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Summary

The recent booming of multiphoton imaging of collagen
fibrils by means of second harmonic generation microscopy
generates the need for the development and automation of
quantitative methods for image analysis. Standard approaches
sequentially analyse two-dimensional (2D) slices to gain
knowledge on the spatial arrangement and dimension of
the fibrils, whereas the reconstructed three-dimensional (3D)
image yields better information about these characteristics.
In this work, a 3D analysis method is proposed for second
harmonic generation images of collagen fibrils, based on
a recently developed 3D fibre quantification method. This
analysis uses operators from mathematical morphology.
The fibril structure is scanned with a directional distance
transform. Inertia moments of the directional distances yield
the main fibre orientation, corresponding to the main inertia
axis. The collaboration of directional distances and fibre
orientation delivers a geometrical estimate of the fibre radius.
The results include local maps as well as global distribution of
orientation and radius of the fibrils over the 3D image. They
also bring a segmentation of the image into foreground and
background, as well as a classification of the foreground pixels
into the preferred orientations. This accurate determination
of the spatial arrangement of the fibrils within a 3D data set
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will be most relevant in biomedical applications. It brings the
possibility to monitor remodelling of collagen tissues upon a
variety of injuries and to guide tissues engineering because
biomimetic 3D organizations and density are requested for
better integration of implants.

Introduction

Collagen is the main structural protein of the human body. It
is mainly organized as fibrils that provide the building blocks of
a variety of organs (skin, arteries, cornea, bone, tendons, etc.)
(Hulmes, 2002). The spatial organization of these fibrils and
their size distribution are highly specific to each organ. They
determine to a large extent their biomechanical properties,
which are crucial for the organ function. It is therefore of great
interest to develop in situ and nondestructive tri-dimensional
(3D) characterization methods of the collagen fibrillar network
for biomedical applications. Such characterization would
enable, for example, the evaluation of tissue remodelling
in response to a variety of tissue injuries. Moreover, it
can be used in tissue engineering to guide the synthesis
of dense collagen fibrillar matrices exhibiting the same 3D
organization and overall characteristics as in natural tissues.
In vitro fundamental studies have indeed shown that cells are
receptive to the mechanical properties of the matrices they
are grown on, to the size or diameter of the structured holder,
as well as to the porosity of the 3D matrices (Lee et al., 2008;
Brown & Discher, 2009). Thus, 3D characterization methods
are crucial for the verification of tissue substitutes to be used as
implants or as cell culture 3D devices for fundamental cellular
studies.
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In that context, second harmonic generation (SHG)
microscopy has been shown to provide highly contrasted
3D images of fibrillar collagen in unstained biological tissues
(Campagnola et al., 2002; Zipfel et al., 2003a; Pena et al., 2007;
Strupler et al., 2007, 2008; Sun et al., 2008; Matteini et al.,
2009) and in engineered tissues (Raub et al., 2008; Bayan
et al., 2009; Bowles et al., 2010; Pena et al., 2010). SHG is
indeed a coherent multiphoton process that is specific for dense
and aligned structures, such as fibrillar biopolymers (collagen
fibrils, myosin thick filaments, microtubules, etc.). It exhibits
intrinsic 3D resolution like other multiphoton microscopies
and offers increased penetration in scattering tissues compared
to confocal microscopy (Zipfel et al., 2003b). Quantitative
analysis of SHG images have been reported and aimed to
quantify the density or porosity of the collagen fibrillar network
and the directional distribution of the fibrils (Pena et al., 2007,
2010; Strupler et al., 2007, 2008; Raub et al., 2008; Sun
et al., 2008; Bayan et al., 2009; Matteini et al., 2009; Bowles
et al., 2010). However, the proposed methods have been
restricted to sequential processing of 2D images from 3D
image stacks. The development of 3D quantification tools is
desirable to take full advantage of the 3D capability of SHG
microscopy and to access the 3D architecture of collagen fibrils
at micrometer scale.

This paper presents a method, adapted from Altendorf &
Jeulin (2009) and Altendorf (2011), for 3D quantification of
SHG 3D images of collagen fibrils.

Several methods have been proposed in the literature to
deal with fibre quantification in 3D images. The chord length
transform (Sandau & Ohser, 2007) works on binary images
of nearly straight fibres with a significant thickness. The
orientation of a foreground point is defined as the one of a fixed
number of directions, having the longest chord length. The
approach of the Gaussian Orientation Space (Robb et al., 2007;
Wirjadi, 2009; Wirjadi et al., 2009) works on both binary
or grey-level images with fibres of nearly constant thickness.
Oriented Gaussian filters are applied with a fixed number of
directions and the local orientation in a voxel corresponds
to the orientation with the highest filter response. Further
approaches for orientation estimation in local windows
include the inertia moments (Bigun & Granlund, 1987; Reuze
et al., 1993), quadrature filters (Granlund & Knutsson, 1995)
and the Hessian Matrix (Frangi et al., 1998; Tankyevych
et al., 2008). All three methods assume constant local radii
of the objects and work on grey-level images. The first two
methods can also be applied to binary images.

A classical tool for local radius estimation is the
morphological granulometry, which has inspired recent tools,
like the ultimate opening (Beucher, 2007). It considers the
changes of grey values after morphological openings of
increasing size: at each pixel, the estimated radius is the size of
the opening which modifies the most the local pixel intensity.
This approach can be applied to several types of objects with
a minimal size, as the discretization effect is high on small

structuring elements. Unfortunately, it is not precise enough
for thin fibres, as in the case of collagen fibrils.

In this paper, the advantages of the state-of-the-art methods
are combined in an approach applicable to grey-level images,
with low-computation time and high precision. To achieve
such results, some hypotheses on the image quality and
resolution, as well as on the fibre structure, are required.
The approach assumes fibres with a nearly circular cross
section and a minimal diameter of at least 3 pixels. It can
be applied to binary images as well as grey-level images with
high contrast. In the case of low contrasted or noisy images,
prefiltering can be used to smooth the image and to enhance
the contrast. Contrary to the Gaussian Orientation Space or the
chord length transform, the proposed method can return any
orientation on the unit sphere surface S2 = {v ∈ R

3, |v| = 1}.
The stereological idea of this approach has the advantage of a
lower computing time when compared to other approaches.
Furthermore, in contrast to the Gaussian Orientation Space or
the inertia moments, there are no restrictions on the variation
of the fibre radius in different objects.

This approach was evaluated on SHG images of collagen
concentrated matrices that were grown using various
chemical conditions to adjust the size and density of the
fibrils (Gobeaux et al., 2008). The results include maps of
the local features and the global distribution of orientation
and radius, as well as a segmentation of the image into
foreground and background, which yields a density estimate
of the material. The foreground pixels are associated with the
preferred orientations to visualize the spatial arrangement of
the preferred orientations.

To the best of the authors’ knowledge, this paper provides
the first automated 3D image processing method dedicated to
the quantification of SHG images on collagen samples.

The remainder of this paper is structured as follows: the
whole process, including the preparation of the material, the
nondestructive imaging technique and the analysis of the 3D
fibrillar structure, is described in the ‘Methods’ section. In the
‘Results’ section, the method is evaluated on four samples.
After discussing the methodology and the results, conclusions
are drawn.

Methods

Fibrillar matrix preparation

Collagen I was purified from Wistar rat-tails tendon as
previously described (Gobeaux et al., 2007). Purity and
homogeneity of the solution were verified by SDS-PAGE
electrophoresis. Collagen I diluted solutions were then
concentrated by centrifugation at 14 000 g using 3 kD
filters tubes (VIVASPIN 20, Sartorius, Goettingen, Germany).
These concentrated collagen solutions were checked for
their hydroxyproline amount and adjusted to 100 mg mL−1.
The concentrated solutions were then deposited in Teflon
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crucibles (3 mm wide, 5 mm long and 2 mm deep). The
outer surface was gently flattened out longitudinally using
a glass coverslip. Subsequently, the Teflon moulds were
tightened into a dialysis membrane and dipped into a
phosphate buffer saline (PBS) solution to induce the
collagen fibrillogenesis and synthesize fibrillated matrices.
On the basis of conditions already published (Gobeaux
et al., 2008), two different PBS concentrations were used
to vary the size of the collagen fibrils: 50 and 100 mM, at
pH = 7.4. After a few days, the collagen fibrillated matrices
were taken off the moulds and were directly plunged into the
buffer solutions and stored at 4oC until used.

Imaging

SHG imaging was performed using a custom-built
multiphoton microscope as previously described (Pena et al.,
2007, 2010; Strupler et al., 2007, 2008). Excitation was
provided by a femtosecond Titanium-sapphire laser tuned at
730 or 860 nm. A quarter waveplate was used to achieve
quasicircular polarization and mitigate the sensitivity of
SHG images to the orientation of the fibrils in the focal
plane. Excitation was focused in the fibrillar matrix using a
water-immersion 20×, 0.95 NA objective. The lateral and
axial resolutions near the sample surface were respectively
0.350 and 1.6 μm. Power at the sample was typically
10–30 mW. SHG signals were epidetected using photon-
counting photomultiplier tubes and appropriate spectral
filters. 3D images were obtained by laser scanning in the
xy directions using galvanometric mirrors and moving the
objective lens in the z direction. We used typically 100 kHz
pixel rate and a sampling of 0.2 μm in xy direction and
0.5 μm in z direction. Images were saved as z-stacks of
2D grey-level images where the voxel values corresponded
to the number of photons detected during the pixel dwell
time.

Images were preprocessed to reduce noise and artefacts. A
smoothing filter with a Gaussian kernel was used, followed by
a linear spread of the grey values to enhance the contrast. The
images were also cropped to remove distortion artefacts at the
boundaries, because of the slight slowing down of the laser
scanning while turning back.

Image analysis

In this section, we describe the image analysis approach
designed to estimate local orientation and radius of fibrils based
on directional distance transform, morphological gradient,
and inertia moments. The approach works directly on 3D
grey-level images and generates 3D orientation and radius
maps, without any need for the extraction of individual fibres
in the images. This extraction would be very difficult or even
impossible to perform in the present case.

Overview of the method
Our approach starts with the directional distance transform

to calculate, for every pixel of the image, the distance to a
fibre boundary in 26 directions. The boundary coordinates
are used to calculate the inertia moments from which the
main inertia axes, giving the fibre orientation, are extracted.
From the fibre orientation and the 26 directional distances the
fibre radius can be estimated. Distributions are extracted from
the orientation and radius maps in form of a histogram over
all fibre points weighted with a quality measure.

The proposed approach is based on Altendorf & Jeulin
(2009). The approach was slightly adapted with regard to
the directional distance transform for grey-level images. In
the case of the collagen fibrils, there is a high contrast between
foreground and background and therefore a grey-level line
can be completely classified into foreground and background
regions. The approach in Altendorf & Jeulin (2009) was
designed, more generally, for fibres of various grey-levels,
where boundaries between fibres of different grey-levels need
to be recognized as well. In the case of bright fibres on dark
background, the adapted method yields more precise results
for classification and measurement.

Working hypotheses for our approach are fibres with
circular cross sections and a minimal diameter of 3 pixels.

Directional distance on grey level images
The thresholded quasi-distance used in Altendorf & Jeulin
(2009) was replaced, in this study, by a so called maximal-
mean-gradient approach, inspired by the morphological
gradient. The input of this approach is a grey-level line
l : {1, . . . , n} → R, which is extracted from a 3D image as an
intensity profile along a specific direction. Zeros are added at
the front and the back of the line and intermediate points are
introduced with the average value of their two neighbours.
This results in an upsampled line l2 : {1, . . . , 2n + 3} → R,
which is defined as follows:

l2(i ) =

⎧⎪⎪⎨
⎪⎪⎩

l((i − 1)/2) for (i − 1)/2 ∈ {1, . . . , n}
0 for i = 1 or i = 2n + 3

(l2(i − 1) + l2(i + 1))/2 else

(1)

The gradient at point i with step size s is defined as
g(i , s) = l2(i + s) − l2(i − s). Note that this gradient can be
positive or negative, respectively, if the grey values along the
line increase or decrease. The classical morphological gradient
corresponds to |g(i , 1)|. Along a grey-level line, the increase
or decrease of the grey values depends highly on its angle with
respect to the fibre orientation. If the line is perpendicular to
the fibre, the grey-level change will be abrupt; with decreasing
angle the grey value variation will protract over several
pixels, thus g(i , 1) will only detect a part of the gradient. To
detect boundaries of grey-level slopes with different declines,
gradients are averaged over various step sizes. This can
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Fig. 1. Grey value line from a collagen image with maximal-mean-gradients, peak sequence and estimated boundaries.

also improve the robustness with respect to salt and pepper
noise.

The mean gradient at a point i for the step size s is defined
as

G mean(i , s) = 1
s

s∑
k=1

g(i , k). (2)

If s is too large, peaks will diffuse and even merge with
surrounding peaks. To keep high and localized peaks, we
introduce the maximal-mean-gradient, which increases with
the step size. To handle salt and pepper noise, a minimal
step size s0 is defined for the initial mean gradient. Then the
maximal-mean-gradient is recursively defined as

G max
mean(i , s)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

G mean(i , s) for s ≤ s0

G mean(i , s) for (s > s0)
and |G mean(i , s)| > |G max

mean(i , s − 1)|
and

(
sign(G mean(i , s)) = sign(G max

mean(i , s − 1))
)

G max
mean(i , s − 1) else

(3)

The meaningful extrema of i �→ G max
mean(i , s), for a given s, are

extracted in three steps. First, the extrema between two sign
changes are considered and only the highest ones are kept.
That gives us a sequence of peaks with alternating signs. Then
peaks with an amplitude lower than a given gradient threshold
G 0 are deleted, as they are not significant. This sequence is
again reduced to an alternating one by extracting the extrema
of neighbours with the same sign. The resulting sequence of
peaks represents the significant fibre boundaries on the line
and defines a foreground and background classification.

Figure 1 shows an example of an extracted line from one of
the collagen images. The profile of the grey values is presented
by the thick black line. The thin coloured lines represent the
maximal-mean-gradient for different step sizes. The minimal

step size was chosen as s0 = 4. The final maximal-mean-
gradient for step size s = 10 is presented in red, with the first
sequence of alternating peaks. The thick blue line represents
the final estimated boundaries. The parameters s0 = 4 and
s = 10 are appropriate for various kinds of images and
materials. The significant lower limit G 0 for the gradient
depends on the contrast between the foreground and
background in the original image. Therefore, it needs to be
adapted according to the imaging technique and to the type
of material. Approximately one quarter of the mean grey level
contrast between the fibres and the matrix is a good guideline.
This limit can be optimized by checking the classification map
c , which contains optimally only two values 0 and 26. For the
current application, the limit G 0 was set to 25.

Local orientation and radius estimation
Using the above described method, a given 3D grey-level image
f : I → R is scanned with 13 directional lines corresponding

to the 26 neighbourhood. Maximal-mean-gradient values
on the line indicate significant changes in the grey values,
which represent boundaries of fibres. By recognizing the
boundaries, we can define the directional distance in forward
and backward directions for every voxel on the line. After
testing all 13 directions, we get for every voxel and for
26 orientations, the information of the directional distance
d : I × N26 → R

+ to a fibre boundary and if the boundary
indicates a transition from foreground to background or vice
versa. The sum of the last mentioned information leads to
a classification of the voxel in 27 classes c : I → {0, . . . , 26},
which represents the number of directions, for which the voxel
is classified as foreground. It is assumed that the analysis
is meaningful, if the classification output is higher than a
limit c0, which was set equal to 20 in this application.
The thresholding of the classification map with the limit
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Fig. 2. 2D example of the orientation analysis from directional distances
and inertia moments of boundary points. (a) shows a synthetic fibre in
blue, an arbitrary point in the object in lilac and the directional distances
as arrows in the sampled directions. (b) shows the point of interest with the
directional distances d (vi ) as black arrows and the extremities e(i ) as dark
red points. The computation of the inertia moments can be interpreted as
an ellipse fitting. The ellipse is shown in red with its main inertia axis (dark
red line), that matches nearly perfectly the fibre orientation (lilac line).
These illustrations are in 2D, but the process is done in 3D, with ellipsoids.

c0 defines a mask for the foreground voxels. For c0 close
to 26, the foreground pixels mainly include bright pixels
localized in the inner part of fibres, this generates a high
specificity of the measure but shrinks the fibres shape within
the segmented mask. It does not affect the radius estimate, as
this one is based on the distances calculated from the grey-level
images.

For an arbitrary pixel i ∈ I , the boundary points e(i , v)
are defined as points where the directed line reaches the
first significant change: e(i , v) = d (i , v) × v, where v ∈ N26

and d (i , v) is the distance to the next boundary in direction
v. Inertia moments at point i are calculated on the set
of boundary points E (i ) = {e(i , v), v ∈ N26}. For details on
inertia moments see Duda & Hart (1973), Bakhadyrov &
Jafari (1999) and McCartin (2007). Inertia moments of first
degree return the centre of gravity g(i ). The main inertia
axis provides an initial estimate of the local orientation of the
fibre. The inertia axes and moments enable a rough fit of an
ellipsoid to the structure of the boundary points (as shown in
Fig. 2 ). The main inertia axis can have any orientation in S2

and is not limited to the 26 sampling directions. Still, there is
a bias towards the sampled directions. The correction of this
bias is explained in Altendorf & Jeulin (2009). The notion of
directional distances and the estimation of the main inertia
axis are illustrated in Figure 2.

All calculations have been based so far on pixel information.
For a nonisotropic pixels spacing s = (sx, sy, sz)T , as it is the

case in our application, a pixel-based orientation vector v ∈ S2

is scaled as follows:

S(v, s) = V (v,s)
L (v,s)

with V (v,s) =
⎛
⎝ vx · sx

vy · sy

vz · sz

⎞
⎠

and L (v, s) = |V (v, s)|
(4)

The final orientation o(i ) is obtained by scaling the
deviation-corrected and pixel-based orientation o ′(i ) with the
spacing s: o(i ) = S(o ′(i ), s). The final orientation estimate is
saved in the orientation map o : I → S2. The scaling needs
to be applied after the deviation correction as the latest
is developed for a sampling on the 26 adjacency system
and would not work correctly on a deformed orientation
vector.

With the knowledge of the fibre orientation, for every
boundary point e(i , v) we obtain an approximation of the
radius of the fibre

r (i , v) = |e(i , v) − e(i ,−v)|
2

sin(∠(e(i , v) − e(i ,−v), o(i )))
(5)

For a nonisotropic pixel spacing, distances need to be scaled
with s and the radius estimate (with spacing) reads:

r (i , v) = L (e(i , v) − e(i ,−v), s)
2

× sin(∠(S(e(i , v) − e(i ,−v), s), o(i )))
(6)

Note that the radius estimate of Eq (6) is given in spacing
units as s, whereas Eq (5) is based on pixels.

Let r(1), . . . , r(26) be the ordered sequence of those radius
approximations. The final radius estimation is a trimmed
mean of this sequence r (i ) = 1

8

∑17
j=10 r( j ), which is saved

in the radius map r : I → R
+. The trimmed mean discards

outliers and is therefore more robust in terms of statistical
analysis. Furthermore, the ratio of the first two inertia
moments m1, m2 is saved in a ratio map w : I → [0, 1], where
w(i ) = 2( m2

m1+m2
− 0.5) = m2−m1

m1+m2
. At each pixel, this ratio is

an indicator for the elongation of the objectdefined by the
boundary points. Therefore, the ratio of inertia moments as
well as the classification of a voxel indicate the quality of
the analysed orientation and radius. In particular, at fibre
crossings, where the orientation and also the radius cannot
be measured correctly, the moment ratio is low. A quality
measure index q : I → R

+ is defined as the product of moment
ratio and the label classification: q (i ) = w(i )c(i ).

Border effects can be reduced by replacing the results on
point i with those of the nearest image point to its gravity
centre g(i ). This point is usually closer to the fibre core, where
the directional distances and therefore also the measures are
more stable.

Extraction of distributions
The radius distribution is represented by a weighted histogram
with bin sizes hw. The masked foreground voxels Im = {i ∈
I , c(i ) > c0} contribute to the histogram with a weight
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Table 1. Data Set Information.

Matrix Excitation

Collagen PBS Surface Wavelength Power Image size
Index (mg mL−1) (mM) material (nm) (mW) [voxel]

I 100 50 Membrane 860 20 (581, 601, 60)
II 100 50 Membrane 730 30 (575, 601, 80)
III 100 50 Teflon 860 30 (801, 801, 70)
IV 100 100 Teflon edge 860 10 (700, 700, 65)

Note. The fibrillar collagen matrices were obtained from 100 mg mL−1 collagen solutions that were fibrillated in 50 or 100 mM PBS to achieve two different
ranges of fibril diameters (Gobeaux et al., 2008). Different 3D regions of the matrices were imaged to study the effect of the surface interactions during
the fibrillogenesis process (dialysis membrane, Teflon, Teflon edge). SHG imaging used either 860 or 730 nm laser excitation, with various excitation
powers. Different image sizes were used, depending on the sample. The image sampling is 0.2 μm in the xy direction and 0.5 μm in the z direction.

of quality q (i ) divided by the approximated fibre cross
section πr (i )2. The division by the fibre cross section
will change the volume-weighted distribution to a length-
weighted distribution. This means that a fibre participates to
the distribution according to its length instead of its volume.
This step is important, as the volume is also dependent on the
radius and therefore a volume-weighted radius distribution
would be biased towards large fibres. The relative quantity of
a histogram bin b(k) = [(k − 1)hw, khw] is then defined as

Hr (k) = 1
Wr

∑
i∈Im, r (i )∈b(k)

q (i )
πr (i )2

(7)

where Wr is a normalizing factor, so that the integral over the
whole histogram is equal to one:

∑∞
k=1 Hr (k) = 1.

For the orientation distribution, a grid is projected on
the unit sphere to partition the sphere surface in m cells
C 1, . . . , C m ⊂ S2. Again, the masked foreground voxels
contribute to the histogram with a weight set to their quality
index, so the distribution is defined by

Ho(k) = 1
Wo

∑
i∈Im, o(i )∈C k

q (i ) (8)

where Wo is the normalizing factor, so that the integral over
the distribution is equal to one. The orientation distribution
is volume-weighted. If radius, length and orientation of
a fibre are independent, the volume-weighted orientation
distribution, as well as the length-weighted radius distribution,
do not differ from their number-weighted versions (find a
detailed discussion in the Appendix).

Results

Four collagen matrices (I–IV) were included in this study,
generated by collagen dense solutions fibrillation in Teflon
containers, via a dialysis against phosphate buffer solutions
(50 mM: I–III or 100 mM: IV). SHG images revealed important
variations of the organization and diameters of the fibrils
as a function of the surface in contact with the collagen

solution during the fibrillogenesis. A dependence of the SHG
fibrils diameters on the solvent used for the fibrillogenesis
was also observed. This work aims to quantify these
observations.

Table 1 describes the composition of the materials, indicates
the size and resolution of the images and assigns an identifying
index.

SHG images were analysed as described in the Methods
section. A summary of the quantitative measures extracted
from the analysis is provided in Table 2. The orientation
distribution is described by histograms on a cell division of
the unit sphere. The densities of the fibrils within the matrices,
as well as their mean diameters and orientations, are reported
for each sample. The main orientations given in the table
correspond to the supporting vectors u ∈ S2, u = (ux, uy, uz)T

of the three cells with the locally highest frequency.
Moreover, for every data set, a collection of images

(illustrated in Figs 4–7) was created, including (a) volume
rendering of the original grey-level image, (c) calculated
orientation distribution and (f) diameter distribution. We also
extracted the most frequent orientations and defined influence
regions around them. These regions were labelled with
colours (d). The choice and size of the classes were manually
defined, thus their surface does not exactly correspond to
the distribution density. This defined a labelling on the
local orientations map, which can be projected on the
surface rendering of the binarized classification image (b).
Additionally, a colour-coded depth profile of the densities of
the main orientations was created (e). The overall density is
presented in black and the nonassigned pixels in grey.

Concerning the diameter distributions (Figs 4–7(f)), it
should be stressed that the first classes (0.0–0.4 μm) are just
within the lateral resolution of the microscope and probably
correspond to the sharp extremities of the fibres.

Concerning the depth profile of the main orientations
(Figs 4–7(e)), the curves of the main orientations follow mainly
the trend of the total density for the images I–III. There is no
significant change in the profile of the main orientations at

C© 2012 The Authors
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Table 2. Summary of Results.

Mean diameter Main orientations (u1, u2, u3 ∈ S2)
Index Density (%) in μm (±SD) (The three most frequent orientations)

I 4.61 1.08 (±0.30) (0.85, -0.07, -0.52) (-0.54, 0.54, 0.64) (-0.08, 0.97, 0.23)
II 3.43 0.96 (±0.23) (0.54, 0.54, 0.64) (0.54, -0.54, 0.64) (-0.54, -0.54, 0.64)
III 4.48 1.18 (±0.55) (0.08, 0.97, -0.23) (-0.08, 0.97, 0.23) (0.99, -0.08, 0.08)
IV 1.33 1.84 (±0.43) (0.23, 0.97, 0.08) (0.85, -0.52, 0.07) (0.75, 0.64, 0.18)

Note. The density derived from the foreground mask, the mean diameter as a trimmed mean (α = 5%) and the standard deviation from this value as well
as the three main orientations, which are manually extracted from the histogram on the unit sphere. The collagen density and the main orientations
vary with the imaging conditions (sample side, excitation power), whereas the mean diameter is quite reproducible for the same sample composition.

different depths. For image IV, the two peaks in the total density
are essentially formed by the red curve, where the first peak is
accentuated by the green curve. The other main orientations
are uniformly distributed in depth.

Discussion

In this section, both the resulting data and the presented
quantification method are discussed.

Comparison with manual fibre quantification

To validate this fibre quantification methodology, we
compared our results with manual measurements,
traditionally used to calculate the fibril diameter. The
traditional manual fibril quantification was calculated on
the cumulative projection of the 3D image on the xy plane.
Several representative fibril sections were selected manually
and a Gaussian Function was fitted to their grey value profile.
The full width of the function at half of its maximum (FWHM)
was supposed to indicate the diameter of the fibril. This
measure is linearly dependent on the standard deviation

parameter σ of the Gauss function: FWHM(σ ) = 2σ
√

2 ln 2.
Table 3 shows the results of the manual FWHM method and
the automatic quantification described in this paper on 8 test
points in each image. It shows a systematic bias between
manual and automatic measurements, while samples are
sorted in the same way.

Figure 3 shows the perfect profile of the cumulative
projection of a cylinder (a basic fibril model) and its Gaussian
fit. We observe that the Gaussian model corresponding to the
manual measure seems to underestimate the fibril diameter. In
practice, regardless of the imaging technique, objects in 2D and
3D images are deformed because of the point spread function of
the imaging system when their size is within the same order of
magnitude as the microscope optical resolution, so that they
tend to be fuzzy. This results in a projected curve which is
closer to the Gaussian bell shape. However, it is not clear how
to relate automatic and manual measures to the true fibril
width. The FWHM method considers the width at the height
of half the maximum as the object width. Figure 3 shows that
this can result in an underestimation of the width with a factor
of f0 = 0.586, which can explain a systematic bias between
the manual and automatic measurements. For the images I–

Fig. 3. Fitting of a general Gaussian curve to the profile of a projected fibril with circular cross section.
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Table 3. Comparison of the Results from the Manual FWHM Method and the Automatic Quantification Described in this Paper on 8 Test Points in each
Image.

Image FWHM mean Automatic mean Mean factor Standard Deviation
index diameter ( μm) diameter ( μm) FWHM/automatic of the Factor

I 0.674 1.853 0.372 0.058 (15.64%)
II 0.581 1.236 0.480 0.098 (20.41%)
III 0.844 2.401 0.350 0.037 (10.60%)
IV 1.739 2.787 0.632 0.100 (15.81%)

III, we observe even smaller factors between the FWHM and
our method (see Table 3). However, for image IV (which yields
a higher fibril resolution), the factor is extremely close to the
theoretical f0. That leads us to the assumption that the bias
in the images I–III can be explained by the low resolution
of the fibrils. Note furthermore, that on images II and IV,
the deviation between the FWHM and our measurement
multiplied with the factor f0 is lower than the pixel sampling
of 0.2 μm.

Moreover, we need to exhibit a stable factor between the
measures, to validate the automatic method with respect
to the manual measurements. In our case, the variation of
the factor within the same image (indicated by the standard
deviation, column 5 in Table 3) is acceptable, whereas the
variation of the factor between different images is significant.
As mentioned above, the different solution concentrations and
imaging conditions might explain this fact since fibrils with
different diameters around the microscope resolution do not
exhibit similar profiles in the images.

Finally, the ground truth is not known and thus an accurate
validation is very hard to perform. Noteworthy, the automatic
quantifications sort the samples in the same order as the
manual measures. The larger mean diameter is obtained for
sample IV, then for sample III, then for sample I and finally
for sample II using the two methods. We therefore expect
that the automatic quantification is a reliable measurement
of the variation of fibril diameter. Furthermore, automatic
quantification can be performed on a much larger sample
that manual measures, which strongly limits bias because
of small sampling. Such a bias is clearly demonstrated by
the bad agreement between the mean diameters obtained by
automatic quantification in the whole images (Table 2) and
the ones obtained in the 8 test points (Table 3).

Discussion on the methodology

Advantages of the proposed approach, compared to other
3D fibre quantification methods, is the combination of
the high precision of the results, the direct application
on grey-level images and the ability to handle various
fibre radii. Furthermore, the method computes both fibre
orientation and radius and has low computational time

because of the stereological approach. Such precise results
require good image quality and a sufficient resolution of
the fibres, the analysis being limited to fibres with at
least 3 pixels for their fibre diameters. These constraints
are verified for SHG images, because SHG is a coherent
nonlinear process that provides highly contrasted images
compared to linear optical techniques (Deniset-Besseau
et al., 2010). Note that this method, developed for fibrils
with a circular cross-section, could be extended to ribbon-like
structures to study other biologically-relevant collageneous
and noncollageneous structures.

This 3D quantification method, compared to usual SHG
image processing, is capable of fully exploiting the 3D
capability of SHG imaging by providing the 3D orientation
field of the collagen fibrils. Fibril orientations within the
focal plane are easily retrieved from 2D images, but the
fibril’s orientations out of the focal plane are more difficult
to obtain. They can be estimated from 2D images using a
polarization-resolved setup and making some assumptions
about the collagen tensorial SHG response (Erikson et al.,
2007). However, this approach is not as robust and accurate as
direct 3D image processing because of polarization artefacts in
scattering tissues (Gusachenko et al., 2010) and of ambiguous
polarization responses as a function of the in-plane and out-of-
plane angles (Erikson et al., 2007). Moreover, the computing
time for the present version of the software in C++ is around
15–20 minutes per image (on a standard Desktop PC) for a
nonoptimized implementation.

Most interestingly, our method successfully sorts out fibrils
with significant out of focal plane orientation. It shows that
these fibrils exhibit a significant SHG signal while they are
not excited parallel to their main axis. These results are
in good agreement with previous papers bringing evidence
that the collagen SHG response cannot be reduced to only
one nonvanishing tensorial component χ

(3)
zzz , like a rod-like

system along the z axis (Stoller et al., 2002; Plotnikov et al.,
2006; Deniset-Besseau et al., 2009; Gusachenko et al., 2010).
The χ

(3)
zxx and χ

(3)
xxz components contribute significantly to

the SHG response and enable the visualization of fibres
with axial orientations, although fibrils lying within the
focal plane exhibit a better contrast. Polarization engineering
could further improve the visualization of fibrils with axial

C© 2012 The Authors
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Fig. 4. Results for image I. 100 mg mL−1 collagen in 50 mM phosphate buffer, imaged on the membrane side with 20 mW at 860 nm excitation.
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Fig. 5. Results for image II. 100 mg mL−1 collagen in 50 mM phosphate buffer, imaged on the membrane side with 30 mW at 730 nm excitation.
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Fig. 6. Results for image III. 100 mg mL−1 collagen in 50 mM phosphate buffer, imaged on the Teflon side with 30 mW at 860 nm excitation.

C© 2012 The Authors
Journal of Microscopy C© 2012 Royal Microscopical Society



1 2 H . A L T E N D O R F E T A L .

(a) Volume Rendering of Original Image

(b) Surface Rendering Superposed with
Main Orientation Colours

(c) Orientation Distribution on
Unit Sphere in Stereographic View

(d) Colorization of Main
Orientations

Density of Main Orientations in Depth Profile

Depth Z [um]

D
en

si
ty

 [%
]

(e) Density Profile of Main Orientations in Z-Direction, for All Fibrils
(black) and for Main Orientations (same colours as (d))

0.
2

0.
4

0.
6

0.
8 1

1.
2

1.
4

1.
6

1.
8 2

2.
2

2.
4

2.
6

2.
8 3

3.
2

3.
4

3.
6

3.
8 4

4.
2

4.
4

Diameter Distribution

Diameter [um]

R
el

at
iv

e 
Q

ua
nt

ity
 [%

]

0

5

10

15

20

File: 05_post_ec2_d07_filtered_crop
AcceptionThreshold: 20
Resolution: 0.2x0.2x0.5 [um/pixel]
Histogram−Width: 0.2 [um]
Max.−Prob.−Range: 1.4−1.6 [um]
Modal−range: 1.8−2 [um]
Median(50%−Quantile): 1.80294 [um]
Mean: 1.85 [um] Dev: 0.57
TrMean: 1.84 [um] Dev: 0.43 (0.05)

(f) Diameter Distribution

Fig. 7. Results for image IV. 100 mg mL−1 collagen in 100 mM phosphate buffer, imaged at the edge of Teflon side with 10 mW at 860 nm excitation.
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direction by providing axially polarized excitation fields
(Yew & Sheppard, 2007; Yoshiki et al., 2007). However,
this technique has limited depth penetration in scattering
collageneous tissues and would be restricted to thin samples
or samples with low scattering, such as corneas.

Discussion on the quantification results

Retrieval of quantitative information from 3D SHG images is
crucial to assess development of diseases or recoveries, as well
as to guide the synthesis of collagen based scaffolds in the
present context. To develop the appropriate analytical tools,
100 mg mL−1 collagen solutions were used to generate dense
collagen matrices. The solutions were fibrillated in specific
buffer conditions (Na2HPO4, 50 and 100 mM) to generate
two different fibril mean diameters and lengths. SHG images
showed different fibrils dimensions and organizations of the
inner part and the outer part of the scaffold. In the present
data set, focus is on the outer crust of the scaffold, where fibrils
are larger

Our image analysis method successfully discriminates
between different fibrillar structures. As illustrated in Figure 4,
the method is reliable even for dense and intricate matrices.
A variation of the fibrils density with depth of the probed
volume was observed in all data sets. The fibrils density
first increases with the depth from 10 μm to 30 μm, which
indicates a progressive increase in the scaffold density. The
subsequent decrease, deeper in the scaffolds, is attributed
both to a degradation of the imaging conditions because of
scattering of the laser excitation and to a decrease in the fibrils
diameter. Such variation of fibril diameter between the crust
and the inner part was already observed by scanning electron
microscopy on collagen matrices. These observations point
out the importance of the surface interactions in the growing
process of these matrices. All samples, however, exhibited
similar density profiles for all main orientations. This shows
that the anisotropy in the fibril 3D distribution does not change
significantly with depth in the outer crust of the scaffolds for
the first 30–40 μm depth.

Table 2 shows that the collagen density varies in images
I–III, although they were measured in different regions
of the same sample, with the same collagen and buffer
concentrations. We attribute this discrepancy to differences
in the imaging conditions. First, the excitation power varies
from 10 to 30 mW and images acquired with lower excitation
power may underestimate the collagen density. Second, the
effective depth within the scaffold at z = 0 may differ from
one image to the other, so that the scaffold is scanned in
more or less dense areas. This means that only the relative
variations of the fibrils density with depth can be considered
as a reliable result, unless the imaging conditions are identical.
On the contrary, the mean radii obtained in Table 2 are similar
for images I–III. This shows that our method enables reliable
quantitative measurements of fibril radii. Most interestingly,

it can be observed that the fibril mean radius at 100 mM
phosphate buffer is roughly twice the one at 50 mM in similar
conditions (i.e., a mean radius value of 1.07 μm for the three
first samples and 1.84 μm for sample IV). The same behaviour
was already observed in transmission electron microscopy
measurements of the inner part of the matrix (Gobeaux et al.,
2008). This means that, although there is evidence of the
significant effect of the surface interactions, the physico–
chemical conditions of the fibrillogenesis solvent are still
crucial. This point is critical, because synthesis of biomaterial
for medical purposes will always, at some point, need some
kind of patterning and shaping. The effect of the surface
container should therefore always be checked and taken into
account.

Conclusion

A direct 3D quantification method for collagen fibrillar
networks in SHG images was presented. This approach enables
quantifying the fibril density, orientations and radii within
the collagen matrix. We compute also the average value, the
standard deviation and the variation of these parameters along
the depth within the scaffold. This image processing method
fully exploits the 3D capability of SHG microscopy and makes
this imaging technique a powerful tool for visualizing the
3D spatial distribution of collagen fibrils. This study focused
on collagen scaffolds to gain some knowledge regarding
collagen placement during the preparation of fibrillar matrices
according to different subfields of the material. The differences
observed between manual and automated image analyses are
explained in the paper. The comparative analysis of the two
methods enabled us to unambiguously link the two kinds of
results for well defined experimental conditions. The proposed
automatic measurements are therefore a reliable method to
compare populations of collagen fibrils from images with
similar acquisition conditions. Anyway, the automated image
analysis based measurements can be performed on a much
larger sample than manual counting. It also provides a variety
of parameters that are not available using manual measures,
such as 3D orientations of the fibrils.

The method can be readily extended to SHG images of other
collageneous tissues. It could be used to study the cornea,
which exhibits similar straight fibrillar structures and to the
tendon or the dermis, because the approach also applies to
crimped structures. The method could also be generalized to
characterize collagen organization at different spatial scales.
For instance, it could enable 3D quantification at nanometre
scale of collagen molecules or molecular domains in collagen
liquid crystals visualized by electron microscopy. Finally, the
proposed approach is applicable to other fibrillar structures
in various types of tissues, visualized by any other imaging
technique with sufficient contrast. For instance, it may be
applied to elastin fibres visualized by fluorescence confocal or
multiphoton microscopy.
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Appendix

We consider a population of fibres with random radius R,
length L and orientation�. The number and volume weighted
multivariate distributions f (r , l, ω) and g(r , l, ω) are related
as follows:

g(r , l, ω) = k1r 2l f (r , l, ω) (9)

with a normalization constant k1 given by

k1 = 1∫∫∫
r 2l f (r , l, ω) dr dl dω

(10)

The marginal distributions of the orientation f (ω) and g(ω)
are related by the following expression, deduced from Eq (9) :

g(ω) = k1

∫ ∫
r 2l f (r , l, ω) dr dl (11)

If, for each fibre, the orientation is statistically independent
of the radius and of the length, we have the decomposition

f (r , l, ω) = f (ω) f (r , l) (12)

and

g(ω) = f (ω)k1

∫ ∫
r 2l f (r , l) dr dl = f (ω) (13)

as

k−1
1 =

∫ ∫ ∫
r 2l f (r , l) f (ω) dr dl dω

=
∫ ∫

r 2l f (r , l)
(∫

f (ω) dω

)
dl dr .

(14)

Per definition f (ω) is normalized, thus
∫

f (ω) dω = 1. It
follows

k−1
1 =

�
r 2l f (r , l) dl dr (15)

which eliminates the second constant in Eq. (13). Therefore,
the assumption of independence involves that the volume
and number-weighted distributions are the same. This result
is true, even if the length and the radius of fibres are not
independent.

Similarly, we can derive a relationship between the length
(h(r , l)) and number ( f (r , l)) weighted joint distributions of
the random radius R with the random length L . We have

h(r , l) = k3

∫
l f (r , l, ω) dω

= k3l
∫

f (r , l, ω) dω = k3l f (r , l)
(16)

with

k3 = 1∫∫
l f (r , l) dl dr

(17)

When the random length L is independent of the radius R,
we have the decomposition

f (r , l) = f (l) f (r ) (18)

and therefore k3 = 1∫ ∞
0 l f (l) dl

= 1
E [L ] , with E [L ] being the

number weighted average of the lengths of fibres. The marginal
radius distribution becomes

h(r ) = k3

∫ ∞

0
h(r , l) dl

= f (r )k3

∫ ∞

0
l f (l) dl = k3 E [L ] f (r ) = f (r ).

(19)

Thus, the length and number weighted joint distributions
of the random radius R are the same. This result is true, even
if the radius and length are not independent of the orientation
of fibres.
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