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Fig. 1: Illustration of the spherical CNN framework proposed for AD diagnosis based
on cortical morphometric data. The basic operation blocks are denoted as arrows and
listed under the network structure.

orthogonal group’). Hence, specially-designed convolution operations are refor-
mulated on S2 and SO(3). Due to space limitation and the experimental focus
of this paper, more theoretical underpinnings can be found in [7, 8].

Elements in the SO(3) space are represented in the Euler ZYZ format as:

Z(↵)Y (�)Z(�) (1)

where Z(·) denotes rotation around the Z axis, Y (·) denotes rotation around
the Y axis, ↵ 2 [0, 2⇡],� 2 [0,⇡], � 2 [0, 2⇡] are the rotation angles respectively.
The elements are passed as 3D matrices in the computation.

Elements in the S2 space can be represented in a similar way and are passed
as 2D matrices in the computation:

Z(↵)Y (�)Z(0) (2)

The network architecture is similar to regular CNN, with spherical convo-
lutional blocks being layered hierarchically. The main parameters include the
bandwidth b, which is similar to the spatial dimension in regular CNN, and the
number of channels c at each convolution block.

In this work, we use a simple yet general network structure with three convo-
lutional layers interleaved with 3D batch normalization (BN) and rectifier linear
unit (ReLU) layers. The network structure is illustrated in Fig. 1. The number of
channels doubles and the spatial dimensions reduce by two across layers. Specifi-
cally, we denote the S2 convolution with bandwidth b and channel c as S2Conv(b,
c), and the SO(3) convolution with bandwidth b and channel c as SO3Conv(b,
c). The fully convolutional part of the network is sequenced as: S2Conv(32, 32)
- BN - ReLU - SO3Conv(16, 64) - BN - ReLU - SO3Conv(8, 128) - BN - ReLU.
The three dimensions ↵,�, � of the feature maps at each layer are all 2b.
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stages, which would likely benefit from different monitoring
or intervention options. In addition, within CN and MCI
groups, certain subjects will remain CN (or MCI), while others
will progress to AD. This heterogeneity could potentially be
captured by biomarkers embedded in “micro”-genetics and
“macro”-image biomarkers [18]. However, this concept still
lacks consensus and is not included in routine clinical practice.
Such latent subtypes can be modeled via “soft” assignment or
mixed-membership. Supervised topic modeling [19], [20] is a
constructive extension of the unsupervised versions, and can
combine subject stratification at different scales for a more
robust and discriminative characterization.

In this study, exploiting supervised topic modeling, we infer
grouping of subjects from image and genetic biomarkers and
analyze the prevalent patterns that emerge in the AD and MCI
populations. We first investigate supervised topic modeling by
encoding “co-atrophy” patterns of brain regions as “topics”
and characterizing AD with latent neuroanatomical patterns
using image features. We then jointly model image and genetic
features to discover jointly occurring image and genetic AD
biomarkers. We apply the proposed model for three types of
population stratifications: 1) CN vs. AD, 2) CN vs. MCI vs.
AD and 3) MCI stable vs. MCI progressing to AD subjects.
Experimental results on the ADNI cohort demonstrate that our
model can discover topics that reveal both well-known and
novel neuroanatomical patterns as well as associations between
neuroanatomical and genetic factors implicated in AD.

II. METHOD

We first introduce the problem setting of AD characteri-
zation using the classic LDA topic model formalism. Then
we introduce our supervised LDA (sLDA) model where the
diagnosis group information (e.g. CN vs. MCI vs. AD) is
integrated as a supervision variable to enable more discrimi-
native characterization. Graphical representations of these two
models are provided in Fig. 1.

A. Problem Setting in LDA
The LDA model is built on a bag-of-words representation

of the input observations. It analyzes data from a set of
documents d 2 [1, ..., D] known as corpus, and characterizes
each document as a mixture of K topics �1:K , whereas
topics are defined via learning the probabilistic distribution of
possible words wd,n with n 2 [1, ..., Nd] for each document
d. A Dirichlet prior is assumed for the topic proportions ✓d in
each document. And the topic assignment zd,n of each word
wd,n is assumed to be drawn from a multinomial distribution
parameterized by ✓d. The posterior distribution is modeled as
follows:

p(z,�,✓|w) /
NdQ
n=1

DQ
d=1

p(wd,n|zd,n,�)p(zd,n|✓d)
DQ

d=1
p(✓d)

KQ
k=1

p(�k)
(1)

In our LDA setting for AD diagnosis, we use both image
features and genetic variants of individuals in the topic model-
ing. For image features, we use subcortical and cortical volume
and cortical thickness. The feature values are discretized via
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Fig. 1: Graphical representations of the classic (unsupervised) LDA
model and the supervised LDA (sLDA) model. Hollow circles
denote latent variables, shaded circles denote observed variables,
solid squares denote hyper-parameters, arrows denote dependence
relationship, and plates denote replicated structures.

binning, and are normalized by the maximum value in the total
training population to ensure equivalent contributions in the
model among different features. The genetic features encode
the number of alleles (A, T, C and G) for certain AD-related
SNPs (details in Section III-A) and take three values 0, 1 and
2, which represent the occurrence of the reference allele on
two homologous chromosomes [21].

We use an analogy to LDA previously applied for survey
analysis [22], where observations are answers to individual
questions. Each “document” is the collection of answers
by a single respondent. Topics encode common occurring
patterns of likely answers for each question (“word”), and
topic proportions represent how much each individual exhibits
those patterns. In our case, each subject is viewed as a survey
“document”. Brain regions and SNPs are the shared survey
questions, and the feature values (e.g. cortical thickness of
a certain brain region) are the answers. Hence, SNPs are
regarded as survey questions with three possible answers,
while image features are regarded as questions with preset
possible responses, where the variety depends on the binning
size. When using image features alone, atrophy patterns across
the brain regions are the “topics” to discover. When using
both image and SNP features, the “topics” are the integrated
patterns of brain region atrophy and jointly occurring genetic
variants. Each individual expresses the discovered topics at
variable levels.

B. Supervised LDA
The expressive power of the basic LDA to discover topics

comes at a price. The posterior distributions can exhibit many
local modes, resulting in very unstable solutions. Furthermore,
unsupervised topic modeling lacks constraints to differentiate
disease populations, and is thus likely to find topics in the
data that are not reflective of the structures of interests [19].
In our preliminary experiments, we found the distribution of
topics learned with a classic unsupervised LDA model to be
nearly uniform. Therefore, we propose to introduce diagnostic
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