
ABSTRACT 

This paper presents a new homogeneity measure for 

variational segmentation with multiple level set functions. 

We propose to modify the quadratic homogeneity 

measure to trade off the convexity of the function against 

a faster rate of convergence. We tested in two series of 

experiments the performance of this new homogeneity 

force at converging to appropriate partitioning of brain 

MRI data sets, over a large range of image spatial 

resolution and image quality, in terms of tissue 

homogeneity and contrast.  

1. INTRODUCTION
Although numerous methods to segment brain MRI for 

extraction of white matter (WM), gray matter (GM) and 

cerebro-spinal fluid (CSF) have been proposed over the 

past two decades, little work has been done to evaluate 

and compare the performance of different segmentation 

methods on real clinical data sets as well as the 

performance of a single segmentation method on different 

clinical data sets.  

We previously compared the multiphase level-set 

segmentation framework of Chan and Vese to four other 

segmentation methods for segmentation of cortical brain 

structures [1]. This study lead us to observe very different 

behaviors of the level-set segmentation method for 

different brain MRI data sets. In particular, the 

segmentation method had some difficulty to converge to a 

satisfactory partitioning of the data when contrast 

between the GM and the WM was too low. Identified 

specific weaknesses of the "`best-partitioning"' 

segmentation method as proposed by Chan and Vese 

included:(1) sensitivity of the homogeneity measure to 

image contrast, (2) sensitivity of the homogeneity 

measure to the gray level range of values, (3) sensitivity 

of the solution to the initialization configuration.  

1.1. Cortical brain segmentation problem statement 

We illustrate in Figure 1 the segmentation problem of 

extracting cerebral cortical tissues from T1-weighted MRI 

data on two data sets from two databases, detailed in the 

Experiments section, with different image quality (with 

respect to tissue homogeneity and contrast) and spatial 

resolution. Gray value distribution plots were generated 

by masking the data with the available manually labeled 

data. 

Figure 1: Two brain data sets: from CU (left) and 

from the IBSR (right). Top row: coronal slices. Middle 

row: slice-based gray scale average values for GM, 

WM and CSF, bottom row: histograms of GM, WM 

and CSF.  

These plots illustrate the acceptability of using a gray-

scale 3D homogeneity measure for separating WM, GM 

and CSF. They also show the limitations of “simple” 

direct partitioning approaches such as intensity 

thresholding (cf. overlap of gray scale distributions of the 

three tissues in the histogram) or Gaussian statistical 

modeling of tissue classes (cf. large spectrum of tissue 

gray values, variation of tissue mean gray values). The 

CSF class is especially challenging as it is much smaller 

in terms of sample size and its spectrum is completely 

overlapped by the tail of the white matter.  

2. SEGMENTATION FRAMEWORK 

2.1. Variational minimal partitioning 
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The segmentation framework used in this study is based 

on the multiphase formulation of the Mumford and Shah  

variational framework [2] simplified for piecewise 

constant data [3] .  This approach provides a variational 

framework for the segmentation of a given image 0u

defined on  into piecewise constant partitions i

defined by the curve C . Given a single closed curve, the 

underlying “minimal partition problem” is formulated as 

the minimization of the following functional: 

2 2

1 0 1 2 0 2

inside C inside C

E length C area insideC

u c dx u c dx
 (1) 

where 1 20, 0, , 0 are fixed parameters.  

The minimum of the energy is reached by iteratively 

deforming the curve C  and evaluating the ic  as the 

average value of 0u  inside and outside this curve C ,

splitting the image data into two partitions 
1,2i i

.

This problem was formulated into a level set framework 

by Chan and Vese in [3] with volume integrals, based on 

Heaviside and characteristics functions i  for each 

partition i . An alternative was recently proposed by 

Jehan-Besson et al. who derived a minimization approach 

for region-based variational segmentation approaches 

using shape gradients [4].  

Extension of the minimal partitioning segmentation 

framework to multiple objects was proposed by Chan and 

Vese in [5], defining multiple homogeneous partitions in 

the image with several curves 1 2, ,..., iC C C . In the case 

of two curves 1 2,C C , a segmentation of the image data 

into four partitions is performed by minimizing the 

following energy. 
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The level set implementation of the energy minimization 

framework is detailed in [5].  

2.2. New homogeneity measure 

An intuitive approach to alleviate some of the limitations 

of the standard approach in providing a robust global 

minimum to the partitioning problem is to modify the 

homogeneity measure to a non-strictly convex function, 

but with still one minimum and sharper slopes towards 

this minimum.  In this context, we propose to use a 

general -norm,  with:  

1 0 1 2 0 2

inside C inside C

E length C area insideC

u c dx u c dx

The use of the absolute value enforces the symmetry 

around the optimal homogeneity measure ic
. A plot of 

this homogeneity measure and its derivative with respect 

to ic
 is provided in Figure 2 for values of 

0 0.5
.

Figure 2: -homogeneity measure and its 

derivative with respect to ic .

We observe in this figure the "wells" shape of the 

homogeneity function around the homogeneity measure 

ic  with steepest slopes as  increases from 0 to 0.5.  

To derive the Euler-Lagrange equation with respect to 

the homogeneity measures ic  we rewrite the 

homogeneity terms of the energy function with the help of 

the characteristics functions i  of each region i

(derived from the Heaviside function as defined in [3] ): 

0 0

hom 0

0 0

i i

i i i

i

i i i i i

i u c u c

E u c d

u c d c u d

 (3) 
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Derivation of this term with respect to ic  leads to the 

following expression: 

1
hom

0 0

,i

i i i i

ii

E c C
sign c u c u d

c

 (4) 

Minimizing the energy functional therefore corresponds 

to setting the homogeneity measure ic  to the value that 

equally partitions the area under the image-based 

derivative function, given a certain geometry of the 

contour (i.e. i  fixed). It can also be seen as the value 

that splits the distribution of the image voxels in half. The 

average value, defined as: 

    

0i i ic u d d  (5) 

has the property of splitting the distribution of 0 iu c

in half and therefore cancels out the derivative in 

Equation (4).  

2.3. Parameters Setting 

Discretization of the minimization problem is described 

in [3] and [5]. For a 4-phase segmentation with 2 level set 

functions we have the following set of 

parameters:
,

, , , ,i j i i t , where the parameter is 

used in the definition of the regularized Dirac and 

Heaviside functions. These parameters need to be 

carefully scaled for convergence and stability of the 

algorithm. In particular, the   parameter, which 

controls the area of influence of the Dirac function, is 

estimated on the level set  function (defined for a 

contour C ) and should be rescaled according to the 

numerical evolution of the range of values of this function. 

We updated the value of this parameter at each iteration, 

setting maxn n  in our implementation and did not 

use any reinitialization of the level set function.  

The range of values of the homogeneity force 
0 iju c

depends on the image data values 0u  as well as the 

average value of the partition ij . To easily balance this 

force with the regularizing force, it is desirable to scale 

this force with respect to the contrast of the image data as 

follows:

0

0 0 hom
max min ,

i

i i

i

u c
Ct u u E d

Ct
 (6) 

This normalization provides an homogeneity force with 

values in the interval [0 1]. An issue remains though as 

the scale of this homogeneity force still depends on the 

average values of the partitions. Indeed, the homogeneity 

measures from each partition compete with each other, at 

each image location, to define the overall value added or 

subtracted to the level set function. This problem has not 

yet been addressed in our implementation of this 

segmentation framework.  

The time increment parameter t  can be arbitrarily 

set to any value, when using a semi-implicit discretization 

scheme for the curvature force, as proposed in [5]. The 

influence of this parameter on the speed of convergence 

was directly observed on all the experiments performed 

on the various data sets.  

The regularization parameters were set to 0 for the area 

terms i  and inversely proportional to the homogeneity 

parameter for the curvature: , 1ij i .   

For the experiments presented in this paper we set 

0.4, 1, 100t  and obtained convergence in at 

most 20 iterations. 

2.4. Initialization 

It is desirable to initialize the level set functions with 

objects from which a distance is simple to compute. It is 

also desirable to initialize each phase similarly if we don’t 

introduce any a priori information. To fulfill these two 

requirements, we chose to use two sets of cylinders 

regularly interleaved over the image data. The dimension 

of these cylinders is not important, as long as they define 

4 phases (i.e they overlap somewhere). 

3. EXPERIMENTAL DATA SETS 

We tested the segmentation on 2 different MRI 

databases using the same sets of parameters and the same 

initialization setup: 

1. The first database consisted of 10 patients screened 

with a T1-weighted MRI protocol at the Columbia 

Presbyterian Medical Center on healthy young volunteers 

(referred to as the CU database). The MRI data sets were 

of axial size (256 256) with an in plane resolution of 

0.86mm and a 3mm slice thickness. These data sets have 

been previously labeled via a labor-intensive manual 

methods based on histogram thresholds and locally hand-

drawn regions of anatomical interest.  

2. The second data set was obtained on the Internet 

Brain Segmentation Repository from the Center for 

Morphometric Analysis at the Massachusetts General 

Hospital (IBSR: http://www.cma.mgh.harvard.edu/ibsr) 

which provides manually-guided expert segmentation 

results along with MRI brain image data. We used the 

database of 18 patients with in plane resolution ranging 

from 0.84mm to 1mm (matrix size 256 267) and 1.5mm 

slice thickness. These data sets have been pre-processed 

for bias-field correction.  

All MRI volumes were pre-processed to remove all non-

cortical brain tissue by using the manually labeled data 
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sets as binary masks. 

4. RESULTS
The overlap and difference between our segmentation 

and manual labeling was measured for true positive (TP), 

false positive (FP) and false negative (FN) volume 

fractions (VF) of the true delineated object volume. Our 

previous experiments with the multiphase level set 

framework using quadratic homogeneity measures on the 

CU database was presented in [6] and [1]. It required ad-

hoc parameter settings which depended on the data 

volume dimensions and scaling of the homogeneity force 

with respect to the average intensities of each phase. 

Quantitative error measurements reported average errors 

in the following range for [GM WM CSF]: FN = [7% 6%

 31%]; FP=[6% 8% 5%] and TP=[93% 94% 68%]. 

We reproduced similar results with a much simpler 

algorithmic setup in the present study. With the previous 

set up, we could not achieve satisfactory segmentation of 

the entire IBSR database. With the proposed homogeneity 

measure and parameter setting, we were able to segment 

the 18 cases included in the database. An illustration of 

the segmentation quality is provided in Figure 3.  

Average error measurements were for [GM WM CSF]: 

FN = [24% 24% 8%]; FP=[10% 8% NA] and TP=[74% 

75% 92%]. There are still remaining issues with the 

automated segmentation of this data set and the 

comparison to the manual labeling as some strong cortical 

CSF signal was manually labeled as GM. This is a well 

known limitation for using this database for segmentation 

validation, and this is why we cannot report a meaningful 

FP volume fraction of CSF.    

5. DISCUSSION AND CONCLUSION 
In this paper we proposed a modification of the 

homogeneity metric used in a multi-phase level set 

segmentation framework for the segmentation of cortical 

brain structures. The segmentation method was able to 

handle multiple MRI data sets without any a priori 

information and with a common setup (i.e. without ad hoc 

parameterization). To put our work in perspective, we 

identified two recent papers on segmentation of the IBSR 

data set: In a recent paper [7], several competitive level 

set functions were used to segment the brain hemispheres 

and the cerebellum, and 4 internal structures. Although 

we cannot compare our results as the cortical cerebral 

tissues were not segmented, the authors acknowledged in 

their discussion the difficulty of segmenting the IBSR 

database because of strong intensity variations from one 

dataset to another and even inside a single IBSR dataset. 

In [8], Shen et al. compared the performance of different 

fuzzy C-means classification algorithms for the 

segmentation of cortical brain structures. The authors 

tested the algorithms on 1 IBSR data set, reporting over-

segmentation of the three tissues: CSF (39%), WM (13%) 

and GM (21%) while under-segmentation and incorrect 

segmentation statistics were below 3%. These results 

compare well with ours for the order of magnitude of 

errors obtained when comparing to the manual labels, 

with best accuracy achieved for WM. We also recall that 

manual labeling is only used as a method of reference, 

and does not provide a real "ground truth" to the 

segmentation problem. In that context, Kikinis et al. 

reported in [9] a variation in volumetric measurements 

between manual observers in the order of 15% for WM, 

GM and CSF. 

Figure 3: Segmentation the IBSR data into 4 

phases. Top row: level set, bottom row: manual labels. 

Future work will include the extension of the 

segmentation framework for additional partitioning, to be 

able to handle the presence of tumoral pathologies in the 

MRI data. .We are also investigating further 

modifications of the homogeneity measure to remove its 

dependency upon the average intensities of each partition.  
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