average 48.1 12.6 21.1 5.7 8.1 13.9 21.8 3.4 4.7 0.9 1.2
Std 35.0 4.1 5.7 4.9 10.2 9.9 26.6 1.4 2.8 0.6 1.3
Max 123.6 20.6 30.9 19.5 39.8 44.4 111.8 6.6 15.0 2.5 5.0
Min 6.2 5.6 11.4 0.3 0.3 2.0 0.5 1.4 0.9 0.1 0.1
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the sensitivity of the growth indices measures with respect to the
manual delineation used for time 1, variability of the growth indi-
ces measures was measured equal to: 3.9 ± 1.3 ml for V,
1.7 ± 0.8 mm for R and 0.4 ± 0.4 mm for Rs for pessimistic measures,
and 2.5 ± 1.6 ml for V, 3.9 ± 5.1 mm for R and 0.6 ± 0.5 mm for Rs
for optimistic measures. It appears that only the radius of the equiv-
alent sphere Rs provides satisfactory robustness to inter-user vari-
ability of the tracing of the tumor at time 1.

In Table 3 we report average errors for the automated estima-
tions of the four growth indices, comparing to manual tracing, with
pessimistic (large) and optimistic (small) estimation frameworks.
We also report the minimal errors from the pair of (pessimistic,
optimistic) estimations. The histograms of automated and manual
growth measures errors are plotted in Fig. 5. We can observe that
Table 3
Average errors of tumor growth estimations between automated and manual methods, for
minimum error (Min (l, s)) between the two estimations, where l refers to large and s to

Tumor growth, V (ml) Tumor growth, V (%)

Large Small Min (l, s) Large Small Min (l,

Average 8.4 5.2 3.0 22.5 14.3 8.8
Std 7.5 5.5 2.7 16.7 17.6 9.6
Max 32.1 21.4 10.2 62.3 67.4 42.4
Min 0.1 0.0 0.0 0.0 0.1 0.0

Fig. 5. Histograms of growth measurements errors for volume measures (left), volum
(V%l, Vl, Rl, Rsl) histograms are plotted in blue and optimistic (V%s, Vs, Rs, Rss) histograms a
the reader is referred to the web version of this article.)
the average growth volume error, lower than 8 ml, is rather satis-
factory, given that the average tumoral volume was 48 ml (16% of
error). This should be appreciated with precaution though, given
the large values of maximum growth volume discrepancies. The
distributions of the growth volume errors showed that the optimis-
tic estimations were more consistent with respect to manual trac-
ing estimations than pessimistic estimations. Radius growth indices
provided, on average, highly accurate measures when comparing
automated and manual estimations (errors between 1 to 3 mm).
Evaluation of the minimum errors between pairs of (pessimistic,
optimistic) estimations shows a systematic decrease of the maxi-
mum and average errors, as well as a decrease by half of the stan-
dard deviation of the errors distribution. This confirms that for all
cases with a large error with one estimation, the other one was
pessimistic (large) and optimistic (small) midway-based index measures, as well as the
small estimations.

Tumor growth, R (mm) Tumor growth, Rs (mm)

s) Large Small Min (l, s) Large Small Min (l, s)

2.6 1.9 1.2 1.2 0.8 0.5
2.5 1.9 1.1 0.8 0.7 0.4

13.1 8.4 4.2 3.1 2.8 1.6
0.0 0.0 0.0 0.0 0.0 0.0

e percentage measures (center) and radius-based measures (right). Pessimistic
re plotted in red. (For interpretation of the references to colour in this figure legend,
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much more accurate. For some cases, both estimations made sim-
ilar errors (i.e. the ground truth corresponded to an intermediate
growth between the small and large estimations). This result sug-
gests that the development of a method to select the ‘‘best’’ growth
estimation, might lead to even higher precision in growth indices,
compared to manual tracing.

The R (maximum radius) measure generated some large errors
in few cases but the histogram plots show that the majority of
cases provided errors below 5 mm. The Rs (sphere-equivalent) ra-
Fig. 6. Illustrations of automated and manual growth estimations on three clinical cases
time 2 (t2) with corresponding manual tracings; ROIs of data at time 2 with manual tra
pessimistic (pes.) automated growth overlaps for TP (green), FP (red) and FN (blue). (For in
the web version of this article.)
dius reported much smaller maximum errors and the histogram
plots show a very peaked distribution for the optimistic Rs measure,
confirming that the proposed method is very efficient at accurately
measuring very small tumoral growths with this index.

The overall analysis of these errors suggests that volume mea-
surements might not be recommended as a reproducible tumoral
growth index, being too sensitive to the variability in manual trac-
ing (Kaus et al., 2000) in the case of low-resolution FLAIR MRI data.
On the other hand the Rs radius-based growth measures provided
with small progressions, showing: original FLAIR MRI data at times time 1 (t1) and
cing at time 1 (t2�1), midway-based difference map (Diff) and optimistic (opt.) and
terpretation of the references to colour in this figure legend, the reader is referred to
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0.5 ± 0.4 mm average precision from the minimal errors between
optimistic and pessimistic estimations, comparable to the
0.8 ± 0.3 mm target precision provided by the manual tracing var-
iability study. Errors higher than 2 mm in Rs occurred in 7 cases
when either the optimistic or pessimistic estimation almost per-
fectly matched the manual estimation. The major difficulty of the
neurosurgeon being to evaluate slow progression for these low-
Fig. 7. Illustrations of automated and manual growth estimations on three clinical cases
time 2 (t2) with corresponding manual tracings; ROIs of data at time 2 with manual tra
pessimistic (pes.) automated growth overlaps for TP (green), FP (red) and FN (blue). (For in
the web version of this article.)
grade gliomas, it was very satisfactory to confirm that small or null
tumoral progressions were accurately detected by the automated
method, with a better precision and robustness with the Rs
(sphere-equivalent) radius measures.

In Figs. 6 and 7, we illustrate the results of midway-based auto-
mated growth tumor detection on respectively small and large
growth cases. We included longitudinal midway-mapped FLAIR
with large progressions, showing: original FLAIR MRI data at times time 1 (t1) and
cing at time 1 (t2�1), midway-based difference map (Diff) and optimistic (opt.) and
terpretation of the references to colour in this figure legend, the reader is referred to
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data along with manual tracing of the tumors, and zoomed views
in the ROI around the tumor for: (1) MRI data at time 2 overlaid
with the manual contour at time 1 (to visualize potential tumor
growth areas as hyperintense MRI signal), (2) midway difference
maps (to visualize potential tumor growth areas as large differ-
ences), and (3) growth tumor regions, color-coded with respect
to true positive (TP) in green, false negative (FN) in blue and false
positive (FP) in red, comparing to manual growth estimation. On
these illustrations we can observe the limitations of pixel-wise tu-
mor growth comparison due to the registration process. Indeed,
manual tracing was performed on non-registered data and the reg-
istration process can create some regions from the segmentation at
time 1 not included in the segmentation at time 2. These regions
could correspond to growth areas detected by the automated
method which were not identified by the manual tracing process,
since we did not define the notion of regression area, but rather ig-
nored regions segmented at time 1 and not at time 2.
4. Discussion and conclusions

In this study, we presented a novel differential analysis method
of longitudinal MRI data with low-grade gliomas. The proposed
method combines midway-based MRI intensity normalization, sta-
tistical selection of significant differences between the two scans
and quantification of tumoral growth. A novel multiplicative mid-
way mapping framework was proposed, based on an image model
of MRI data corrupted with local multiplicative inhomogeneity
fields. This mapping provided very selective difference maps,
insensitive to disparities in the dynamic range of the MRI data sets
being compared. Overall, regarding the problem of longitudinal
MRI comparison, midway brain MRI mapping provided a very effi-
cient computational framework for gray scale ‘‘standardization’’,
eliminating the need for tumor segmentation at both times or
the use of an image model. Addressing a similar problem, Nyul
et al. (2000) proposed a piecewise linear histogram transformation,
to map a ‘‘model’’ shape defined with landmark points correspond-
ing to percentile levels and median values, whose positions were
learned on a training database of MRI images. In our framework, is-
sues related to the use of average landmark points and their un-
known ‘‘anatomical’’ significance was avoided with global
midway mapping transform. Still, some improvement could be
gained from investigating the effect of gray-value quantification
on the midway-based difference map selectivity. An exact histo-
gram specification method was proposed by Coltuc et al. (2006),
ordering all image pixels depending on their gray levels and local
averages. In our case though, limitations would arise from high
computational cost of 3D pixel ordering and image-dependent pix-
el ordering not preserving the overall hierarchy of tissue gray-lev-
els, in the two MRI data sets being compared.

Tumor growth quantification with the proposed method was di-
rectly dependent on the efficiency of the difference map auto-
mated post-processing in selecting ‘‘significant’’ difference values.
A statistical thresholding framework was proposed. This frame-
work shares some similarities with statistical parametric mapping
approaches used in fMRI to detect brain activation sites, reviewed
in Marchini and Presanis (2004). With respect to the classification
of the methods in this review, our method falls into the type I error
class of method. FDR methods were not suited since we had to han-
dle cases with no tumoral evolution, while posterior probability
thresholding would have requested the design of a tumoral inten-
sity evolution model in the growth area. Sophistication of the pro-
posed post-processing framework could be investigated, such as
the use of weighted kernels for local statistics estimations. Spatial
selectivity of the significant differences selection could also be
investigated, by combining some aspects of the method proposed
on a similar problem by Liu et al. (2003) to select significant
changes on SPGR, T2-weighted and FLAIR longitudinal brain MRI
scans. Their method used simple difference maps, combined with
a ‘‘noise level map’’ learned from repeated scans of a single subject.
Structured difference images were then generated by thresholding
the difference maps and spatially clustering growth features. Sig-
nificance of the detected changes was assessed by thresholding
the difference maps against an anatomical map of artifacts com-
puted from spatial normalization of difference maps from 40 sub-
jects. This final threshold used a probabilistic experimental level of
significance. Our proposed method described an alternative com-
putational framework to compare single-protocol repeated scans
without the need for integrating image-based noise level evalua-
tion. Indeed the use of global midway mapping and local Gaussian
statistics was able to remove from the difference maps random
MRI signal variation in repeated scans, due to physiological and
scanner related artifacts. Moreover, instead of providing fixed val-
ues for the parameters of our statistical test, we proposed two
types of parameters setting, corresponding to predictable optimistic
(small) and pessimistic (large) tumoral growth estimations. Learn-
ing of the typical large differences due to mis-registration and
noise variability (as in the noise level map) could help us eliminate
the need for a pre-localization of the tumoral area as the region of
interest.

In the case of tumoral growth quantification, some concerns re-
main regarding the influence of the registration quality on the
overall quantification, beyond the influence of the large MRI slice
thickness in the particular case of the present study. Brain tumors
can induce significant modifications on the surrounding cerebral
structures such as the lateral CSF ventricles, due to tumoral
mass-effect. There are also inherent physiological changes within
the patient’s brain between two scan times such as CSF ventricle
growth, resorption of the post-surgical cavity or brain shift altering
the shape of gyri. These cerebral structures, where we observed the
largest errors in overestimating tumoral growth, contribute to the
alignment optimization process performed during registration of
longitudinal MRI data sets. Some registration works have focused
on developing specific registration methods for brain MRI data
with tumors (Zacharaki et al., 2008), and on developing image-
based tumor growth models (Clatz et al., 2005; Angelini, Clatz
et al., 2007). It is very likely that future use of dedicated registra-
tion methods or dedicated tumor segmentation and growth model
methods could greatly improve the selectivity of the difference
maps provided with midway mapping. Nevertheless, registration
of longitudinal MRI images of patients with tumors will remain
an ill-posed problem, and we plan on studying specifically the spa-
tial distribution and characteristics of large difference values ob-
served on difference maps solely due to registration errors
artifacts.

Regarding the large slice thickness of the FLAIR data used in our
clinical study, it certainly limited the accuracy of tumoral volume
estimations. This limitation led us to study of alternative volumet-
ric radius growth measures, more robust to large slice thickness.
The large slice thickness has also driven our choice to perform
intensity mapping and statistical testing in 2D. Optimization of
the accuracy of the proposed method, which was assessed based
on 2D manual delineation of tumoral contours, might have natu-
rally been biased towards 2D processing. It remains therefore un-
clear if 3D processing could have provided more accurate growth
estimates. We expect that, with the advent of 3T MRI, 3D-FLAIR
will be widely available in clinical routine, thus circumventing this
issue and enable to compare the accuracy of 2D versus 3D tumoral
growth estimates.

In conclusion, this paper provided a ‘‘proof-of-concept’’ for a
new clinical tool to detect and quantify tumor evolution on brain
MRI data, evaluated on a large cohort of 32 longitudinal clinical
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cases from 13 patients. The proposed method was validated in the
context of replicating a tumoral growth quantification task per-
formed in clinical routine via manual tracing on large-thickness
FLAIR data. A growth index based on a volumetric radius achieved
an average 0.5 ± 0.4 mm precision, which corresponded to the tar-
geted precision provided by the manual tracing variability study.
The proposed method was designed to generate two types of tu-
moral growth estimations: optimistic and pessimistic. The results
have shown that this framework was pertinent for the clinical
problem at hand, where in the majority of cases, one of the estima-
tion was highly accurate. The selection of the best estimator there-
fore seems to be patient-dependent rather than rater-dependent,
and will be investigated in our future work. The proposed growth
quantification framework will also be evaluated in a near future
on a larger series of patients with brain tumors of different types
and grades. Such study will evaluate automated tumor growth in-
dex measurements as well as potential benefits in limiting manual
tracing variability when using the difference maps, after midway
mapping. Finally, it is important to note that the method is not spe-
cific to the quantification of brain tumor evolution and could be ap-
plied to other reviewing tasks on follow-up MRI exams.
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