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ABSTRACT 

This paper presents preliminary results on the fusion of 
denoised PET and SPECT data volumes from brushlet 
and wavelet thresholding methods. Texture-based 
brushlet denoising is well suited for enhancement of 
physiological information while wavelet-based denoising 
is better suited for enhancement of anatomical contours. 
A three-dimensional multi-scale edge-based data fusion 
algorithm is applied to combine enhanced data from these 
two independent denoising methods. Preliminary results 
with qualitative evaluation of PET and SPECT data by an 
expert clinician showed great potential of this approach to 
combine enhancement of both anatomical and 
physiological signal information for improved image 
quality. 

1. INTRODUCTION 

De-noising of SPECT and PET images is a challenging 
task due to the inherent low signal-to-noise ratio of the 
acquired data. The majority of clinical reading platforms 
apply low-pass filtering and averaging operators as pre-
processing to eliminate noise components and improve 
the visual quality before diagnostic interpretation of the 
data. 

In this work we fuse two distinct multiscale denoising 
methods. A first approach is based on wavelet expansion 
and thresholding of sub-band coefficients for elimination 
of the noisy components in spatial-frequency space prior 
to reconstruction. In the case of high noise levels, detailed 
scales of sub-band images are usually dominated by noisy 
components that are not well handled using traditional 
thresholding schemes. To address this issue, a cross-scale 
regularization scheme was introduced in [1], which takes 
into account across scale coherence of structured signals 
in wavelet coefficient subbands. Preliminary results 
showed promising performance in denoising clinical 
SPECT and PET images for liver and brain studies.  

Our second denoising method is based on texture 
analysis of the images with brushlet expansion [2]. PET 
and SPECT images reconstructed using 2D filtered back-
projection (FBP) are often accompanied with highly 

structured textural noise in the background. Brushlet 
functions offer an orthogonal framework for expansion of 
the images and thresholding of coefficients with high 
energy that correspond to the noisy textural components. 
We previously presented preliminary results on PET and 
SPECT clinical data using this approach [3]. In this study 
we present initial results from the fusion of these two 
denoising methods into a single representation of the data. 
We followed a feature-based fusion technique performed 
in a wavelet transform domain to combine edge 
information from the two denoised volume data sets. In 
our application to PET and SPECT data, fusion of the 
images was performed to improve the overall denoising 
performance for visual inspection. We therefore chose to 
evaluate the potential improvement of data quality by 
presentation of the data to an expert clinician for 
evaluation of the different denoising methods as relevant 
for improving his diagnosis tool. Results presented in this 
paper are very encouraging and show significant 
improvement of image quality and informative value after 
fusion.    

2. METHOD 

2.1. Dyadic Wavelet Expansion 

Given a signal ( )f x  a wavelet transform of the signal at 

scale s with translation u is defined by: 
*

,

1
( , ) ( ) ( ) .u s

x u
W f u s f f x dx

s s
y y

-
= * = ò   

A discrete wavelet transform can be obtained by 
sampling the dilation parameter with a power of two and 
the translation parameter by a multiple of the dilation 
step. Sampling the translation parameter with the same 
resolution as the input signal, as proposed by Mallat and 
Zhong [4] results in a translation-invariant expansion. In 
that context, a dyadic ‘overcomplete’ wavelet transform 
of a signal ( )f x  is defined as a sequence of functions 

{ ( )}m m ZW f x Î , where 

 ( ) ( )m mW f x f xy= * ,  

with ( ) 2 (2 )m m
m x xy y- -=  the wavelet function ( )xy  

expanded by a dilation parameter (or scale) 2m .   
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In the present work, a 3D dyadic overcomplete wavelet 
expansion is performed on volume image data sets using a 
set of three wavelet functions ( 1 2 3, ,y y y ) derived as the 
partial derivatives of a 3D smoothing function ( ), ,x y zq . 

In this work, we used the first derivative of a cubic spline 
function as the wavelet analysis basis. This type of 
wavelet function, illustrated in Figure 1 is well suited for 
edge based feature analysis.  

 

(a) (b)  
Figure 1: (a) Cubic spline smoothing function θ(x). (b) 
Quadratic spline wavelet ψ(x) of compact support defined as 
the first derivative of the smoothing function θ(x). 

The dyadic wavelet transform of a volume image 
( ), ,I x y z  at a scale 2j  has therefore four components: 

 ( ), , ,( , , ) , , 1, 2, 3 ,k k
j j l m nT I l m n I ky= < > =  

and a DC component, which represents the “residual” 
information or average energy distribution. Such a 
discrete dyadic wavelet transform is efficiently 
implemented with a hierarchical filtering scheme.  

2.2. Brushlet Expansion 

A parallel approach investigated by our group in a 
previous study on SPECT brain data used a brushlet 
multiscale expansion to characterize texture noise 
components in 2D slices [3]. The family of wavelet-
packet like functions called brushlets is constructed on 

sub-intervals of the real axis 1n na a +
é ù
ê úë û

 with windowed 

complex exponential functions as: 

, , ,
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 where ( )1 2n n nc a a += + , nb and v are two windowing 

funtions, and ,j ne  is the complex value exponential 

function defined as: 
( )
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= . The 

windowing functions nb and v and the basis function ,j nu  

are displayed in Figure 2. 
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Figure 2: Windowing functions for the definition of a 
brushlet function on a subinterval of the real axis. 

The series of functions { }, ,n j n j
u

Î ¢
 constitutes an 

orthonormal basis of the real axis with arbitrary tiling (i.e. 
partitioning into sub-intervals). In N-dimensions, brushlet 
basis functions decompose a signal along specific spatial 
directions via analysis of its Fourier domain. In this study, 
a brushlet expansion was performed in 2D instead of 3D 
as the background texture is not continuous in 3D space 
and could therefore not be well characterized in terms of 
texture components with 3D brushlet functions. Similarly 
to the shift-invariant wavelet dyadic expansion, brushlet 
expansion was also performed in an overcomplete 
framework as described in [5]. 

2.3. Denoising via Thresholding  

Denoising of a given signal using wavelet or brushlet 
expansions is performed via thresholding of expansion 
coefficients prior to reconstruction.  

In the case of a wavelet expansion, coefficients with 
larger magnitudes are related to salient edge features in 
the data, showing high-correlation with the analysis 
function. A soft thresholding (wavelet shrinkage) operator 
is used. Because ( 1 2 3, ,y y y ) are partial derivatives of a 
single smoothing function q , the three components are 
proportional to the three coordinate components of the 
gradient vector of ( ), ,I x y z  smoothed by a dilated 

version of ( ), ,x y zq . From these components, one can 

compute the magnitude of the smoothed signal variation, 
which is proportional to the wavelet coefficient modulus: 

 
2 2 21 2 3

j j jM F T F T F T F= + + .  

In the proposed method, a threshold operator was applied 
to these wavelet coefficients modulus which are 
equivalent to edge maps at different scales. Traditional 
thresholding level selection schemes perform poorly on 
very noisy textured data such as PET and SPECT 
volumes. Indeed detailed levels of wavelet sub-band 
images display high-energy coefficients for both edge 
features and noise components. A cross-scale 
regularization scheme was used to guide the threshold 
level selection from one expansion level to the previous as 
detailed in [1]. This regularization scheme, which brings 
spatial adaptivity to the thresholding operator, was 
motivated by the idea that meaningful signal features 
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show persistent higher levels of coherence across wavelet 
expansion scales when compared to random noise. The 
DC component, which contains most of the energy of the 
projected signal, was preserved in the thresholding 
procedure.  

Regarding thresholding of the brushlet expansion we 
adopted a spatially adaptive thresholding level scheme 
initially suggested by Chang et al. [6] and applied by our 
group in [3]. This approach identifies in the noisy image 
three regions for edges (using a Canny edge detector), 
smooth background (based on the level of the local 
variance in the signal) and texture areas (defined as non- 
edges and non-smooth areas). A hard thresholding 
operator was applied to the coefficients with different 
threshold levels for each of the three regions. The 
threshold level was set proportional to a minimax global 
level, derived from the noise variance in the image using a 
weight of 0.25 on edges and texture areas and 0.5 in 
smooth areas.  

Comparing the two denoising methods on clinical PET 
and SPECT data, we observed in our previous 
experiments a better performance of brushlet denoising at 
removing background noise and enhancing physiological 
information (with higher details of brightness levels 
within distinct anatomical structures) than with wavelet 
denoising but a poorer spatial delineation of anatomical 
contours. This observation thus motivated the 
development of a fusion algorithm to combine the two 
denoising methods. 

2.4. Fusion of the Two Denoising Methods 

Fusion deals with the problem of combining different 
or incomplete representations of the same object into a 
single representation that integrates the different sources 
and pieces of information. Several wavelet-based 
techniques have been proposed to perform fusion based 
on localization of salient features in individual sub-band 
representations [7, 8].  

 (a.2) (b.2) (c.2) 

(a.1) (b.1) (c.1) 

Figure 3: Fusion of wavelet coefficient modulus in first level 

of expansion. Coefficient modulus maps are displayed for 
denoised data with: (a) wavelet thresholding, (b) brushlet 
thresholding, (c) fused coefficients. Coefficient modulus maps 
are displayed in (a.1, b.1, c.1) for a cross-slice from a SPECT 
liver data, and (a.2, b.2, c.2) for a ROI within a slice.    

In this framework, the images to fuse are expanded on 
a selected set of wavelet basis functions, a fusion rule is 
applied on the wavelet coefficients in the transform 
domain and a single data representation is reconstructed 
with the fused wavelet coefficients. Nikolov et al. 
proposed in [7] a fusion of 2D images using the same 
wavelet expansion framework as applied in this work for 
denoising, based on wavelet coefficients modulus. We 
followed the same general approach, but expanding the 
fusion rule in three dimensions: Given two volume data 
sets denoised with wavelet and brushlet thresholding, we 
expand the volumes onto the same wavelet expansion as 
used for denoising (based on a spline first derivative 
analysis function). Coefficient modulus maps are 
computed for the two volumes and the fusion rule is 
applied that extracts the maximum modulus of the two 
maps. The corresponding coefficients are used for 
reconstruction of a fused representation of the two 
denoised volumes. We point out here that using denoised 
data for fusion provided representations with sparse edge 
information and eliminated the need to empirically set a 
threshold level in the fusion rule as performed in [7]. We 
illustrate in Figure 3 this fusion process on the first 
subband coefficient modulus maps of a liver SPECT data 
set.  

3. RESULTS 

3.1. Experimental Setup 
We present in this section results on denoising and 

fusion of PET and SPECT clinical data sets reconstructed 
with filtered back projection (FBP). A 3D wavelet 
expansion was performed for denoising and fusion using 
three analysis levels. Brushlet denoising was performed 
with a [8×8] tiling of the Fourier plane in 2D. 

3.2. Denoising Results 
We illustrate in the Figures 4 and 5 the denoising 

performance of the two methods on a liver SPECT data 
set and a brain PET data set.  
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(a) (b) 

(c) (d) 

Figure 4: (a) Clinical SPECT liver data set reconstructed 
using FBP with clinical settings. (b) Fusion of the two 
denoising methods: (c) brushlet thresholding and (d) wavelet 
thresholding. 

 

(a) 

(d) (e) 

(c) (b) 

 
Figure 5: (a) Clinical PET brain exam reconstructed using 
FBP with clinical settings. (b) Image reconstructed using 
OSEM with clinical settings for brain data. (c) Fusion of the 
two denoising methods: (d) brushlet thresholding and (e) 
wavelet thresholding.  

We also show the results of the fusion of the two 
denoising methods. For both experiments, visual 
inspection of the results showed a clear improvement of 
image quality with both denoising methods compared to 
simple FBP.  

3.3. Evaluation of Image Quality by a Clinician  
An experienced clinician specialized in nuclear 

medicine participated in a review session for qualitative 
evaluation of the denoising methods. The clinician was 
presented with the denoised 3D data sets from (1) wavelet 
thresholding, (2) brushlet thresholding and (3) fused 

denoised results. The visualization platform allowed him 
to compare simultaneously the three volumetric data sets 
on a single GUI, slice by slice. The clinician was then 
asked to compare the fused data set to a control data set 
reconstructed with clinical settings without any post-
processing. For both clinical cases, the clinician observed 
clear improvements in image contrast and the definition 
of physiological activities inside the target organs for the 
denoised images. Denoising with brushlet thresholding 
was considered beneficial for enhancing “internal edges”, 
e.g. anatomical or physiological variations within the 
target organs. Wavelet modulus analysis using cross-scale 
regularization was recognized beneficial for enhancing 
“external edges”, with a better definition and delineation 
of the organ contours. The clinician was also confident 
that the fused images effectively combined important 
features from both enhanced images, without introducing 
artifacts.  

For the PET brain data set, we also asked the clinician 
to compare the results from our denoising scheme and the 
reconstruction with the ordered subset expectation 
maximization (OSEM) method, considered the state-of-
the-art for tomographic reconstruction. The conclusion of 
the qualitative comparison was that the fused multi-scale 
denoising methods provided significantly improved image 
quality in terms of both lower noise level and better 
contrast for key anatomical and physiological features. 

4. CONCLUSION 

We proposed in this paper results from a preliminary 
study on PET and SPECT data to evaluate new 
applications for fusion of denoising methods using a 
wavelet-based approach. Wavelet expansion provides a 
feature-based fusion method, which combines sparse edge 
representations of the denoised images into multiscale 
edges via a fusion rule that selects predominant wavelet 
coefficient modulus. Results showed an efficient fusion of 
the denoised methods with data sets that offered a 
significant enhancement of both anatomical and 
physiological data. Full evaluation of the denoising 
methods and merit of the fusion approach will require a 
phantom study with exact knowledge of the shapes and 
activity levels, followed by a clinical study on data sets 
with pathological ground truth. 
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