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Image denoising by sparse 3D transform-domain
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Abstract�We propose a novel image denoising strategy based
on an enhanced sparse representation in transform domain. The
enhancement of the sparsity is achieved by grouping similar
2D image fragments (e.g. blocks) into 3D data arrays which
we call "groups". Collaborative �ltering is a special procedure
developed to deal with these 3D groups. We realize it using the
three successive steps: 3D transformation of a group, shrinkage
of the transform spectrum, and inverse 3D transformation. The
result is a 3D estimate that consists of the jointly �ltered grouped
image blocks. By attenuating the noise, the collaborative �ltering
reveals even the �nest details shared by grouped blocks and
at the same time it preserves the essential unique features of
each individual block. The �ltered blocks are then returned to
their original positions. Because these blocks are overlapping,
for each pixel we obtain many different estimates which need to
be combined. Aggregation is a particular averaging procedure
which is exploited to take advantage of this redundancy. A
signi�cant improvement is obtained by a specially developed
collaborative Wiener �ltering. An algorithm based on this novel
denoising strategy and its ef�cient implementation are presented
in full detail; an extension to color-image denoising is also
developed. The experimental results demonstrate that this com-
putationally scalable algorithm achieves state-of-the-art denoising
performance in terms of both peak signal-to-noise ratio and
subjective visual quality.

Index Terms�image denoising, sparsity, adaptive grouping,
block-matching, 3D transform shrinkage.

I. INTRODUCTION

PLENTY of denoising methods exist, originating from
various disciplines such as probability theory, statistics,

partial differential equations, linear and nonlinear �ltering,
spectral and multiresolution analysis. All these methods rely
on some explicit or implicit assumptions about the true (noise-
free) signal in order to separate it properly from the random
noise.
In particular, the transform-domain denoising methods typ-

ically assume that the true signal can be well approximated
by a linear combination of few basis elements. That is, the
signal is sparsely represented in the transform domain. Hence,
by preserving the few high-magnitude transform coef�cients
that convey mostly the true-signal energy and discarding the
rest which are mainly due to noise, the true signal can
be effectively estimated. The sparsity of the representation
depends on both the transform and the true-signal's properties.
The multiresolution transforms can achieve good sparsity

for spatially localized details, such as edges and singularities.
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Because such details are typically abundant in natural images
and convey a signi�cant portion of the information embedded
therein, these transforms have found a signi�cant application
for image denoising. Recently, a number of advanced denois-
ing methods based on multiresolution transforms have been
developed, relying on elaborate statistical dependencies be-
tween coef�cients of typically overcomplete (e.g. translation-
invariant and multiply-oriented) transforms. Examples of such
image denoising methods can be seen in [1], [2], [3], [4].
Not limited to the wavelet techniques, the overcomplete

representations have traditionally played an important role
in improving the restoration abilities of even the most basic
transform-based methods. This is manifested by the sliding-
window transform-domain image denoising methods [5], [6]
where the basic idea is to apply shrinkage in local (windowed)
transform domain. There, the overlap between successive win-
dows accounts for the overcompleteness, while the transform
itself is typically orthogonal, e.g. the 2D DCT.
However, the overcompleteness by itself is not enough

to compensate for the ineffective shrinkage if the adopted
transform cannot attain a sparse representation of certain
image details. For example, the 2D DCT is not effective
in representing sharp transitions and singularities, whereas
wavelets would typically perform poorly for textures and
smooth transitions. The great variety in natural images makes
impossible for any �xed 2D transform to achieve good sparsity
for all cases. Thus, the commonly used orthogonal transforms
can achieve sparse representations only for particular image
patterns.
The adaptive principal components of local image patches

was proposed by Muresan and Parks [7] as a tool to overcome
the mentioned drawbacks of standard orthogonal transforms.
This approach produces good results for highly-structured
image patterns. However, the computation of the correct PCA
basis is essentially deteriorated by the presence of noise.
With similar intentions, the K-SVD algorithm [8] by Elad
and Aharon utilizes highly overcomplete dictionaries obtained
via a preliminary training procedure. A shortcoming of these
techniques is that both the PCA and learned dictionaries
impose a very high computational burden.
Another approach [9] is to exploit a shape-adaptive trans-

form on neighborhoods whose shapes are adaptive to salient
image details and thus contain mostly homogeneous signal.
The shape-adaptive transform can achieve a very sparse rep-
resentation of the true signal in these adaptive neighborhoods.
Recently, an elaborate adaptive spatial estimation strategy,

the non-local means, was introduced [10]. This approach
is different from the transform domain ones. Its basic idea
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is to build a pointwise estimate of the image where each
pixel is obtained as a weighted average of pixels centered at
regions that are similar to the region centered at the estimated
pixel. The estimates are non-local as in principle the averages
can be calculated over all pixels of the image. A signi�cant
extension of this approach is the exemplar-based estimator
[11], which exploits pairwise hypothesis testing to de�ne
adaptive non-local estimation neighborhoods and achieves
results competitive to the ones produced by the best transform-
based techniques.
In this paper, we propose a novel image denoising strategy

based on an enhanced sparse representation in transform-
domain. The enhancement of the sparsity is achieved by group-
ing similar 2D fragments of the image into 3D data arrays
which we call �groups�. Collaborative �ltering is a special
procedure developed to deal with these 3D groups. It includes
three successive steps: 3D transformation of a group, shrinkage
of transform spectrum, and inverse 3D transformation. Thus,
we obtain the 3D estimate of the group which consists of an
array of jointly �ltered 2D fragments. Due to the similarity
between the grouped blocks, the transform can achieve a
highly sparse representation of the true signal so that the
noise can be well separated by shrinkage. In this way, the
collaborative �ltering reveals even the �nest details shared
by grouped fragments and at the same time it preserves the
essential unique features of each individual fragment.
An image denoising algorithm based on this novel strat-

egy is developed and described in detail. It generalizes
and improves our preliminary algorithm introduced in [12].
A very ef�cient algorithm implementation offering effective
complexity/performance trade-off is developed. Experimental
results demonstrate that it achieves outstanding denoising
performance in terms of both peak signal-to-noise ratio and
subjective visual quality, superior to the current state-of-the-
art. Extension to color-image denoising based on [13] is also
presented.
The paper is organized as follows. We introduce the group-

ing and collaborative �ltering concepts in Section II. The
developed image denoising algorithm is described in Section
III. An ef�cient and scalable realization of this algorithm
can be found in Section IV and its extension to color-image
denoising is given in Section V. Experimental results are pre-
sented in Section VI. Section VII gives an overall discussion
of the developed approach and Section VIII contains relevant
conclusions.

II. GROUPING AND COLLABORATIVE FILTERING

We denominate grouping the concept of collecting simi-
lar d-dimensional fragments of a given signal into a d+1-
dimensional data structure that we term �group�. In the case
of images for example, the signal fragments can be arbitrary
2D neighborhoods (e.g. image patches or blocks). There, a
group is a 3D array formed by stacking together similar image
neighborhoods. If the neighborhoods have the same shape and
size, the formed 3D array is a generalized cylinder. The impor-
tance of grouping is to enable the use of a higher-dimensional
�ltering of each group, which exploits the potential similarity

(correlation, af�nity, etc.) between grouped fragments in order
to estimate the true signal in each of them. This approach we
denominate collaborative �ltering.

A. Grouping
Grouping can be realized by various techniques; e.g., K-

means clustering [14], self-organizing maps [15], fuzzy clus-
tering [16], vector quantization [17], and others. There exist a
vast literature on the topic; we refer the reader to [18] for a
detailed and systematic overview of these approaches.
Similarity between signal fragments is typically computed

as the inverse of some distance measure. Hence, a smaller
distance implies higher similarity. Various distance measures
can be employed, such as the `p-norm of the difference be-
tween two signal fragments. Other examples are the weighted
Euclidean distance (p = 2) used in the non-local means
estimator [10], and also the normalized distance used in the
exemplar-based estimator [11]. When processing complex or
uncertain (e.g. noisy) data it might be necessary to �rst extract
some features from the signal and then to measure the distance
for these features only [18].

B. Grouping by matching
Grouping techniques such as vector quantization or K-

means clustering are essentially based on the idea of parti-
tioning. It means that they build groups or clusters (classes)
which are disjoint, in such a way that each fragment belongs
to one and only one group. Constructing disjoint groups
whose elements enjoy high mutual similarity typically requires
recursive procedures and can be computationally demanding
[18]. Furthermore, the partitioning causes unequal treatment
of the different fragments because the ones that are close to
the centroid of the group are better represented than those far
from it. This happens always, even in the special case where
all fragments of the signal are equidistantly distributed.
A much simpler and effective grouping of mutually sim-

ilar signal fragments can be realized by matching, where
in contrast to the above partitioning methods, the formed
groups are not necessarily disjoint. Matching is a method
for �nding signal fragments similar to a given reference one.
That is achieved by pairwise testing the similarity between
the reference fragment and candidate fragments located at
different spatial locations. The fragments whose distance (i.e.
dissimilarity) from the reference one is smaller than a given
threshold are considered mutually similar and are subsequently
grouped. The similarity plays the role of the membership
function for the considered group and the reference fragment
can be considered as some sort of �centroid� for the group.
Any signal fragment can be used as a reference one and thus
a group can be constructed for it.
We remark that for most distance measures, establishing a

bound on the distance between the reference fragment and all
of the matched ones means that the distance between any two
fragments in that group is also bounded. Roughly speaking,
this bound is the diameter of the group. While for an arbitrary
distance measure such a statement may not hold precisely,
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Fig. 1. Illustration of grouping blocks from noisy natural images corrupted by white Gaussian noise with standard deviation 15 and zero mean. Each fragment
shows a reference block marked with �R�and a few of the blocks matched to it.

for the case of metrics (e.g., `p-norms) it is just a direct
consequence of the triangle inequality.
Block-matching (BM) is a particular matching approach

that has been extensively used for motion estimation in video
compression (MPEG 1, 2, and 4, and H.26x). As a particular
way of grouping, it is used to �nd similar blocks, which
are then stacked together in a 3D array (i.e. a group). An
illustrative example of grouping by block-matching for images
is given in Figure 1, where we show a few reference blocks
and the ones matched as similar to them.

C. Collaborative �ltering
Given a group of n fragments, the collaborative �ltering of

the group produces n estimates, one for each of the grouped
fragments. In general, these estimates can be different. The
term �collaborative� is taken literally, in the sense that each
grouped fragment collaborates for the �ltering of all others,
and vice versa.
Let us consider an illustrative example of collaborative

�ltering for the estimation of the image in Figure 2 from
an observation (not shown) corrupted by additive zero-mean
independent noise. In particular, let us focus on the already
grouped blocks shown in the same �gure. These blocks
exhibit perfect mutual similarity, which makes the elementwise
averaging (i.e. averaging between pixels at the same relative
positions) a suitable estimator. Hence, for each group, this col-
laborative averaging produces estimates of all grouped blocks.
Because the corresponding noise-free blocks are assumed to
be identical, the estimates are unbiased. Therefore, the �nal
estimation error is due only to the residual variance which is
inversely proportional to the number of blocks in the group.
Regardless of how complex the signal fragments are, we can
obtain very good estimates provided that the groups contain a
large number of fragments.
However, perfectly identical blocks are unlikely in natural

images. If non-identical fragments are allowed within the
same group, the estimates obtained by elementwise averaging
become biased. The bias error can account for the largest share

Fig. 2. A simple example of grouping in an arti�cial image, where for each
reference block (with thick borders) there exist perfectly similar ones.

of the overall �nal error in the estimates, unless one uses an
estimator that allows for producing a different estimate of each
grouped fragment. Therefore, a more effective collaborative
�ltering strategy than averaging should be employed.

D. Collaborative �ltering by shrinkage in transform domain
An effective collaborative �ltering can be realized as shrink-

age in transform domain. Assuming d+1-dimensional groups
of similar signal fragments are already formed, the collabora-
tive shrinkage comprises of the following steps.
� Apply a d+1-dimensional linear transform to the group.
� Shrink (e.g. by soft- and hard-thresholding or Wiener
�ltering) the transform coef�cients to attenuate the noise.

� Invert the linear transform to produce estimates of all
grouped fragments.

This collaborative transform-domain shrinkage can be par-
ticularly effective when applied to groups of natural image
fragments, e.g. the ones in Figure 1. These groups are char-
acterized by both:
� intra-fragment correlation which appears between the
pixels of each grouped fragment � a peculiarity of natural
images;

� inter-fragment correlation which appears between the
corresponding pixels of different fragments � a result of
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the similarity between grouped fragments.
The 3D transform can take advantage of both kinds of cor-
relation and thus produce a sparse representation of the true
signal in the group. This sparsity makes the shrinkage very
effective in attenuating the noise while preserving the features
of the signal.
Let us give a simple illustration of the bene�t of this

collaborative shrinkage by considering the grouped image
blocks shown in Figure 1. Let us �rst consider the case
when no collaborative �ltering is performed but instead a 2D
transform is applied separately to each individual block in a
given group of n fragments. Since these grouped blocks are
very similar, for any of them we should get approximately
the same number, say �, of signi�cant transform coef�cients.
It means that the whole group of n fragments is represented
by n� coef�cients. In contrast, in the case of collaborative
�ltering, in addition to the 2D transform, we apply a 1D
transform across the grouped blocks (equivalent to applying
a separable 3D transform to the whole group). If this 1D
transform has a DC-basis element, then because of the high
similarity between the blocks, there are approximately1 only �
signi�cant coef�cients that represent the whole group instead
of n�. Hence, the grouping enhances the sparsity, which
increases with the number of grouped blocks.

As Figure 1 demonstrates, a strong similarity between small
image blocks at different spatial locations is indeed very
common in natural images. It is a characteristic of blocks
that belong to uniform areas, edges, textures, smooth intensity
gradients, etc. Therefore, the existence of mutually similar
blocks can be taken as a very realistic assumption when
modeling natural images, which strongly motivates the use
of grouping and collaborative �ltering for an image denoising
algorithm.

III. ALGORITHM

In the proposed algorithm, the grouping is realized by block-
matching and the collaborative �ltering is accomplished by
shrinkage in a 3D transform domain. The used image frag-
ments are square blocks of �xed size. The general procedure
carried out in the algorithm is as follows. The input noisy
image is processed by successively extracting reference blocks
from it and for each such block:
� �nd blocks that are similar to the reference one (block-
matching) and stack them together to form a 3D array
(group);

� perform collaborative �ltering of the group and return
the obtained 2D estimates of all grouped blocks to their
original locations.

After processing all reference blocks, the obtained block
estimates can overlap and thus there are multiple estimates for
each pixel. We aggregate these estimates to form an estimate
of the whole image.

1This is just a qualitative statement because the actual number of signi�cant
coef�cients depends on the normalization of the transforms and on the
thresholds used for the 2D and 3D cases.

This general procedure is implemented in two different
forms to compose a two-step algorithm. This algorithm is
illustrated in Figure 3 and proceeds as follows:
Step 1. Basic estimate.

a) Block-wise estimates. For each block in the noisy
image, do the following.
i) Grouping. Find blocks that are similar to the
currently processed one and then stack them
together in a 3D array (group).

ii) Collaborative hard-thresholding. Apply a 3D
transform to the formed group, attenuate the
noise by hard-thresholding of the transform
coef�cients, invert the 3D transform to produce
estimates of all grouped blocks, and return
the estimates of the blocks to their original
positions.

b) Aggregation. Compute the basic estimate of the
true-image by weighted averaging all of the ob-
tained block-wise estimates that are overlapping.

Step 2. Final estimate: using the basic estimate, perform im-
proved grouping and collaborative Wiener �ltering.
a) Block-wise estimates. For each block, do the fol-
lowing.
i) Grouping. Use BM within the basic estimate to
�nd the locations of the blocks similar to the
currently processed one. Using these locations,
form two groups (3D arrays), one from the
noisy image and one from the basic estimate.

ii) Collaborative Wiener �ltering. Apply a 3D
transform on both groups. Perform Wiener
�ltering on the noisy one using the energy
spectrum of the basic estimate as the true
(pilot) energy spectrum. Produce estimates of
all grouped blocks by applying the inverse 3D
transform on the �ltered coef�cients and return
the estimates of the blocks to their original
positions.

b) Aggregation. Compute a �nal estimate of the true-
image by aggregating all of the obtained local
estimates using a weighted average.

There are two signi�cant motivations for the second step in
the above algorithm:
� using the basic estimate instead of the noisy image allows
to improve the grouping by block-matching;

� using the basic estimate as the pilot signal for the empir-
ical Wiener �ltering is much more effective and accurate
than the simple hard-thresholding of the 3D spectrum of
the noisy data.

Observation model and notation
We consider a noisy image z : X ! R of the form

z (x) = y (x) + � (x) , x 2 X ,

where x is a 2D spatial coordinate that belongs to the image
domain X � Z2, y is the true image, and � is i.i.d. zero-
mean Gaussian noise with variance �2, � (�) � N

�
0; �2

�
.
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Fig. 3. Flowchart of the proposed image denoising algorithm. The operations surrounded by dashed lines are repeated for each processed block (marked
with �R�).

With Zx we denote a block of �xed size N1 � N1 extracted
from z, where x is the coordinate of the top-left corner of
the block. Alternatively, we say that Zx is located at x in
z. A group of collected 2D blocks is denoted by a bold-face
capital letter with a subscript that is the set of its grouped
blocks' coordinates, e.g., ZS is a 3D array composed of
blocks Zx located at x 2 S � X . In order to distinguish
between parameters used in the �rst and in the second step,
we respectively use the superscripts �ht� (hard-thresholding)
and �wie� (Wiener �ltering). For example, N ht

1 is the block
size used in Step 1 and Nwie

1 is the block size used in Step 2.
Analogously, we denote the basic estimate with bybasic and the
�nal estimate with by�nal.
The following subsections present in detail the steps of the

proposed denoising method.

A. Steps 1a and 2a: Block-wise estimates
In this step, we process reference image blocks in a sliding-

window manner. Here, �process� stands for performing group-
ing and estimating the true signal of all grouped blocks by:
� collaborative hard-thresholding in Step 1(a)ii,
� collaborative Wiener �ltering in Step 2(a)ii.

The resultant estimates are denominated �block-wise esti-
mates.�
Because Steps 1a and 2a bear the same structure, we re-

spectively present them in the following two sub-subsections.
Therein, we �x the currently processed image block as ZxR
(located at the current coordinate xR 2 X) and denominate it
�reference block.�
1) Steps 1(a)i and 1(a)ii: Grouping and collaborative hard-

thresholding: We realize grouping by block-matching within
the noisy image z, as discussed in Section II-B. That is,
only blocks whose distance (dissimilarity) with respect to the
reference one is smaller than a �xed threshold are considered
similar and grouped. In particular, we use the `2-distance as
a measure of dissimilarity.
Ideally, if the true-image y would be available, the block-

distance could be calculated as

dideal (ZxR ; Zx) =
kYxR � Yxk

2
2�

N ht
1

�2 , (1)

where k�k2 denotes the `2-norm and the blocks YxR and Yx
are respectively located at xR and x 2 X in y. However, only

the noisy image z is available and the distance can only be
calculated from the noisy blocks ZxR and Zx as

dnoisy (ZxR ; Zx) =
kZxR � Zxk

2
2�

N ht
1

�2 : (2)

If the blocks ZxR and Zx do not overlap, this distance is a
non-central chi-squared random variable with mean

E
�
dnoisy (ZxR ; Zx)

	
= dideal (ZxR ; Zx) + 2�

2

and variance

var
�
dnoisy (ZxR ; Zx)

	
=

8�4�
N ht
1

�2 + 8�2dideal (ZxR ; Zx)�
N ht
1

�2 : (3)

The variance grows asymptotically with O
�
�4
�
. Thus, for

relatively large � or small N ht
1 , the probability densities of the

different dnoisy (ZxR ; Zx) are likely to overlap heavily and this
results in erroneous grouping2. That is, blocks with greater
ideal distances than the threshold are matched as similar,
whereas blocks with smaller such distances are left out.
To avoid the above problem, we propose to measure the

block-distance using a coarse pre�ltering. This pre�ltering is
realized by applying a normalized 2D linear transform on both
blocks and then hard-thresholding the obtained coef�cients,
which results in

d (ZxR ; Zx) =



�0 �T ht2D (ZxR)���0 �T ht2D (Zx)�

22�
N ht
1

�2 , (4)

where �0 is the hard-thresholding operator with threshold
�2D� and T ht2D denotes the normalized 2D linear transform3.
Using the d-distance (4), the result of BM is a set that

contains the coordinates of the blocks that are similar to ZxR ,

ShtxR =
�
x 2 X : d (ZxR ; Zx) � � htmatch

	
, (5)

where the �xed � htmatch is the maximum d-distance for which
two blocks are considered similar. The parameter � htmatch is
selected from deterministic speculations about the acceptable
value of the ideal difference, mainly ignoring the noisy com-
ponents of the signal. Obviously d (ZxR ; ZxR) = 0, which

2The effect of this is the sharp drop of the output-PSNR observed for two
of the graphs in Figure 9 at about � = 40.
3For simplicity, we do not invert the transform T ht2D and compute the

distance directly from the spectral coef�cients. When T ht2D is orthonormal,
the distance coincides with the `2-distance calculated between the denoised
block-estimates in space domain.
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implies that
��ShtxR �� � 1, where

��ShtxR �� denotes the cardinality
of ShtxR . After obtaining S

ht
xR , a group is formed by stacking

the matched noisy blocks Zx2ShtxR to form a 3D array of size
N ht
1 �N ht

1 �
��ShtxR ��, which we denote ZShtxR . The matched blocks

can in general overlap. We do not restrict the ordering, which
is discussed in Section IV-B.
The collaborative �ltering of ZShtxR is realized by hard-

thresholding in 3D transform domain. The adopted normalized
3D linear transform, denoted T ht3D, is expected to take advan-
tage of the two types of correlation, discussed in Section II-D,
and attain good sparsity for the true signal group YShtxR

. This
allows for effective noise attenuation by hard-thresholding,
followed by inverse transform that yields a 3D array of block-
wise estimatesbYht

ShtxR
= T ht

�1

3D

�
�
�
T ht3D

�
ZShtxR

���
, (6)

where � is a hard-threshold operator with threshold �3D�. The
array bYht

ShtxR
comprises of

��ShtxR �� stacked block-wise estimatesbY ht,xRx , 8x 2 ShtxR . In bY ht,xRx , the subscript x denotes the
location of this block-estimate and the superscript xR indicates
the reference block.
2) Steps 2(a)i and 2(a)ii: Grouping and collaborative

Wiener �ltering: Given the basic estimate bybasic of the true
image obtained in Step 1b, the denoising can be improved by
performing grouping within this basic estimate and collabora-
tive empirical Wiener �ltering.
Because the noise in bybasic is assumed to be signi�cantly

attenuated, we replace the thresholding-based d-distance (4)
with the normalized squared `2-distance computed within the
basic estimate. This is a close approximation of the ideal
distance (1). Hence, the coordinates of the matched blocks
are the elements of the set

SwiexR =

8><>:x 2 X :




bY basicxR � bY basicx




2
2�

Nwie
1

�2 < �wiematch

9>=>; . (7)

We use the set SwiexR in order to form two groups, one from the
basic estimate and one from the noisy observation:
� bYbasic

SwiexR
by stacking together the basic estimate blocksbY basicx2SwiexR
;

� ZSwiexR
by stacking together the noisy blocks Zx2SwiexR .

We de�ne the empirical Wiener shrinkage coef�cients from
the energy of the 3D transform coef�cients of the basic
estimate group as

WSwiexR
=

���T wie3D

�bYbasic
SwiexR

����2���T wie3D

�bYbasic
SwiexR

����2 + �2 . (8)

Then the collaborative Wiener �ltering of ZSwiexR is realized
as the element-by-element multiplication of the 3D transform
coef�cients T wie3D

�
ZSwiexR

�
of the noisy data with the Wiener

shrinkage coef�cientsWSwiexR
. Subsequently, the inverse trans-

form T wie�13D produces the group of estimatesbYwie
SwiexR

= T wie
�1

3D

�
WSwiexR

T wie3D

�
ZSwiexR

��
. (9)

This group comprises of the block-wise estimates bY wie;xRx

located at the matched locations x 2 SwiexR .

B. Steps 1b and 2b: Global estimate by aggregation
Each collection of block-wise estimates bY ht,xR

x2ShtxR
andbY wie,xR

x2SwiexR
, 8xR 2 X , obtained respectively in Steps 1a and 2a,

is an overcomplete representation of the true-image because
in general the block-wise estimates can overlap. In addition,
more than one block-estimate can be located at exactly the
same coordinate, e.g. bY ht,xaxb

and bY ht,xbxb
are both located at xb

but obtained while processing the reference blocks at xa and
xb, respectively. One can expect substantially overcomplete
representation of the signal in regions where there are plenty
of overlapping block-wise estimates, i.e. where a block is
matched (similar) to many others. Hence, the redundancy of
the method depends on the grouping and therefore also on the
particular image.
To compute the basic and the �nal estimates of the true-

image in Steps 1b and 2b, respectively, we aggregate the cor-
responding block-wise estimates bY ht,xR

x2ShtxR
and bY wie,xR

x2SwiexR
, 8xR 2

X . This aggregation is performed by a weighted averaging
at those pixel positions where there are overlapping block-
wise estimates. The selection of weights is discussed in the
following sub-section.
1) Aggregation weights: In general, the block-wise esti-

mates are statistically correlated, biased, and have different
variance for each pixel. However, it is quite demanding to take
into consideration all these effects. Similarly to [6] and [9],
we found that a satisfactory choice for aggregation weights
would be ones that are inversely proportional to the total sam-
ple variance of the corresponding block-wise estimates. That
is, noisier block-wise estimates should be awarded smaller
weights. If the additive noise in the groups ZShtxR and ZSwiexR
is independent, the total sample variance in the corresponding
groups of estimates (6) and (9) is respectively equal to �2NxR

har

and �2



WSwiexR




2
2
, where NxR

har is the number of retained (non-
zero) coef�cients after hard-thresholding and WSwiexR

are the
Wiener �lter coef�cients (8). Based on this, in Step 1b for
each xR 2 X , we assign the weight

whtxR =

(
1

�2N
xR
har
; if NxR

har � 1
1; otherwise

(10)

for the group of estimates bY ht,xR
x2ShtxR

. Similarly, in Step 2b for
each xR 2 X , we assign the weight

wwiexR = �
�2



WSwiexR




�2
2
, (11)

for the group of estimates bY wie,xR
x2SwiexR

.
We remark that independence of the noise in a group is

only achieved when the noisy blocks that build this group
do not overlap each other. Therefore, on the one hand, the
cost of ensuring independence would constitute a severe
restriction for the BM, i.e. allowing matching only among non-
overlapping blocks. On the other hand, if the possible overlaps
are considered, the computation of the individual variance of
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each transform coef�cient in T ht3D
�
ZShtxR

�
or T wie3D

�
ZSwiexR

�
be-

comes a prohibitive complication that requires considering the
covariance terms in the corresponding transform coef�cients.
In our algorithm we use overlapping blocks but do not consider
the covariances. Hence, the proposed weights (10) and (11) are
only loosely inversely proportional to the corresponding total
sample variances.
2) Aggregation by weighted average: The global basic

estimate bybasic is computed by a weighted average of the block-
wise estimates bY ht,xR

x2ShtxR
obtained in Step 1a, using the weights

whtxR de�ned in (10), i.e.

bybasic (x) =
P

xR2X

P
xm2ShtxR

whtxR
bY ht,xRxm (x)P

xR2X

P
xm2ShtxR

whtxR�xm (x)
;8x 2 X; (12)

where �xm : X ! f0; 1g is the characteristic function of
the square support of a block located at xm 2 X , and the
block-wise estimates bY ht,xRxm are zero-padded outside of their
support.
The global �nal estimate by�nal is computed by (12), wherebybasic, bY ht,xRxm , ShtxR , and w

ht
xR are replaced respectively by by�nal,bY wie,xRxm , SwiexR , and w

wie
xR .

IV. FAST AND EFFICIENT REALIZATION
A straightforward implementation of the method presented

in the previous section is highly computationally demanding.
In order to realize a practical and ef�cient algorithm, we
impose constraints and exploit certain expedients which we
present in the following list.
Reduce the number of processed blocks.
� Rather than sliding by one pixel to every next reference
block, use a step of Nstep 2 N pixels in both horizontal
and vertical directions. Hence, the number of reference
blocks is decreased from approximately jXj to jXj

N2
step
.

Reduce the complexity of grouping.
� Restrict the maximum size of a group by setting an upper
bound N2 2 N on the number of grouped blocks; i.e.
ensuring jSxR2X j � N2.

� Search for candidate matching blocks in a local neigh-
borhood of restricted size NS � NS centered about the
currently processed coordinate xR 2 X .

� To further speed-up the BM, we use predictive search,
i.e. the search neighborhoods are non-rectangular and
depend on the previously matched blocks. We form such
a neighborhood as the union of NPR � NPR (where
NPR � NS) ones centered at the previous matched
coordinates correspondingly shifted by Nstep in the direc-
tion of processing the image, e.g. in horizontal direction
for raster scan. For every NFS-th processed block, we
nevertheless perform an exhaustive-search BM in the
larger NS � NS neighborhood. In particular, NFS = 1
implies that only exhaustive-search in NS �NS is used.

Reduce the complexity of applying transforms.
� Restrict the transforms T ht3D and T wie3D to the class of
separable transforms and use respectively T ht2D and T wie2D

across the matched blocks and a 1D transform, T1D, along
the third dimension of a group, along which the blocks
are stacked.

� The spectra T ht2D (Zx), T wie2D (Zx), and T wie2D

�bY basicx

�
are

pre-computed for each block in a neighborhood NS�NS
around the currently processed coordinate. Later, these
are reused for subsequent reference blocks whose NS �
NS neighborhoods overlap the current one. Thus, these
transforms are computed exactly once for each processed
coordinate; e.g. they are not re-computed each time in
(4). In addition, in (6), (8), and (9), we compute the
forward T ht3D and T wie3D transforms simply by applying T1D
across pre-computed T ht2D- and T wie2D -transformed blocks,
respectively.

Realize ef�ciently the aggregation.
� First, in Steps 1(a)ii and 2(a)ii, the obtained block-wise
estimates are weighted and accumulating in a buffer (with
the size of the image). At the same time, the correspond-
ing weights are accumulated at the same locations in
another buffer. Then, in Steps 1b and 2b, the aggregation
(12) is �nally realized by a simple element-wise division
between the two buffers.

Reduce the border effects.
� Use a N1�N1 Kaiser window (with parameter �) as part
of the weights in (12) in order to reduce border effects
which can appear when certain 2D transforms (e.g. the
2D DCT, the 2D DFT, or periodized wavelets) are used.

A. Complexity

The time complexity of the algorithm is O (jXj) and
thus depends linearly on the size of the input image, as all
parameters are �xed.
Given the restrictions introduced in the previous subsection,

without exploiting predictive-search BM, the number of oper-
ations per pixel is approximately

3CT2D +
2
�
N2
1 +N2

�
N2
S

N2
step

+
3
�
N2CT2D +N2

1 CT1D
�

N2
step

;

where for simplicity we omit the superscripts �ht� and �wie�
from the parameters/operators, and where:
� the �rst addend is due to pre-computing T2D for each
sliding block (within a NS �NS neighborhood),

� the second is due to grouping by exhaustive-search BM
in a NS �NS neighborhood, and

� the third addend is due to the transforms T3D that is a
separable composition of T2D and T1D.

Above, CT denotes the number of arithmetic operations re-
quired for a transform T ; it depends on properties such as
availability of fast algorithms, separability, etc. For example,
the DFT can be computed ef�ciently by a fast Fourier trans-
form algorithm and a dyadic wavelet decomposition can be
realized ef�ciently using iterated �lterbanks.
By exploiting fast separable transforms and the predictive-

search BM, we can signi�cantly reduce the complexity of the
algorithm.
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TABLE I
PARAMETER SETS FOR THE FAST AND NORMAL PROFILES.

Fast Normal
Pro�le Pro�le

� � 40 � > 40

Approx. exec. time for a
256�256 grayscale image 0.7 sec 4.1 sec 5.8 sec
on 1.5 GHz Celeron M

T ht2D 2D-Bior1.5 2D-Bior1.5 2D-DCT
Nht
1 8 8 12

Nht
2 16 16 16

Nht
step 6 3 4

Parameters Nht
S 25 39 39

for Step 1 Nht
FS 6 1 1

(ht) Nht
PR 3 - -

�ht 2.0 2.0 2.0
�2D 0 0 2.0
�3D 2.7 2.7 2.8
� htmatch 2500 2500 5000
T wie2D 2D-DCT 2D-DCT 2D-DCT
Nwie
1 8 8 11

Nwie
2 16 32 32

Parameters Nwie
step 5 3 6

for Step 2 Nwie
S 25 39 39

(wie) Nwie
FS 5 1 1

Nwie
PR 2 - -

�wiematch 400 400 3500
�wie 2.0 2.0 2.0

Common T1D 1D-Haar 1D-Haar 1D-Haar

B. Parameter selection
We studied the proposed algorithm using various transforms

and parameters. As a results, we propose sets of parameters
that are categorized in two pro�les, �Normal� and �Fast�,
presented in Table I. The main characteristics of these pro�les
are as follows.
� Normal Pro�le. This pro�le offers a reasonable compro-
mise between computational complexity and denoising
performance. It is divided in two cases depending on the
level of noise:
� � 40 the noise is not too severe to affect the correctness

of the grouping, hence the thresholding in the d-
distance (4) is disabled by setting �2D = 0 and
relatively small block sizes are used, N ht

1 ; N
wie
1 = 8.

� > 40 corresponds to high level of noise, hence �2D = 2
is used to improve the correctness of the grouping
and larger block sizes are used, N ht

1 = 12 and
Nwie
1 = 11.

� Fast Pro�le. Provides lower computational complexity at
the cost of decreased denoising performance. It exploits
the proposed fast predictive-search BM (unlike the Nor-
mal Pro�le, which uses only the exhaustive-search BM).

The bene�t of using thresholding (�2D = 2) for the d-distance
and larger block sizes when � > 40 is illustrated in Figure 9
and discussed in Section VI.
To show how the denoising performance depends on the

choice of the transforms T ht2D, T wie2D , and T1D, we present some
experimental results in Table II. As already stated, the 3D
transforms T ht3D and T wie3D used in Steps 1 and 2 of our method
are formed by a separable composition of T ht2D and T wie2D ,

TABLE II
DEPENDENCY OF THE OUTPUT PSNR (DB) ON THE USED TRANSFORMS.
THE COLUMNS CORRESPONDING TO T ht2D CONTAIN PSNR RESULTS OF

THE BASIC ESTIMATE bybasic AND ALL OTHER COLUMNS CONTAIN RESULTS
OF THE FINAL ESTIMATE by�nal . THE NOISE IN THE OBSERVATIONS HAD

� = 25.

Transform Boats Lena
T ht2D T wie2D T1D T ht2D T wie2D T1D

Haar 29.31 29.84 29.91 31.24 31.93 32.08
Db2 29.22 29.83 29.90 31.19 31.97 32.06
Db4 29.34 29.88 29.89 31.31 32.01 32.06
Db6 29.30 29.86 29.89 31.28 31.98 32.06
Bior1.3 29.42 29.87 29.90 31.35 31.96 32.06
Bior1.5 29.43 29.88 29.90 31.37 31.97 32.06
WHT 29.22 29.84 29.88 31.24 32.00 32.07
DCT 29.35 29.91 29.88 31.42 32.08 32.07
DST 29.33 29.91 29.79 31.36 31.97 31.92
DC+rand 29.07 29.75 29.88 31.06 31.88 32.06
DC-only - - 28.03 - - 30.65

respectively, with T1D. Furthermore, both T ht2D and T wie2D are
separable compositions of 1D transforms such as the ones
speci�ed in the table. The following normalized transforms
were used in our experiment:
� DST, DCT: the discrete sine and cosine transforms,
� WHT: the Walsh-Hadamard transform, and
� a few full dyadic wavelet decompositions using:

� Dbp: the Daubechies wavelet with p vanishing mo-
ments, where p = 1; 2; 4; 6; when p = 1, it coincides
with the Haar wavelet,

� Bior1:Nr: a bi-orthogonal spline wavelet, where the
vanishing moments of the decomposing and the
reconstructing wavelet functions are 1 and Nr, re-
spectively,

� DC+rand: an orthonormal transform that has a DC basis
element and the rest of its basis elements have random
nature, i.e. obtained by orthonormalization of realizations
of a white Gaussian process.

In addition, only for T1D, we experimented with elementwise
averaging, i.e. preserving only the DC in the third dimension
(and discarding all other transform coef�cients), hence its
name �DC-only�. For this case, all grouped blocks are esti-
mated by elementwise averaging, exactly as in the illustrative
example of Section II-C.
In Table II, we present results corresponding to various T ht2D,

T wie2D , and T1D. There, the Normal Pro�le parameters were
used in all cases, where only the transform corresponding
to a particular table column was changed. Boldface result
correspond to the best performing transform. We observe that
the choice of T ht2D and T wie2D does not have a signi�cant impact
on the denoising performance. Even the �DC+rand� transform,
whose basis elements except for the DC are random, shows
only a modest PSNR decrease in the range 0.1 � 0.4 dB. This
can be explained by the fact that the collaborative �ltering
depends mainly on T1D for exploiting the inter-fragment cor-
relation among grouped blocks. The estimation ability does
not signi�cantly depend on the energy compaction capabilities
of T ht2D and T wie2D . In this sense, the inter-fragment correlation
appears as a much more important feature than the intra-
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fragment correlation.

Let us now focus on the results corresponding to the
various T1D transforms in Table II. One can distinguish the
moderately worse performance of the DST as compared with
not only the other standard transforms but also with the
�DC+rand�. We argue that the reason for this is the lack of
DC basis element in the DST � in contrast with all other
transforms, which have this element. Why is the DC of T1D
important? Roughly speaking, this is so because the DC basis
element captures the similarity between elements along the 3rd
dimension of a group. Since the grouped blocks are similar, so
are their corresponding 2D spectra and the DC terms re�ect
this similarity.

However, as it has been discussed in Section II, the existence
of perfectly matching blocks is unlikely. In order to avoid
trivial groups containing only the reference block, a strictly
positive threshold is used in Equations (5) and (7). Addition-
ally, as follows from Equation (3), the accuracy of the block-
distance is affected by the noise. In practice this means that
within a group there can be blocks for which the underlying
true signal Yx is much farther from YxR than � htmatch. Therefore,
the sole DC element is not able to capture the potential
differences between grouped blocks. This is con�rmed by the
poor results of the �DC-only� for T1D. The availability of
additional basis elements in any of the other transforms, even
the random ones in �DC+rand�, results in big performance
improvement over the �DC-only�.

We experimentally found that the ordering of blocks in the
group does not have a signi�cant effect on the estimation
ability of the algorithm. This is con�rmed by the results of
the �DC+rand� for T1D which achieves the same results as any
of the other (structured, non-random) orthogonal transforms.
For this transform, the ordering is irrelevant for the DC and
is relevant only for the other basis elements which however
are generated randomly. Hence, we may conclude that the
ordering of the blocks in the groups does not in�uence the
�nal results. Given this and because in our implementation
the BM already produces a collection of blocks ordered by
their block-distance, we resort to using exactly this ordering.
Naturally, �rst in a group is always the reference block as the
distance to itself is trivially equal to zero.

Note that even though a group is constructed based on the
similarity with respect to a given reference block, this does
not imply that this block is better represented by the group
than any of the others. For example, it can happen that all
the matched blocks (except the reference block) are quite
dissimilar from the reference one but tightly similar to each
other. Such a group could be termed as �unbalanced.�

We choose the Haar full dyadic decomposition for T1D
because it can be ef�ciently implemented with iterated �l-
terbanks using 2-tap analysis/synthesis �lters. To apply such
an orthonormal full dyadic decomposition, the transform size
must be a power of 2. We enforced this requirement by
restricting the number of elements of both Shtx (5) and Swiex
(7) to be the largest power of 2 smaller than or equal to the
original number of elements in Shtx and Swiex , respectively.

V. EXTENSION TO COLOR-IMAGE DENOISING

We consider a natural RGB image with additive i.i.d. zero-
mean Gaussian noise in each of its channels. Let a luminance-
chrominance transformation be applied on such a noisy image,
where the luminance channel is denoted with Y and the
chrominance channels are denoted with U and V. Prominent
examples of such transformations are the YCbCr and the
opponent color transformations, whose transform matrices are
respectively

AYCbCr=

24 0:30 0:59 0:11
�0:17�0:33 0:50
0:50�0:42�0:08

35, Aopp=
264

1
3

1
3

1
3

1p
6

0 �1p
6

1
3
p
2
�
p
2

3
1

3
p
2

375. (13)
Due to properties of the underlying natural color image, such
as high correlation between its R, G, and B channels, the
following observations can be made:
� Y has higher SNR than U and V (decorrelation of the R,
G, and B channels);

� Y contains most of the valuable information (edges,
shades, objects, texture patterns, etc.);

� U and V contain mostly low-frequency information (very
often these channels come from undersampled data);

� iso-luminant regions with variation only in U and V are
unlikely.

A straightforward extension of the developed grayscale
denoising method for color-image denoising would be to apply
it separately on each of the Y, U, and V channels. This
naive approach however would suffer from the lower SNR
in the chrominances since the grouping is sensitive to the
level of noise. Because a proper grouping is essential for
the effectiveness of our method, we propose to perform the
grouping only once for the luminance Y and reuse exactly the
same grouping when applying collaborative �ltering on the
chrominances U and V. That is, the sets of grouped blocks'
coordinates from Eq. (5) and (7) are found for Y, respectively
in Steps 1(a)i and 2(a)i, and reused for both U and V; using
these sets, the collaborative �ltering (Steps 1(a)ii and 2(a)ii)
and the aggregation (Steps 1b and 2b) are performed separately
on each of the three channels. The grouping constraint on
the chrominances is based on the assumption that if the
luminances of two blocks are mutually similar, then their
chrominances are also mutually similar. Furthermore, given
that grouping by block-matching takes approximately half of
the execution time of the BM3D, the grouping constraint
enables a computational reduction of approximately one third
as compared to applying the grayscale BM3D separately on
the three channels.

VI. RESULTS

In this section we present and discuss the experimental
results obtained by the developed algorithms; the grayscale
version is denominated Block-Matching and 3D �ltering
(BM3D) and the color version is accordingly abbreviated
C-BM3D. For all experiments we used the Matlab codes
available at http://www.cs.tut.fi/~foi/GCF-BM3D. At
this website we also provide further results and the original and
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denoised test images used in our experiments. Unless speci�ed
otherwise, we use the parameters of the �Normal Pro�le� from
Table I for both the BM3D and the C-BM3D.

A. Grayscale-image denoising
The output PSNR results of the BM3D algorithm for a

standard set of grayscale images are given in Table III. The
PSNR of an estimate by of a true image y, is computed
according to the standard formula

PSNR (by) = 10 log10
 

2552

jXj�1
P

x2X (y (x)� by (x))2
!
.

In Figure 4, we compare the output PSNR results of the
proposed BM3D with those of the state-of-the-art techniques
BLS-GSM [3], FSP+TUP BLS-GSM [4], exemplar-based [11],
K-SVD [8], Pointwise SA-DCT [9]; for the K-SVD method
[8] we report its best results, which are those obtained with
an adaptive dictionary trained on the noisy image. It can be
seen from the �gure that the proposed BM3D demonstrates the
best performance and uniformly outperforms all of the other
techniques. In particular, a signi�cant improvement is observed
for House and Barbara since these images contain structured
objects (edges in House and textures in Barbara) which enable
a very effective grouping and collaborative �ltering.
In Figure 5, we show a noisy (� = 25) House image

and the corresponding BM3D estimate. In this test image,
similarity among neighboring blocks is easy to perceive in
the uniform regions and along the regular-shaped structures,
some of which are illustrated in Figure 1. Hence, such details
are well-preserved in the estimate.
The denoising performance of the BM3D algorithm is

further illustrated in Figure 6, where we show fragments of
a few noisy (� = 25) test images and fragments of the
corresponding denoised ones. The denoised images show good
preservation of:
� uniform areas and smooth intensity transitions (cheeks of
Lena, and the backgrounds of the other images),

� textures and repeating patterns (the scarf in Barbara), and
� sharp edges and singularities (borders of objects in Cam-
eraman and Boats).

A denoising example for an extreme level of noise such as
� = 100 is shown in Figure 7. Given that the original image
is almost completely buried into noise, the produced estimate
shows reasonable detail preservation. In particular, repeated
patterns such as the stripes on the clothes are faithfully
reconstructed.
Regarding the subjective visual quality, we �nd that various

image details are well preserved and at the same time very
few artifacts are introduced; one can observe this in Figures
6, 7, and 8. The state-of-the-art subjective visual quality of
our algorithm is con�rmed by the result of the psycho-visual
experiment carried out by Vansteenkiste et al. [19]. There,
35 evaluators classi�ed the preliminary version [12] of the
BM3D algorithm as the best among 8 evaluated state-of-the-
art techniques. The criteria in this evaluation were perceived
noisiness, perceived blurriness, and overall visual quality.
Furthermore, we consider the subjective visual quality of the

current BM3D algorithm to be signi�cantly better (in terms
of detail preservation) than that of its preliminary version
evaluated in [19]. In Figure 8 we show images denoised by
the current and by the preliminary versions of the BM3D
algorithm. A close inspection reveals that the images denoised
by the current BM3D have both fewer ringing artifacts and
better preservation of details.
We show the PSNR performance of the Fast and Normal

BM3D Pro�les in Figure 9. The two cases of the Normal
Pro�le from Table I are considered separately for � 2 [10; 75]
in order to show the sharp PSNR drop of the �� � 40� graph
at about � = 40 due to erroneous grouping. On the other
hand, for the �� > 40� graph, where the thresholding-based
d-distance (4) is used with a relatively large block-sizeN1, one
can observe that there is no sharp PSNR drop. It is noteworthy
that for up to moderate levels of noise, such as � < 35, the
PSNR difference between the Fast and the Normal Pro�les
is in the range 0.05 � 0.2 dB. This can be an acceptable
price for the 6-fold reduction of the execution time shown in
Table I; more precisely, the approximate execution time (for
denoising a 256�256 image calculated on a 1.5 GHz Celeron
M) decreases from 4.1 seconds for the Normal Pro�le to 0.7
seconds for the Fast Pro�le. The BM3D algorithm allows
for further complexity/performance trade-off by varying Nstep.
As a rough comparison, the execution times (for denoising a
256�256 image on a 1.5GHz Celeron M) of the other methods
considered in Figure 4 were: 22.1 seconds for the BLS-GSM,
6.2 seconds for the SA-DCT �lter, 9 � 30 minutes (depending
on �) for training the adaptive K-SVD on an input noisy image
and 25 � 120 seconds to perform the �ltering using the found
dictionary. The execution time of the exemplar-based method
was reported in [11] to be about 1 minute when measured on a
2 GHz Pentium IV. The execution time of the FSP+TUP BLS-
GSM was not reported; however, it is a two-step BLS-GSM
extension that should not be faster than the BLS-GSM.

B. Color-image denoising
We performed experiments with the C-BM3D using the op-

ponent color space transformation (13) and the Normal Pro�le
algorithm parameters. In all experiments, we considered noisy
images with i.i.d. zero-mean Gaussian noise of variance �2
in each of their R, G, and B channels. The PSNR for RGB
images is computed using the standard formula

10 log10

0B@ 2552

(3 jXj)�1
P

c=R;G;B

P
x2X

(yc (x)� byc (x))2
1CA ,

where the subscript c 2 fR;G;Bg denotes the color channel.
Table IV presents the output-PSNR results of the proposed
C-BM3D algorithm for a few standard test images. A com-
parison with the two recent state-of-the-art methods [9], [20]
is given in Table V. One can see that the proposed algorithm
outperforms them for the three test images considered there.
The visual quality can be inspected from Figure 10 where a
noisy (with � = 50) color Lena and the C-BM3D estimate are
shown. One can observe the faithfully preserved details on the
hat, the sharp edges, and the smooth regions. The approximate
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TABLE III
GRAYSCALE-IMAGE DENOISING: OUTPUT PSNR (DB) OF THE PROPOSED BM3D ALGORITHM.

� / PSNR C.man House Peppers Montage Lena Barbara Boats F.print Man Couple Hill Lake
2562 2562 2562 2562 5122 5122 5122 5122 5122 5122 5122 5122

2 / 42.11 43.96 44.63 43.48 46.47 43.59 43.66 43.18 42.90 43.61 43.17 43.04 43.02
5 / 34.16 38.29 39.83 38.12 41.14 38.72 38.31 37.28 36.51 37.82 37.52 37.14 36.58
10 / 28.14 34.18 36.71 34.68 37.35 35.93 34.98 33.92 32.46 33.98 34.04 33.62 32.85
15 / 24.61 31.91 34.94 32.70 35.15 34.27 33.11 32.14 30.28 31.93 32.11 31.86 31.08
20 / 22.11 30.48 33.77 31.29 33.61 33.05 31.78 30.88 28.81 30.59 30.76 30.72 29.87
25 / 20.18 29.45 32.86 30.16 32.37 32.08 30.72 29.91 27.70 29.62 29.72 29.85 28.94
30 / 18.59 28.64 32.09 29.28 31.37 31.26 29.81 29.12 26.83 28.86 28.87 29.16 28.18
35 / 17.25 27.93 31.38 28.52 30.46 30.56 28.98 28.43 26.09 28.22 28.15 28.56 27.50
50 / 14.16 25.84 29.37 26.41 27.35 28.86 27.17 26.64 24.36 26.59 26.38 27.08 25.78
75 / 10.63 24.05 27.20 24.48 25.04 27.02 25.10 24.96 22.68 25.10 24.63 25.58 24.11
100 / 8.14 22.81 25.50 22.91 23.38 25.57 23.49 23.74 21.33 23.97 23.37 24.45 22.91

Barbara Lena House

10 15 20 25
29

30

31

32

33

34

35

PS
N

R 
(d

B)

10 15 20 25

32

33

34

35

36

PS
N

R 
(d

B)

10 15 20 25

32

33

34

35

36

PS
N

R 
(d

B)

� � �
Boats Peppers Cameraman

10 15 20 25

30

31

32

33

34

PS
N

R
 (d

B
)

10 15 20 25

30

31

32

33

34

PS
N

R
 (d

B
)

10 15 20 25

29

30

31

32

33

34

PS
N

R
 (d

B
)

� � �

Fig. 4. Grayscale-image denoising: output PSNR as a function of � for the following methods: `�': proposed BM3D, `�': FSP+TUP BLS-GSM [4], `+':
BLS-GSM [3], `�': exemplar-based [11], `�': K-SVD [8], `�': Pointwise SA-DCT [9]. (Note that the result of [4] for Boats and the results of [4], [11] for
Cameraman are missing since they were neither reported in the corresponding articles, nor were implementations of these methods publicly available.)
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Fig. 5. Noisy (� = 25) grayscale House image and the BM3D estimate (PSNR 32.86 dB).

(a) Lena (PSNR 32.08 dB) (b) Barbara (PSNR 30.73 dB) (c) Cameraman (PSNR 29.45 dB)

(d) Man (PSNR 29.62 dB) (e) Boats (PSNR 29.91 dB) (f) Couple (PSNR 29.72 dB)

Fig. 6. Fragments of noisy (� = 25, PSNR 20.18 dB) grayscale images and the corresponding BM3D estimates.

execution time of the C-BM3D for a 256�256 RGB image
was 7.6 seconds on a 1.5 GHz Celeron M.

VII. DISCUSSION

The approach presented in this paper is an evolution of
our work on local approximation techniques. It started from
the classical local polynomial approximation with a simple
symmetric neighborhood. The adaptive pointwise varying size
of this neighborhood was a �rst step to practically ef�cient
algorithms. A next step was devoted to anisotropic estimation
based on adaptive starshaped neighborhoods allowing non-
symmetric estimation areas. The non-symmetry of these esti-
mates is a key-point in designing estimators relevant to natural

TABLE IV
COLOR-IMAGE DENOISING: OUTPUT PSNR OF THE PROPOSED C-BM3D

ALGORITHM.

� / PSNR Lena Peppers Baboon F16 House
5 / 34.15 37.82 36.82 35.25 39.68 38.97
10 / 28.13 35.22 33.78 30.64 36.69 36.23
15 / 24.61 33.94 32.60 28.39 35.00 34.85
20 / 22.11 33.02 31.83 26.97 33.77 33.84
25 / 20.17 32.27 31.20 25.95 32.78 33.03
30 / 18.59 31.59 30.62 25.14 31.94 32.33
35 / 17.25 30.91 30.00 24.46 31.13 31.58
50 / 14.15 29.72 28.68 23.14 29.41 30.22
75 / 10.63 28.19 27.12 21.71 27.60 28.33
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Fig. 7. On the left: fragment of a noisy (� = 100, PSNR 8.14 dB) grayscale Barbara; on the right: the corresponding fragment of the BM3D estimate
(PSNR 23.49 dB) .

BLS-GSM [3] K-SVD [8] Pointwise SA-DCT [9] Prelim. 3D-DFT BM3D [12] Proposed BM3D

PSNR 29.33 dB PSNR 29.32 dB PSNR 29.48 dB PSNR 29.68 dB PSNR 29.91 dB

PSNR 28.29 dB PSNR 28.91 dB PSNR 29.11 dB PSNR 29.08 dB PSNR 29.45 dB

Fig. 8. Fragments of the grayscale Boats (top row) and Cameraman (bottom row) denoised by (from left to right): [3], [8], [9], [12], and the proposed
BM3D for noise with � = 25 (fragments of the noisy images can be seen in Figure 6).
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Fig. 9. Comparison between the output PSNR corresponding to the pro�les in Table I. Notation is: `�' for Fast Pro�le, `�' for the Normal Pro�le in the
case �� � 40� and `+' in the case �� > 40�; both instances of the Normal pro�le are shown for all considered values of � in the range [10; 75].
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TABLE V
COLOR-IMAGE DENOISING: OUTPUT-PSNR COMPARISON WITH THE TWO

STATE-OF-THE-ART RECENT METHODS [20] AND [9].

Image Method Standard deviation �
10 15 20 25

Lena Proposed C-BM3D 35.22 33.94 33.02 32.27
5122 P.wise SA-DCT [9] 34.95 33.58 32.61 31.85
RGB ProbShrink-MB [20] 34.60 33.03 31.92 31.04
Peppers Proposed C-BM3D 33.78 32.60 31.83 31.20
5122 P.wise SA-DCT [9] 33.70 32.42 31.57 30.90
RGB ProbShrink-MB [20] 33.44 32.05 31.12 30.35
Baboon Proposed C-BM3D 30.64 28.39 26.97 25.95
5122 P.wise SA-DCT [9] 30.62 28.33 26.89 25.86
RGB ProbShrink-MB [20] 30.17 27.83 26.38 25.27

Fig. 10. Color-image denoising: on the left are a noisy Lena image (� = 50,
PSNR 14.15 dB) and a fragment of it; on the right are the C-BM3D estimate
(PSNR 29.72 dB) and the corresponding fragment. (Color version of the �gure
available in the online version of the article in IEEE Xplore.)

TABLE VI
PSNR RESULTS OF THREE DIFFERENT APPROACHES TO COLOR-IMAGE
DENOISING. THE NOISE WAS ADDED IN RGB WITH � = 25 AND ALL

PSNR (DB) VALUES WERE ALSO COMPUTED IN RGB SPACE.

Approach to color-image denoising Lena House Peppers
BM3D independently on the R, G,
and B color channels 31.44 32.18 30.93
BM3D independently on each
opponent color channel 32.01 32.64 31.01
C-BM3D, with grouping constraint
in opponent color space 32.27 33.03 31.20

images. This development has been summarized in the recent
book [21].
These techniques are based on �xed-order approximations.

For image processing these approximations are in practice
reduced to zero and �rst order polynomials. It became clear
that the developed neighborhood adaptivity had practically
exhausted its estimation potential.
The breakthrough appears when the adaptive order local

approximations are introduced. First, it was done in terms of
the orthonormal transform with varying window size [22]. The
hard-thresholding of the spectrum of these transforms means
that some terms in the approximating series are adaptively
dropped and thus the order of the model becomes data
dependent [23]. The most ef�cient development of the idea of
the adaptive order estimation in local neighborhoods was the
Pointwise Shape-Adaptive DCT �lter [9], where the orthonor-
mal transform is calculated in adaptive shape neighborhoods
de�ned by special statistical rules.
The next essential step in the development of the local ap-

proximations is presented in this paper. The spatial adaptivity
is realized by selection of sets of blocks similar to a given
reference one. Thus local estimates become non-local. The
selected blocks are grouped in 3D arrays, jointly �ltered, and
aggregated at the places where they were taken from. The
joint �ltering of the blocks in the 3D arrays is realized by
shrinkage of the spectrum items thus the idea of the order
adaptive estimation is exploited again but in quite a speci�c
way. The main advantages of this approach are the non-
locality and the collaborative �ltering. The latter results in
effective preservation of local features in image blocks and
very ef�cient denoising.
We wish to mention the work of a few other authors in

order to clarify the context of our contribution and to state
what makes it different from other similar approaches.
Since our method and the non-local estimators [10] and

[11] are based on the same assumptions about the signal, it is
worth comparing this class of techniques with our method. The
weighted mean used in the non-local estimation corresponds
to a zero-order polynomial approximation. Its effectiveness
depends on an elaborate computation of adaptive weights,
depending on the similarity between image patches centered
at the estimated pixel and the ones used in the averaging.
Our approach is different; by using a more �exible set of
the basis functions (embedded in the transform), we enable
order-adaptivity of the model and a more ef�cient exploitation
of the similarity between grouped blocks. This is realized by
collaborative �ltering that allows for high-order estimates (not
only weighted means) to be calculated for all grouped blocks.
The algorithm proposed in [8] is derived from a global

optimization formulation. The image is segmented in a set
of overlapping blocks and the �ltering is enabled by �tting a
minimum complexity model to each of these blocks. The �nal
image estimate is obtained by fusing these models. A very
good performance of the algorithm mainly follows from using
a set of basis functions (dictionaries) obtained by training.
In contrast, our collaborative �ltering is essentially different
because the model induced by hard-thresholding has low-
complexity only in relation to the group as a whole. For
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the block-wise estimates and for the image overall, the model
can instead be highly complex and redundant as each block
can enter in many groups and thus can participate in many
collaborative estimates. This redundancy gives a very good
noise attenuation and allows to avoid artifacts typical for the
standard thresholding schemes. Thus, we may say that instead
of some low-complexity modeling as in [8], we exploit speci�c
overcomplete representations.
The collaborative Wiener �ltering used in the second step

and the aggregation of block-wise estimates using adaptive
weights are major features of our approach. The Wiener
�ltering uses the power spectrum of the basic estimate to
�lter the formed groups. In result, the estimation improves
signi�cantly over the hard-thresholding used in the �rst step.
The improvement in PSNR can be seen from Table II (by
comparing the numbers in the column of �T ht2D� with the
numbers in any of the other two columns �T wie2D � or �T1D�);
one can observe that the improvement is substantial, typically
greater than 0.5 dB.
The basis functions used in our algorithm are standard ones,

computationally ef�cient, and image independent. We believe
that the proposed denoising method could be improved by
using more sophisticated bases such as adaptive PCA [7], or
overcomplete learned dictionaries [8]. However, the computa-
tional complexity would signi�cantly increase because these
transforms are typically non-separable and do not have fast
algorithms. As it is shown in the previous section, even with
the currently used standard transforms, our algorithm already
demonstrates better performance than both [8] and [11].
The proposed extension to color images is non-trivial be-

cause we do not apply the grayscale BM3D independently
on the three luminance-chrominance channels but we impose
a grouping constraint on both chrominances. The grouping
constraint means that the grouping is done only once, in
the luminance (which typically has a higher SNR than the
chrominances), and exactly the same grouping is reused
for collaborative �ltering in both chrominances. It is worth
comparing the performance of the proposed C-BM3D versus
the independent application of the grayscale BM3D on the
individual color channels. This is done in Table VI which
shows that the C-BM3D achieves 0.2 � 0.4 dB better PSNR
than the independent application of the BM3D on the opponent
color channels and 0.3 � 0.8 dB better PSNR than the
independent application of the BM3D on the RGB channels.
This improvement shows the signi�cant bene�t of using the
grouping constraint on the chrominances in the C-BM3D.
We note that a similar idea of �ltering the chrominances

using information from the luminance was exploited already in
the Pointwise SA-DCT denoising method [9]. There, adaptive-
shape estimation neighborhoods are determined only for Y
and then reused for both U and V. The PSNR improvement
(0.1 � 0.4 dB) of the proposed approach compared with [9]
is consistent with the improvement between the grayscale
versions of these two methods.

VIII. CONCLUSIONS
The image modeling and estimation algorithm developed in

this paper can be interpreted as a novel approach to non-local

adaptive nonparametric �ltering. The algorithm demonstrates
state-of-the-art performance. To the best of our knowledge,
the PSNR results shown in Tables III and IV are the highest
for denoising additive white Gaussian noise from grayscale
and color images, respectively. Furthermore, the algorithm
achieves these results at reasonable computational cost and al-
lows for effective complexity/performance trade-off, as shown
in Table I.
The proposed approach can be adapted to various noise

models such as additive colored noise, non-Gaussian noise,
etc., by modifying the calculation of coef�cients' variances in
the basic and Wiener parts of the algorithm. In addition, the
developed method can be modi�ed for denoising 1D-signals
and video, for image restoration, as well as for other problems
that can bene�t from highly sparse signal representations.
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