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A Method for Modeling Noise in Medical Images
Pierre Gravel*, Gilles Beaudoin, and Jacques A. De Guise

Abstract—We have developed a method to study the statistical
properties of the noise found in various medical images. The
method is specifically designed for types of noise with uncorrelated
fluctuations. Such signal fluctuations generally originate in the
physical processes of imaging rather than in the tissue textures.
Various types of noise (e.g., photon, electronics, and quantization)
often contribute to degrade medical images; the overall noise is
generally assumed to be additive with a zero-mean, constant-vari-
ance Gaussian distribution. However, statistical analysis suggests
that the noise variance could be better modeled by a nonlinear
function of the image intensity depending on external parameters
related to the image acquisition protocol. We present a method
to extract the relationship between an image intensity and the
noise variance and to evaluate the corresponding parameters. The
method was applied successfully to magnetic resonance images
with different acquisition sequences and to several types of X-ray
images.

Index Terms—Image processing, magnetic resonance imaging,
noise measurement, robustness, X-rays.

I. INTRODUCTION

IMAGE noise is a common problem in most image pro-
cessing applications as evident in the extensive literature

on the ways to reduce or circumvent it. Beginners in image
processing soon discover that a denoising step is often required
before any relevant information can be extracted from an
image. The plethora of denoising functions included in popular
commercial software is also evidence of the importance of
extracting a signal from a noisy image. We adopt a different
approach by using noise statistics to extract new information
from standard images. Our method relies on the measurement
of the relationship between the image intensity and the noise
variance . This relationship is of the form

(1)

and depends on the noise model whereas the values of the pa-
rameters are determined by the image acquisition
protocol. The relationship (1) should apply to every pixel in the
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image. The method is also designed to study uncorrelated noise,
i.e., for which the correlation length is zero.

Several methods for estimating the variance of white addi-
tive noise in images have been proposed [1] but they cannot be
used on images where the relationship (1) applies since the noise
variance on them is nonuniform. The method presented here is
more general and measures the noise variance in smooth, prefer-
entially homogeneous regions of an image. This is particularly
useful when only one image is available for analysis. When the
same object can be imaged several times, the local mean inten-
sity and noise variance can be estimated for each pixel [2], [3].
This provides a large number of measurements from
which the parameters in (1) can be determined. However, as it is
often the case in practice, only a single image might be available
and the local mean intensity must be estimated using a smoothed
version of the image. As a result, the local mean intensity and
noise variance are less precise and must be combined with mea-
surements at other pixels to increase accuracy. This is the ap-
proach we elected to use.

A common misconception in image processing is to as-
sume noise to be additive with a zero-mean, constant-variance
Gaussian distribution or to be Poisson distributed. This as-
sumption simplifies image filtering and deblurring, but the poor
quality of the results generally indicates that a better under-
standing of the noise properties is required. Hence, the noise on
magnetic resonance (MR) images was found to have a Rician
probability density function (PDF) instead of a Gaussian one
[4] whereas the noise on computed tomography (CT) images
was found to be Gaussian instead of Poisson distributed [3], [5].
The modeling of image noise is not new and has led to investi-
gations in various fields. Several authors have characterized the
noise on aerial images [6]–[9] because texture analysis (based
on image variance) is a fundamental tool of remote sensing
for terrain classification. Similar techniques were also used in
medical imaging for tissue classification and segmentation [10],
[11]. In a different type of application, the modeling of noise
during MR image acquisition and Shannon’s theory of infor-
mation content were used to derive an optimum in the trade-off
problem between image resolution and contrast-to-noise ratio
[12]. Given the relevance of noise modeling in the previous
applications, we present and validate a method to do so which
is more robust and reliable than previously published ones.

In Section II, we describe the statistical properties of several
types of noise found in medical images. The method to extract
the relationship (1) from a given image as well as the various
imaging protocols used in this work are described in Section III.
The method is then applied to several types of MR and X-ray
images with the results being analyzed in Section IV. The con-
clusion follows in Section V.

0278-0062/04$20.00 © 2004 IEEE
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II. NOISE MODELS

In this section, we discuss the statistical properties of three
common types of noise found in medical imaging (Gaussian,
Poisson, and Rician) and derive the relationship (1) for each of
them. Whenever an image contains different types of uncorre-
lated noise, the overall noise variance can be expressed by
summing up the various noise contributions

(2)

For example, the images from a charge—coupled device
(CCD) camera are free of grain noise but are degraded by
Poisson and read-out noises [7]. The noise variance on such
images is either constant or linear dependent on the signal
intensity. Unless otherwise mentioned, the images analyzed in
this work were such that the noise contributions from secondary
sources were negligible.

A. Gaussian Noise

This most common type of noise results from the contribu-
tions of many independent signals. This is a consequence of
the central limit theorem which states that the sum of many
random variables with various PDFs results in a signal with a
Gaussian PDF. For example, the reading noise from a CCD de-
tector is generated by the thermal fluctuations in many intercon-
nected electronics components and, thus, has a Gaussian PDF.
Gaussian noise is such that is a constant.

B. Poisson Noise

Poisson noise prevails in situations where an image is cre-
ated by the accumulation of photons over a detector. Typical
examples are found in standard X-ray films, CCD cameras, and
infrared photometers. We focus our attention on images saved
with linear or logarithmic intensity scalings.

1) Linear Intensity Scaling: The following analysis as-
sumes a pixel intensity corresponding to the number of
monochromatic photons captured in a given amount of time.
Real X-ray beams are not monochromatic and have energy
spectra showing strong characteristic emission lines superim-
posed over a Bremsstrahlung radiation background [13]. The
energy deposited at a pixel location (the image intensity) does
not correspond exactly to the number of captured monochro-
matic photons since the X-rays follow a compound Poisson
noise process. Whereas the number of X-rays follows a Poisson
noise distribution, the X-ray energy converted counts follow a
compound Poisson noise distribution due to the wide spectrum
of the energy. Our analysis based on monochromatic photons
remains nevertheless a good approximation of reality as will be
shown in Section IV.

For a Poisson process of mean (where represents the
number of captured photons), the expectation value for the vari-
ance is

(3)

Because a recorded image is usually linearly rescaled to ac-
commodate a given range in grey scales, the relation between

the intensity reaching the detector and the recorded intensity
is

(4)

where and are constants. The corresponding variance
varies linearly with the intensity

(5)

2) Logarithmic Intensity Scaling: The noise statistics are al-
tered on photographic plates, such as those used for X-rays,
where the stored information is the optical density. An X-ray
film being a negative recorder, an increase in light exposure
causes the developed film to become darker. The degree of dark-
ness of the film is quantified by the optical density which is
measured in this work by a scanner. The relation between the
intensity and the optical density depends on the film, the de-
veloping process used and the scanner. Within the operational
intensity range of a given film, the relation can be expressed as

(6)

where is the transmittance of the film [13] and corre-
sponds to the fraction of the light that reaches the scanner de-
tector ( is the maximum intensity). The minimum optical
density (or maximum transmittance) is found in the bright
bone regions and the maximum optical density (or minimum
transmittance) is found in the dark background regions. Taking
into account image rescaling, the relation between the optical
density and the scanned intensity, , becomes

(7)

and the corresponding variance varies exponentially with the
intensity

(8)

with

(9)

The scanned image is inverted such that a large value of
corresponds to a large value of optical density . Both and

constants are, thus, positive and the optical density variance
increases with the optical density.

The analysis assumed again monochromatic photons but (8)
still remains an excellent approximation of reality as will be
shown in Section IV.

3) Rician Noise: The noise in MR images has a Rician PDF
[4]. For these tests, we have used a standard volume coil (bird
cage) which has uniform efficiency throughout the volume of in-
terest. The signals are acquired in quadrature. Each signal pro-
duces an image that is degraded by a zero-mean Gaussian
noise of standard deviation (which we define as the noise
level). The two images are then combined into a magnitude
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image and the Gaussian noise PDF is transformed into a Ri-
cian noise PDF. The expectation values for the mean magnitude
and the variance are [14]

(10)

(11)

where and are modified Bessel functions of the first kind.
There was no MR image rescaling found in the data we analyzed
and, thus, no scaling relation like (4) and (7) was used here.

When , the Rician PDF approaches a Gaussian PDF
[14] with and . When , the Rician
PDF approaches the Rayleigh PDF which does not depend on

[14]. The expectation values for the mean magnitude and the
variance of a Rayleigh PDF are

(12)

(13)

Equations (12) and (13) can be used to estimate the value
of in an image from measurements in background regions
where the magnitude is almost zero.

Before leaving this section, a last comment must be made
about the optimum in the trade-off problem between MR image
resolution and contrast-to-noise ratio [12]. The derivation as-
sumed the noise to be gaussian and additive in order to estimate
Shannon’s information content of an image based on its power
spectrum. These two assumptions are valid when the noise level
is small . However, this is not true for very noisy im-
ages for which the trade-off problem becomes par-
ticularly crucial. Special care must be taken in those cases.

III. MATERIALS AND METHODS

The first part of this section describes a method for measuring
the relationship (1) between the intensity and the noise vari-
ance in an image. A noise image is first generated as the differ-
ence between the original image and a smoothed version of it.
A mask image is then created to identify the pixels on the image
plateaus. The noise variance on these image plateaus is then
evaluated using robust estimators. The second part describes the
imaging protocol for the acquisition of MR and X-ray images.

A. Noise Characterization

1) Image Smoothing: To a first level of approximation, each
noise type studied can be modeled as a zero-mean Gaussian
noise with a locally varying standard deviation. We assume that
the difference between an image and a smoothed version of it

produces a zero-mean noise signal with a standard deviation
of . A noise image is obtained by subtracting a
smoothed version from the original image

(14)

where and refer to pixel row and column indexes.
The image smoothing is performed by convolving the original

image with a boxcar low-pass filter of size .
The smoothing method works well for pixels located on

plateaus where the intensity gradients are small. Near the
edges, where the intensity gradients are large, the image
smoothing does not reproduce the local mean intensity well
and the noise signal has a nonzero mean.

The filter size depends on image resolution and is found by
trial and error. If is too small, the smoothed image tends to
follow the original image too closely and the noise variance is
underestimated. If is too large, the intrinsic variations in the
image are smoothed out and the noise variance is overestimated
or may not be of the form (1). All the images in this study were
processed with pixels and the limited size of the filter
was taken into account by multiplying the noise variance with a
correction factor (see Section III).

2) Binary Mask Generation: Edge pixels are discarded in
the analysis and are masked out using a binary mask based on
the edge information. The mask is first created by applying a
threshold to a gradient image computed using Sobel filters.
The threshold value is found using a method described in Sec-
tion IV.

The binary mask is eroded by half the size of the smoothing
filter to remove the pixels where the computed local mean in-
tensity is imprecise due to the proximity to the image edges.
The image boundaries are also eroded to the same depth to re-
move boundary effects due to filtering. Finally, the binary mask
is cleaned from binary noise using standard morphological op-
erators (opening and closing). This method eliminates highly
textured regions from the noise analysis.

3) Noise Variance Estimation: To compute the noise vari-
ance for a given mean intensity , we first need to identify all
the unmasked pixels in the smoothed image that have this inten-
sity. A noise sample (14) is available for each such pixel and the
noise variance can be computed from them. We use an equidis-
tant-bin histogram of the local mean intensity of the unmasked
pixels; the bin width being small enough that can be consid-
ered constant within each of them. For each bin k, we compute
the mean intensity , the noise standard deviation , and its
associated error . In what follows we will use the bold-
face notation to indicate vector quantities.

The noise distribution changes from bin to bin and the
Gaussian estimator of the variance cannot be used in general.
We use instead a robust estimator of the noise standard de-
viation in the th bin that is based on the median absolute
deviation [2]

(15)
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where the is the vector of noise samples in the bin. The error
associated to the last estimator was found using Monte Carlo
simulations

(16)

where is a vector that holds the number of noise samples
in each bin.

The last two results must be corrected for the limited size of
the boxcar low-pass filter

(17)

(18)

where is the number of pixels in the filter kernel.
4) Data Fitting: The intensity histogram has bins. Using

the values of the mean intensity , the noise standard devia-
tion , and its associated error , we can now evaluate the

free parameters in the noise model (1) by mini-
mizing the weighted mean square error (WMSE) defined as

(19)

where is the bin index, is the corresponding weight, is
the vector of parameters, and is the threshold value used in
the binary mask generation. We use the Nelder-Mead simplex
(direct search) method [15] with an adjustment of the weights.

Outliers have a large influence on a least squares fitting be-
cause squaring the residuals magnifies the effects of these ex-
treme data points. To minimize this problem, we fit the data
using a robust regression scheme based on Tukey’s bisquare
weights [16] where the weight given to each data point de-
pends on how far the point is from the fitted curve. Points near
the curve get full weight. Points farther from the curve get re-
duced weight. Points that are farther from the curve than would
be expected by random chance get zero weight [17], [18]. The
weights are computed as follows .

1) Set .
2) Compute the residuals from the weighted least squares

fit that minimizes the WMSE (19)

(20)

3) Compute the standard deviation of those residuals using
a robust estimator based on the median absolute deviation

(21)

4) Compute the normalized residuals

(22)

5) Compute the bisquare weights

(23)

6) Go to Step 2 and continue the iterations until convergence
is obtained.

Themeasuredvaluesof themean intensity , thenoisestandard
deviation , and its associated error , depend implicitly on
thethresholdvalue (whichcorrespondstoanintensitygradient).
Too small values of result in a limited number of intensity mea-
surements and too large values produce distortions in the shape of
(1). The optimum threshold value is found as follows. For a given
value of , we generate a binary mask, compute and
from the unmasked pixels, and find the values of the free param-
eters that minimize . We repeat the same series
of steps for different threshold values and then select the value of

that produces the smallest value of .
The parameter-estimation procedure is slightly different for

MR images with Rician noise since (10) and (11) are parametric
equations. The second step (20) requires using a look-up table of

values generated using (10) and (11) to compute .
We recommend using relative rather than absolute threshold

values. The absolute value of an intensity gradient changes
whether an image has a bit depth of say 8, 12, or 16 bits. How-
ever, when the relative threshold value % is defined as the frac-
tion of the pixels having an intensity gradient less or equal to
then its value does not depend on the image bit depth. To ease
writing, we will also use the symbol rather than % with the
understanding that the threshold is expressed as a ratio.

B. Image Acquisition Protocol

We apply our noise characterization method to five types of
medical images.

1) Magnetic Resonance Images: We used the image ac-
quisition protocol for the clinical assessment of knee-joint
osteoarthritis at the University of Montreal Hospital Research
Centre (CRCHUM). Magnetic resonance imaging (MRI) is
performed with a Siemens, 1.5 T horizontal-bore magnet using
a three-dimensional (3-D) FISP sequence with fat saturation
or a 3-D double-echo in steady-state (DESS) sequence. Both
sequences provide adequate contrast for the bone-cartilage and
the cartilage-synovium interfaces.

The frequency-encoding direction is from head to foot and
the phase-encoding direction, from anterior to posterior. Each
12-bit image is 512 480 (zero filled to 512 512) with a
square field of view of 160 mm, giving an effective voxel size of
0.31 mm 0.39 mm 1 mm (FISP) or 0.31 mm 0.39 mm 2
mm (DESS). The imaging parameters are
with a flip angle of 20 (FISP) or with a flip
angle of 40 (DESS). To increase the number of data points
and to maximize the dynamic range, we use five images taken
from each of the FISP (110 images) and the DESS (56 images)
data blocks. The five images sample uniformly the data blocks.

2) Radiography From a Micro Strip Gas Chamber With an
Amplifier Grid [19]: We used a MICROMEGAS testing bed
(Biospace Instruments, France) installed at the École de tech-
nologie supérieure in Montreal. This system has a fan-beam ge-
ometry which allows the direct detection of X-rays using a 6-bar
Xenon gas chamber. The beam is 254 m thick and is recorded
on a 1764 pixel grid. The 16-bit image (1 mAs) was acquired
line by line as the source (70 kV ) and the detector scanned an
object while moving at a uniform speed. The effective pixel size
is 254 m 254 m giving a field of view of 0.40 0.45 m .
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3) Computed Radiography: We used the image acquisition
protocol for the clinical assessment of scoliosis used at Mon-
treal’s Sainte-Justine Hospital. The radiography was acquired
on a FUJI FCR 7501 using a 90-kV source. The square pixel
size is 400 m. The 10-bit image is 1281 769 and has a field
of view of 0.51 0.31 m . The image intensity was compressed
logarithmically to facilitate clinical assesment, the original, un-
compressed image was not available to us.

We also used the General Electrics Revolution XQ/i installed
at Montreal’s Hôtel-Dieu. A series of 94 images (10 mAs) was
acquired using a 70-kV source without a anti-diffusion grid.
Each 14-bit image is 2021 1751 and has a field of view of
0.40 0.35 m , giving a square pixel size of 200 m.

4) Radiography on a Screen Film: Two X-ray films were
scanned simultaneously with a Vidar VXR Twain DS (32 bit)
and Microsoft Photo Editor scan software. The multi-film-sup-
port scanner has a moving stage and stationary sensor, optics
and illumination. The 12-bit knee image is 2100 1524 and
was scanned at 300 dpi giving a square pixel size of 85 m for
a field of view of 0.18 0.13 m . The 12-bit test pattern image
(AGFA) has a field of view of 0.43 0.36 m but we only use a
504 3060 image section for a field of view of 4.2 25.9 cm .

5) Computerized Tomography: We used the Pickers 5000
installed at CRCHUM. A series of 101 images (275 mAs)
was acquired using a 100 kV source. Each 16-bit image is
512 512 and has a field of view of 0.48 0.48 m , giving a
square pixel size of 936 m. The image slices were 5 mm thick
and a standard filter for thoracic imaging was used.

IV. RESULTS AND DISCUSSION

This section compares the measurements of noise standard
deviation (or variance) in five types of medical images with their
theoretical noise models. Our method is much less sensitive to
the tuning parameters (the filter size and the threshold) usually
associated to measurements of local noise variance. This should
lead to more efficient automated image analysis.

Since the images are recorded with a limited precision (e.g.,
10-bit images) the rescaling and the truncation of the intensity
values always modify their noise statistics. We take into account
the rescaling effects in our analysis but the truncation artefacts
cannot be removed from the data. Such artefacts are negligible
for most of the images used in this work. Image clipping due to
pixel saturation by the noise generally affects the high-intensity
end of the images where the noise variance is the greatest. This
saturation effect was negligible in this work since the results that
follow reproduce quite well the theoretical models for most of
the intensity ranges of the images.

A. Magnetic Resonance Images

Rician noise differs greatly from Gaussian and Poisson
noises. The variance of a Gaussian noise is constant whereas
the variance of a Poisson noise is proportional to the noise
mean (5). Rician noise is such that the noise variance depends
non linearly on the noise mean. This is effectively what we
observe on MR images.

Fig. 1(a) and (c) shows the same knee observed under the
FISP and the DESS imaging sequences. The white circles are

cross sections through a horizontal cylinder filled with a liquid
providing a strong signal. For the DESS sequence, two images
are acquired and averaged together. As a result

(24)

with given by (11). The noise standard deviation
must be multiplied by for comparison with the predictions
of a Rician noise model.

Fig. 1(b) and (d) shows how the noise standard deviation
depends on the magnitude for each sequence. The underlying
curve on Fig. 1(b) is a fit to the theoretical relationships (10)
and (11) and reproduces well the overall distribution of the data
except for a few points in the bend of the curve. A better fit is
found on Fig. 1(d) where the Rician noise model takes into ac-
count the factor. In the analysis of Fig. 1(a) and (c), 59%
and 93% of the image pixels were used.

The first data points in Fig. 1(b) and (d) are superfluous and
result from our choice of the filter size and threshold values.
Using a larger filter size and a smaller threshold eliminates the
spurious points but also reduces the magnitude data range and
prevents an accurate estimation of .

Good estimates of can usually be found by measuring the
mean magnitude or the standard deviation in a background
region of an image and by using (12) or (13) to obtain . This
technique was applied to Fig. 1(a) and (c) as a validation step
for our method. The background region is a rectangular section
in the lower left corner of both figures. The results are listed
in Table I. Comparison of the predictions of (12) and (13) with
the least squares fit parameters are in good agreement. It also
suggests that (13) is a more accurate estimator of than is (12).

The remaining part of this section presents a detailed example
of the application of the method to the DESS image [Fig. 1(c)].
Fig. 2 shows the effect of the threshold on masking edge
pixels. Fig. 2(a)–(c) shows binary masks generated from the
original image using threshold values . The un-
masked pixels appear in white and represent respectively 27%,
93.5% and 97% of the total number. Fig. 2(c)–(e) shows the cor-
responding noise standard deviation results computed from the
unmasked pixels. The smallest threshold value results in too few
pixels being selected [Fig. 2(a)] and, thus, in poor statistics and
a limited intensity range [Fig. 2(d)]. The pixels with the largest
noise intensity gradients are also eliminated from the analysis,
even in flat intensity plateaus, which results in an underestima-
tion of the noise variance. Fig. 2(c) represents the other extreme
where a large threshold value results in too many selected pixels.
The intensity range on Fig. 2(f) is the largest one but nonlinear-
ities are also observed in the data; the shape of the curve in the
bend is not well reproduced. The middle two panels provide the
best results where the data and the theoretical model agree and
the masked pixels are located along the most significant image
edges.

Fig. 3(a) shows the WMSE for a range of threshold values.
For each value of corresponds: 1) a binary mask; 2) the re-
sulting data set; 3) a nonlinear fit to the data set;
and 4) the value of the WMSE for that fit (19). A minimum is
observed at 92.5% which was the value used to generate
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Fig. 1. Examples of typical MRI sagital slices of a knee observed under (a) the FISP and (c) the DESS imaging sequences. (b) Relation between the noise standard
deviation and the magnitude in (a). The curve is a robust least squares fits to a Rician noise model of parameter � = 14:47�0:12 (d). Relation between the noise
standard deviation and the magnitude in the image (c). The standard deviation measurements were multiplied by

p
2 for comparison with a Rician noise model of

parameter � = 20:93� 0:14. The error bars correspond to �2 rms values of the standard deviation.

TABLE I
RICE NOISE LEVEL ESTIMATION BASED ON IMAGE BACKGROUND STATISTICS. THE FIRST COLUMN LISTS THE MR ACQUISITION SEQUENCES. THE SECOND

COLUMN LISTS THE MEAN AND THE STANDARD DEVIATION OF THE MAGNITUDE DATA AS MEASURED IN A BACKGROUND REGION OF EACH IMAGE. THE THIRD

COLUMN LISTS THE PREDICTED NOISE LEVELS ESTIMATED USING (12) and (13) AND THE DATA IN THE SECOND COLUMN. THE PARAMETER VALUES ESTIMATED

USING OUR METHOD ARE LISTED IN THE LAST COLUMN. THE ERROR BARS CORRESPOND TO �2 ROOT MEAN SQUARED (RMS) VALUES OF THE STANDARD

DEVIATION. THE ERRORS ARE ESTIMATED USING THE BOOTSTRAP METHOD [15]

Fig. 1(d) and Fig. 2(b) and (e). This represents the best com-
promise between the intensity range, the scattering of the data
points and the agreement with the theoretical model.

Fig. 3(b) shows that the estimated parameter in each fit (the
noise level) does not display such minimum/maximum behavior
and tends to vary monotonously with the threshold value. That
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Fig. 2. (a)–(c) Binary masks generated after applying the thresholds � < � < � respectively to the intensity gradients in the DESS knee image. (d)–(f) Noise
standard deviation results for each mask above. The standard deviation measurements were multiplied by

p
2 for comparison with Rician noise models (underlying

curves). The error bars are not shown to avoid cluttering the figures.

remains true for all the other parameters estimated in this
work. This observation strengthens the importance of using
the WMSE statistics rather than the parameter values or a
Chi-by-eye criterion to estimate the optimal threshold value.

B. X-Ray Images

1) Linear Intensity Scaling: Fig. 4(a) is a radiography of
the torso of a humanoïd phantom (Sectional Phantom, The
Phantom Laboratory, Salem, NY). The resin matrix of the
phantom encloses real bones and uses air-filled cavities to
simulate the lungs. The data was obtained using a micro-strip
gas chamber with an amplifier grid [19]. The MICROMEGAS
system was designed to minimize the radiation exposure of a
patient. Diagnostic radiation is known to be a causative factor
of breast cancer in scoliotic patients [20].

Because the X-ray detector records a signal proportional to
the X-ray flux, Fig. 4(b) shows that the noise variance mea-
sured on the image is proportional to the mean local intensity
according to (5). There is a good agreement between the data
and the predictions of the simple model assuming a mono chro-
matic X-ray beam.

There is gap in the intensity data (from 5000 to 60 000)
that corresponds to the pixels forming the edge of the torso.
These pixels are eliminated from the analysis because the cor-
responding intensity gradients are very large. The information
for intensity data beyond 60 000 represents only 8% of the
unmasqued pixels in the bright background and is not shown
here (the data points lay near the straight line). Forty-two
percent of the image pixels were used in the noise analysis.

2) Logarithmic Intensity Scaling:
a) Computed Radiography: Computed radiography (con-

ventional X-ray source with imaging phosphor plates) can also

reduce the required dose of radiation in comparison to standard
radiology. When an X-ray beam strikes a photostimulable phos-
phor detector, most of the absorbed X-ray energy is trapped in
the imaging plate and can be read out later using a laser beam
[13]. The laser light stimulates the emission of trapped energy
in the plate and visible light is released from the plate, collected
by a fiber-optic light guide and sent to a photomultiplier tube.
The reemitted flux is proportional to the X-ray beam intensity.

In the following example, we use a computed radiography
that was saved on disk using a logarithmic intensity scaling for
which the transfer function is unknown to us. Thus, the image
gray levels correspond to rescaled optical densities rather than
the X-ray beam intensities. The variance of the noise in the
image should, thus, depend on the mean local optical density
according to (8).

As described in Section II-B, the X-rays follow a compound
Poissonnoiseprocesswhere theirnumbers followaPoissonnoise
distributionandtheirenergyconvertedcountsfollowacompound
Poissonnoisedistributionduetothewideenergyspectrum.During
the last stage of image acquisition, the energy/intensity distribu-
tion ismodifiedbythe logarithmic intensityscaling that simulates
an ideal film-conversion characteristics.

Fig. 5(a) shows the chest radiography of a patient with scol-
iosis. Fig. 5(b) reveals a good agreement between the data and
the underlying logarithmic fit to (8) based again on a simple
model assuming a mono chromatic X-ray beam. 41% of the
image pixels were used in the noise analysis.

b) Radiography on a Screen Film: A screen film is char-
acterized by a Hurter and Driffield (H&D) curve which is a plot
of a film’s optical density as a function of the log of exposure
[13]. The curve is a straight line within the operational intensity
range of the film. Outside that range, the optical density levels
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Fig. 3. (a) Relation between the weighted mean square error and the threshold
value. (b) Relation between the estimated noise level � and the threshold value.
A smoothing spline (a) and a cubic curve (b) were used to enhance the visual
appearance of the data on both panels.

off at low and high exposures due to under exposition and sat-
uration of the film. The film must first be scanned before noise
can be studied on it and the scanning process introduces photon,
read-out and quantization noise in addition to grain noise al-
ready present in the film. The impact of the scanner-induced
noise on the total noise balance must be evaluated to differen-
tiate it from the film grain noise.

We first measured the noise variance on a screen-film test pat-
tern (AGFA) which is a synthetic image without grain noise
[Fig. 6(a)]. The analysis was applied to the horizontal band
identified with an arrow. 72% of the band pixels were used
in the analysis. Photon noise from the scanner illumination is
the dominant noise source and its variance should obey (8).
This is true for the upper half of the intensity range as Fig. 7
shows. There is gradual levelling off at relative optical densi-
ties . According to Fig. 7, this noise has a stan-
dard deviation of which, for a 16-bit data range, gives
the scanner an effective range of 11 bits. (The 12 bit-images
were automatically rescaled to fit a 16-bit data range.) The lev-
elling off is due to quantization and read-out noises. Whereas
some noise was produced by inhomogeneities in the ink distri-
bution, most of it was generated during the scanning process.

Fig. 4. (a) Chest radiography of a phantom torso (positive image) observed
with a micro-strip chamber using a 70-kV beam. (b) Relation between the noise
variance and the pixel intensity in the image. The line is a robust least squares
fit. The error bars correspond to � 2 rms values of the standard deviation.

Indeed, the test pattern film appears smoother visually than on
the scanned image.

Fig. 6(b) shows the radiography of a patient who had knee
surgery. Fig. 7 shows the corresponding noise variance to obey
(8) with a breakdown of the logarithmic behavior at relative op-
tical densities where the low X-ray fluxes are
not properly recorded by the film. The noise variance at low op-
tical density is about 15 times larger on the radiography than on
the test pattern (both images were scanned simultaneously and,
thus, have similar read-out and quantization noises). The level-
ling off on the radiography is not due to scanning noise only.
Most of the noise in the base and fog section of the H&D char-
acteristic curve arises from the development of some unexposed
grains [13]. The grain rough texture on small scales generates
the grainy appearance of radiographies (mostly visible in the
bone regions) and is an important source of noise in our anal-
ysis. The toe section of the same curve is found in the interval

where the film has a slow response
to light. There is no image saturation on the film. 71% of the
image pixels were used in the analysis.

The results presented here indicate that the scanner quantiza-
tion noise dominates over all other types of noise in the radiog-
raphy. The photon noise that was present during the X-ray expo-
sure and that was recorded in the grain distribution is negligible
when compared to the scanning noise. This is shown by the two
roughly identical distributions of data points along the straight
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Fig. 5. (a) Chest radiography of a patient with scoliosis (negative image)
obtained with the imaging-plate system. (b) Relation between the noise variance
and the relative optical density in the image (a). The bone and the background
regions have respectively low and high optical densities. The line is a robust
least squares fit. The error bars correspond to �2 rms values of the variance.

line on Fig. 7. There is no visible vertical offset that would have
revealed the presence of an another significant noise source be-
side scanning noise.

C. Limits of the Method

We discuss in this section about the main limitations of the
noise analysis method and the type of images where it can be
used successfully.

1) Statistical Homogeneity: The statistical homogeneity
of noise is the most fundamental assumption upon which
our method is based. It assumes that the noise properties are
the same across an image and the relationship (1) applies
everywhere. The hypothesis can be tested by imaging several
times the same object, by computing the mean and the variance
images, and by plotting a scatterplot of the data. A
coherent data distribution should be visible if a global relation-
ship (1) exists. We tested the hypothesis using a series of 101
CT scans of the phantom torso obtained on the Pickers 5000

Fig. 6. (a) Screen-film test pattern (used as a negative image). The arrow points
to the image band used for noise analysis. (b) Radiography of a patient who
had knee surgery (negative image). The white objects are screws anchoring the
ligaments between the joints.

and a series of 94 computed radiographies of the same object
obtained on the General Electrics Revolution XQ/i.

Fig. 8(a) and (b) shows the mean and the variance images of
the 101 CT scans. To get the larger possible intensity range, the
phantom torso was positioned as if the patient were sitting in
the scanner which explains the unconventional thoracic view.
The CT data was recorded in Hounsfield units [13]. The data
does not correspond to X-ray intensity or film optical density
but corresponds instead to a linear attenuation coefficient. No
strongly coherent data distribution appears in the scat-
terplot [Fig. 8(c)]. The analysis of series of synthetic CT im-
ages also produces very noisy nonlinear relationships between
pixel mean and variance that are image-dependent. Similar ob-
servations were made by Lu et al. [3] using 900 CT images of a
physical phantom. The very noisy shape of the scatterplot indi-
cates that the relationship (1) does not apply everywhere; such
images can not be analyzed using our method. Indeed, Fig. 8(b)
shows that the noise variance depends on the local intensity and
the radial distance from the image center. The centrosymmetric
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Fig. 7. Relations between the noise variance and the relative optical density
for the radiography and the test pattern images. The bone and the background
regions in the radiography have respectively low and high optical densities.
The line is a robust least squares fit and the error bars are not shown to avoid
cluttering the figure.

ring structure is generated by the filtering step in the image re-
construction algorithm.

We observed Gaussian rather than Poisson distributions of
local pixel intensities on real and synthetic CT scans series
thereby reproducing another observation of Lu et al. [3].
The image reconstruction algorithms involve weighted linear
combinations of intensities that transform the noise PDF from
Poisson to Gaussian according to the central limit theorem. The
image smoothing also introduces noise correlation that can not
be handled with our method.

These results were predicted by Lei and Sewchand [5] in their
statistical description of X-ray CT imaging, from the projec-
tion data to the reconstructed image. The noise PDF on such
an image has an asymptotic Gaussian distribution. Moreover,
neighboring pixels are statistically dependent when their spatial
separation is smaller than a threshold depending on the physical
imaging system and image reconstruction algorithm.

Fig. 8(d) and (e) presents the mean and the variance images
of the 94 computed radiographies. The scatterplot [Fig.
8(f)] shows a coherent data distribution where the noise vari-
ance increases linearly with the image intensity. This is the ex-
pected behavior for an image with Poisson noise. The two clus-
ters of points above the intensity of 800 correspond to the bright
background level which is slightly different below and above the
shoulders of the phantom torso.

The shape of the data distribution on Fig. 8(f) indicates that
the relationship (1) applies to every image pixel and the noise is
statistically homogenous. Our noise-analysis method, designed
for a single image, was applied to one of the 94 computed radio-
graphies and the results are shown as data points on Fig. 9. The
underlying curve is a linear fit computed using all 94 images
by first binning the intensity data on Fig. 8(f) and then by com-
puting the mean intensity and noise variance in each bin. There
is a good agreement between the results of the two methods even
though our noise-analysis method tends to slightly overestimate
the noise variance of the low intensity pixels. The middle third

of the intensity range is missing due to the pixels with the large
intensity gradients being masked out. They correspond to the
pixels along the torso boundary.

2) Image Smoothness: Better performances are achieved if
numerous intensity plateaus are present in an image but such
plateaus are not necessarily required to obtain good results. Syn-
thetic images show that the method works also well on smooth
image regions and any sharp discontinuity is eliminated from
the analysis.

When most of the high-intensity pixels in an image lie along
the boundaries between smooth portions of the image, the pixels
are masked out by the edge detection and thresholding pro-
cedure. Thus, the resulting data set does not contain
any high-intensity information. However, the relationship (1) is
often monotonous and can be extrapolated to larger values of in-
tensity when a theoretical model [e.g., (5), (8), (10), and (11)] is
available. Mammography is a good example. The parenchyme
tissue distribution creates a smooth overall signal in mammo-
grams upon which are superposed bright microcalcifications.
Masking those small-scale discontinuities narrows the intensity
range of the data but the relationship (1) can neverthe-
less be extracted from the much smoother surrounding signal
since the relationship is generally linear (5) or exponential (8).
This is not possible when an unknown nonlinear operation was
initially applied to the images. Extrapolation can only be used
if the noise model is known; the relevant parameters can, thus,
be estimated from the data.

3) Linear vs Nonlinear Noise Models: The precision of the
parameter estimation depends on the shape of the relationship
(1). A graph of the weighted mean squares error (19) often dis-
plays a well defined minimum [Fig. 3(a)] when the relationship
(1) is nonlinear. This is not always the case when (1) is linear;
the WMSE may simply increase monotically with the threshold
value. For example, a scatterplot of three measurements
may result in a smaller WMSE than 100 of them slightly scat-
tered along a line and covering a large intensity range. A more
robust definition of the WMSE is, thus, required. Similar prob-
lems may be encountered if the intensity range of the measure-
ments does not fully cover the non linear domain of the relation-
ship (1).

4) Image Textures and Correlated Noise: Strong image tex-
tures are eliminated from the analysis due to their large intensity
gradients. Smoother image textures can be a problem however
when their correlation lengths are smaller than the size of the
smoothing filter since they contribute to the local image vari-
ance. For such images with large signal-to-noise ratios, the tex-
ture-related variance is greater than the noise variance and no
accurate relationship (1) may be extracted from the data. The
image textures were not a problem in this work given the agree-
ment between the measurements and the theoretical
models.

V. CONCLUSION

We developed a method to study various types of image noise
for which a relationship of the form (1) exists. Using local mea-
surements of the mean intensity , the noise standard deviation

, and its associated error , we can determine the type of
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Fig. 8. (a) Mean and (b) variance images of a series of 101 CT scans of the phantom torso. (c) Scatterplot of the local mean and variance data. (d) Mean and (e)
variance images of a series of 94 computed radiographies of the same object. (f) Scatterplot of the local mean and variance data. The straight line is a robust least
squares fit through the data.

Fig. 9. Relation between the noise variance and the pixel intensity on the GE
Revolution XQ/i system. The straight line is a robust least squares fit computed
using the local mean and the variance of a series of 94 images of the phantom
torso. The data points were measured for a single image using the method
presented in this paper. The error bars correspond to �2 rms values of the
variance.

noise (Poisson, Rician, Gaussian) and compute the parameters
in the relationship (1). The method relies on ro-

bust statistical estimators and is less dependent on tuning param-
eters. It was applied successfully to six medical images acquired
on five different detecting systems. The noise variance results
for MR images and computed radiographies were in agreement
with the results obtained using different methods.

Ideally, no assumption about the shape of the relationship (1)
should be made. This can be easily done when a series of noisy
images of a same object are available [2], [3] or when a spe-
cial test pattern such as a grey level wedge can be used. The
problem is much more difficult when a single image is available.
The shape of the experimental relationship (1) often depends on
several tuning parameters that must be properly selected. It is
unwise to base our judgement on chi-by-eye least squares fits
including only short, well-behaved sections of a scatter
plot or on the basis of the fit parameters values.
Special care must also be taken before using an experimental re-
lationship (1) as a basis to further analysis, unless it is properly
determined.

The image noise must be uncorrelated and statistically ho-
mogenous in order for the method to be useful. It should, thus,
not be applied to CT images which require a different noise anal-
ysis approach.

The method performs best on raw or unprocessed (and un-
compressed) images. Such images are usually modified by an
operator to enhance their contrast and their edges, to smooth
out the noise or to deblur the images. Unfortunately, these oper-
ations also alter the very noise statistics we intend to study. The
raw images should be used as such, i.e., cosmetic-free, which
fortunately requires the least amount of work.

The method presented in this study has several possible ap-
plications and future work will focus on: 1) image restoration;
2) image calibration; 3) nonlinear image denoising; and 4) im-
proving the performances of two-dimensional/3-D segmenta-
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tion algorithms for the reconstruction of various 3-D tissue dis-
tributions [21].
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