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ABSTRACT
A statistical differential analysis framework of longitudinal

MRI volumes is proposed, based on difference maps af-

ter non-linear contrast midway mapping, to quantify tumor

growth. This mapping was used to normalize MRI scans to a

common range of values, and was adapted in this work to han-

dle multiplicative MRI inhomogeneity fields. This lead to two

direct applications: (1) change detection from a statistical test

on differences in midway-mapped MRI data, and (2) tumoral

growth quantification. A clinical evaluation was performed

on 32 clinical cases with low-grade glioma, screened with

two FLAIR MRI scans, several months apart. Three growth

indices (volume, maximum radius and spherical radius) were

measured and evaluated in terms of accuracy, comparing to

manual tracing. Millimetric growth estimation precision was

achieved with the proposed method for the spherical radius

growth index.

1. INTRODUCTION

A differential analysis of longitudinal MRI volumes is pro-

posed, based on non-linear gray value mapping. Image

change detection has been getting a lot of attention recently

for applications such as remote sensing and video process-

ing. For brain tumor change detection, an interesting ap-

proach was proposed by Liu et al [1] to select only significant

changes on SPGR, T2-weighted and FLAIR longitudinal

brain MRI scans using an elaborated processing framework

on direct differences maps. This processing involved noise

level map estimations from repeated scans on a single subject,

thresholding of the difference maps above noise level and fil-

tering of the remaining values with a learned anatomical map

of artifacts (computed from spatial normalization of differ-

ence maps from 40 subjects). In the context of this study, our

method avoids the needs of repeated scans and offers a frame-

work likely to be more easily reproducible, consistent across

different clinical studies, and robust to image noise. Recent

studies have also focused on registration and segmentation-

based longitudinal MRI brain comparison. For brain tumor

change detection, a study in [2], evaluated an automated tu-

mor segmentation performed on longitudinal series of four

exams for patients with glioblastomas multiforme. The study

reported very high true positive values when comparing tu-

mor volumes to manual tracing, but also observed errors in

growth or shrinkage predictions based on tumor volume mea-

surements from the segmented data. A study in [3] compared

direct image comparison to a registration-based method, for

volume growth quantification of brain meningiomas. The

semi-automated methods were reasonably accurate and less

impacted by intra and inter-rater manual segmentation vari-

ability than the human expert rating of growth rate. Indeed,

brain tumor segmentation remains a challenging task, to in-

clude necrosis, edema,and infiltrations, with inter-observer

variability for manual tracing of brain tumor that can range

up to 15% [4]. It is therefore interesting to investigate tumor

growth measurement methods, independent of sequential

tumor segmentation.

2. METHOD

2.1. Midway Mapping

2.1.1. Invariance to contrast change

The initial midway mapping framework was derived to map

images generated from a common image, but modified non-

linearly by different contrast changes. The fundamental idea,

to enable comparison of these images, was to map them to

a common histogram, that defined a reasonable intermediate

gray scale distribution. This notion of a ”reasonable” midway

gray scale distribution was derived empirically, in the original

work of Delon [5], by enforcing the following mapping rules

for two test cases: (1) The midway mapping between image

I and image I + λ should be I + λ/2; (2) The midway map-

ping between f(I) and g(I) should be defined independently

of the contrast change functions f and g, for a given image I .

These test cases lead to the definition of the midway cumula-

tive histogram as the inverse of the arithmetic mean of the two

inverse cumulative histograms of the images to map. In [6] a

first application of the midway mapping framework was pre-

sented to compare longitudinal FLAIR and SPGR MRI data

of low-grade gliomas with promising results on the quantifi-

cation of tumor’s evolution. Several aspects of the specific

problem of MRI normalization were not addressed in their

work, and are discussed in the following paragraphs.

2.1.2. Invariance to MRI inhomogeneity

MRI image artefacts due to spatial inhomogeneities of the

magnetic field g(x) are typically modeled as multiplicative
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spatial fields: Ig(x) = I(x) × g(x) [7]. This field is non-

uniform in space but slowly varying . In our framework, we

can model gi(x) as a constant multiplier λ and apply midway

image normalization on small overlapping patches. With such

contrast change model, it is desirable to work with a new test

case, forcing the mapping of λI and 1/λI to be I .

This approach corresponds to defining the midway target

histogram as the inverse of the geometric mean of the inverse

cumulative histograms rather than an arithmetic mean as pro-

posed in the initial framework.

To validate the capability of the multiplicative midway

model to handle image differences due to spatially varying in-

homogeneity fields, we generated an example for a pair of im-

ages corresponding to the test case (λI, I/λ) , using a piece-

wise constant synthetic inhomogeneity field as illustrated in

Figure 1. After midway mapping, an estimated inhomogene-

ity field was computed via the ratio of the λI image and its

mapped image, referring to the fact that the theoretical tar-

get common image was
√

(λI × 1/λI) = I . Since the in-

homogeneity field was spatially varying, we applied midway

mapping on overlapping patches of [10 × 10] pixels. Addi-

tive and multiplicative midway mapping were tested. Ideally,

the difference map computed between the pair of images af-

ter midway-mapping should display very little structural in-

formation, since the images only differ by a smooth multi-

plicative inhomogeneity field. Results illustrated in Figure

1 showed that only the patch-based implementation of mul-

tiplicative midway mapping was able to provide difference

maps with few anatomical structural information, and lim-

ited ranges of gray level variations, as desired. In addition,

we observed that the inhomogeneity field spatial appearance

was accurately estimated after patch-based midway mapping,

and only the multiplicative model provided accurate numeri-

cal values with isolated errors.

With this example we were therefore able to confirm the abil-

ity of the patch-based multiplicative-midway mapping to can-

cel contrast differences due to multiplicative inhomogeneity

fields and even provide an accurate estimation of a multiplica-

tive inhomogeneity field corrupting an original MRI image.

When applied to clinical data, the patch-based multiplicative

midway mapping cannot directly estimate the individual in-

homogeneity fields from the two scans being mapped, but can

normalize these fields to identical values. This means that the

proposed midway mapping framework eliminates the need for

inhomogeneity correction prior to MRI comparison.

2.2. Statistical Thresholding of Difference Maps

In this paragraph, we propose a generic method to identify

structural differences between the two longitudinal MRI ac-

quisitions on difference maps, computed after midway map-

ping. We assume at this stage that we are given two im-

ages I1 and I2, normalized with midway mapping and reg-

istered. For each voxel i, we wanted to know if the difference

D(i) = (I1(i) − I2(i)) was meaningful, i.e. due to a struc-

tural difference, or rather explained by the local statistics of

the images. To answer this question, we relied on a statis-

tical hypothesis testing framework. Let us denote by Vi the

(2f +1)×(2f +1) centered neighborhood of the voxel i. We

note n = (2f +1)2. We defined the following null hypothesis
Hi

0 : the random variables D(j), j ∈ Vi, are i.i.d. and follow
a centered normal distribution N (0, σ2

i ). Under the hypoth-

esis Hi
0, the random variable D(i) = 1

n

∑
j∈Vi

D(j) follows

a normal distribution N (0, σ2
i /n). Thus, the probability that

the average distance |D(i)| was larger than a given value δ
was:

Fi[δ] := PHi
0
[|D(i)| > δ] = 1−

√
n√

2πσi

∫ δ

−δ

e
−nx2

2σ2
i dx. (1)

In practice, we estimated the local standard deviation σi

on V ′
i a (2t + 1)× (2t + 1) neighborhood of i. Knowing this

standard deviation, we were able to compute the distribution

Fi[δ] for any voxel i and any value of δ. We decided to reject

the hypothesis Hi
0 as soon as Fi[|D(i)|] was small enough,

i.e. below a threshold value α. In other words, if the mean of

I1 around i was too different from the mean of I2 in the same

region, the hypothesis Hi
0 was rejected and we considered that

there was a structural difference between both images at pixel

location i. This boils down to detect a structural difference as

soon as |D(i))| > λσi/
√

n, where λ > 0 is a quantile of the

standard normal distribution.

This simple thresholding scheme enabled us to automat-

ically select significant changes in the difference maps, with

a fixed threshold level α but with two parameters controling

average window sizes Vi and V ′
i for local mean and variance

computations. These two parameters provided a very con-

venient framework to control the tolerance of the difference

selection (in terms of levels of significance) which correlate

well with an optimistic or pessimistic estimation of tumoral

growth measurements, when (I1, I2) correspond to longitudi-

nal MRI scans from a patient harbouring a low-grade glioma.

Indeed, increasing the window size for Vi decreased the dif-

ference levels, while increasing the window size for V ′
i in-

creased the variance values used to normalize the differences.

For example, using the sequence of averaging window sizes

of
[
Vi V ′

i

]
: [3 5] → [3 3] → [5 5] → [5 3] lead to larger

growth areas. To evaluate the proposed methodology, we

needed to define a growth mask around the tumor at t1. This

selection was performed using a manual outline of the tumor

at t1, from a clinical expert. Obtaining an automated detec-

tion of the tumor’s contours (at either t1 or t2) was beyond

the scope of this study and still represents a very challenging

task, as reviewed in [8].

3. RESULTS

A clinical study was performed on 32 clinical FLAIR pairs of

longitudinal scans from 13 patients, to automatically measure

tumor growth, given an initial segmentation. Seven patient

cases included only two consecutive scans, and the remaining
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Fig. 1. Correction of inhomogeneity field contrast changes on a simulated case: (a) Images to map: (a.1) Original MRI, (a.2) MRI corrupted
with the multiplicative inhomogeneity field in (c.1); (b) Differences of images: (b.1) before mapping, (b.2-3) after multiplicative midway
mapping [(b.2) global or (b.3) patch-based implementations]; (c) Inhomogeneity fields: (c.1) original and (c.2) estimated after patch-based
multiplicative midway mapping ; (d) Errors on inhomogeneity field estimation: (d.1) from patch-based multiplicative midway mapping and
(d.2) from global multiplicative midway mapping.

six cases included 4, 7 or 9 longitudinal scans. These data sets

were of dimension either [512 × 512] or [256 × 256] in axial

slices (spatial resolution of [0.5× 0.5] or [0.9× 0.9] mm) and

included 20 slices (corresponding to a standard FLAIR slice

thickness of 6.5mm). All data sets were manually traced for

tumor delineation by an expert neurosurgeon, without mid-

way mapping. All experiments reported in this section were

performed on pre-surgical or post-surgical data, in the con-

text of monitoring the evolution of low-grade gliomas as a

primary tumor or as a residual tumor after surgery. MRI

registration was performed with the free software tool FSL

(http://www.fmrib.ox.ac.uk/fsl/), using correlation similarity

measures and a similitude transform with 7 degrees of free-

dom (translation, rotation and one global scale parameter), to

constrain intra-patient deformations. Four tumor growth in-

dices were tested to compare midway-based automated and

manual estimations: (1-2) Growth of the tumors volumes V

in milliliters (ml) and in %, (3) Growth of maximal 2D ra-

dius R, estimated as the radius of maximum erosion of the

growth area, over each slice; (4) Growth of the radius of the

equivalent sphere Rs, defined as the radius of the sphere with

the same volume as the tumor (in 3D). The 2nd growth in-

dex is related to the RECIST and WHO tumor growth mea-

sures, while the 3rd index was shown to be a reliable and

sensitive measure to evaluate growth rate on patients with

low-grade gliomas [9]. In these experiments, we set α to

an arbitrary small value, (10−10), smaller than the chance

of picking up randomly one pixel in the entire volume data

set (typical axial volume dimensions were [256 × 256] or

[512 × 512] and 20 slices). With this fixed α value, we used[
Vi V ′

i

]
= [9 3] and [3 3] for small and large growth mea-

surements. The use of a fixed α value garanteed that we

never selected all pixels in the growth region of interest, even

though we increased or decreased the growth area when vary-

Fig. 2. Illustrations of automated and manual growth estimations
on 2 clinical cases with large (top) and small (bottom) tumoral pro-
gressions, showing: original FLAIR MRI data at times t1 (left) and
t2 (right) with corresponding manual tracings; ROIs of data at time
2 with manual tracing at time 1, midway-based difference map and
optimistic and pessimistic automated growth overlaps for TP (green),
FP (red) and FN (blue).

ing the statistical neighboring sizes. In Figure 2, we illus-

trate the similarities and differences between the automated

large and small growth estimations and manual estimations,

for two clinical cases. Overlap areas (manual growth being

the reference) for true-positive (TP), false-negative (FN) and

false-positive (FP) measures, are color coded in the figure. In

Table 1 we report average errors for the automated estima-

tions of the four growth indices, comparing to manual trac-

ing, with pessimistic (large) and optimistic (small) estimation

frameworks. We can observe that the average growth vol-

ume error, lower than 8ml, is rather satisfactory, given that
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Table 1. Average errors of tumor growth estimations, with four
index measures, between automated and manual methods, for pes-
simistic (large) and optimistic (small) statistical setups.

the average tumoral volume was 48ml (16% of error). This

should be appreciated with precaution though, given the large

values of maximum growth volume discrepancies. The dis-

tributions of the growth volume errors showed that the opti-
mistic estimations were more consistant with respect to man-

ual tracing estimations than pessimistic estimations. Radius

growth measures provided, on average, highly accurate mea-

sures when comparing automated and manual estimations,

between 1 to 3 mm. The R (maximum radius) measure gener-

ated some large errors in few cases but the histogram showed

that the majority of cases provided errors below 5mm. The

Rs (sphere-equivalent) radius reported much smaller maxi-

mum errors and the histogram plots showed a very peaked

distribution for the optimistic Rs measure, confirming that the

proposed method was very efficient at accurately measuring

very small tumoral growths with this index. The overall anal-

ysis of these errors suggests that volume measurements might

not be recommended as a reproducible tumoral growth index,

being too sensitive to the variability in manual tracing (stud-

ied in [4]) in the case of low-resolution FLAIR MRI data. On

the other hand the radius-based growth measures provided the

targeted 2mm average precision, given the resolution of the

MRI FLAIR data. Errors higher than 2mm in Rs occurred in

7 cases when either the optimistic or pessimistic estimation

almost perfectly matched the manual estimation. The major

difficulty of the neurosurgeon being to evaluate slow progres-

sion of these low-grade gliomas, it was very satisfactory to

confirm that small or null tumoral progressions were accu-

rately detected by the automated method, with a better pre-

cision and robustness with the Rs (sphere-equivalent) radius

measures.

4. DISCUSSION & CONCLUSION

In this paper, we have proposed a modification of the midway

mapping framework to handle multiplicative contrast change,

and a statistical framework to detect significant changes

on difference maps, between two longitudinal FLAIR MRI

scans, in the context of brain tumor growth monitoring. Syn-

thetic and clinical experiments confirmed that multiplicative

midway contrast mapping was a powerful tool suited for MRI

normalization and artefact correction such as magnetic field

inhomogeneity or contrast change. Despite sharing some sim-

ilarities with other works, using the general concept of MRI

normalization via histogram mapping, our proposed method

does not rely on a training set to define the target histogram

shape, but rather applies a global mapping between two im-

ages. It is interesting to note that midway mapping does not

necessarily correct image artefacts (as targeted when using

a model histogram) but makes these artefacts similar and

comparable in a pair of images. Clinical results confirmed

the feasability and accuracy of tumor growth estimation on

difference maps when compared to manual tracing, with

flexible parameters controling the notion of optimistic or pes-
simistic growth measurement. Computational time was in

the order of a minute for registration, midway mapping, and

post-processing for growth measurement with the statistical

tests. Finaly, we point out that avoiding training for histogram

learning enables our method to be applied, in a generic fash-

ion, to any type of registered longitudinal MRI of any body

part.
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