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A Histogram Modification Framework and Its
Application for Image Contrast Enhancement
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Abstract—A general framework based on histogram equal-
ization for image contrast enhancement is presented. In this
framework, contrast enhancement is posed as an optimization
problem that minimizes a cost function. Histogram equalization is
an effective technique for contrast enhancement. However, a con-
ventional histogram equalization (HE) usually results in excessive
contrast enhancement, which in turn gives the processed image an
unnatural look and creates visual artifacts. By introducing specif-
ically designed penalty terms, the level of contrast enhancement
can be adjusted; noise robustness, white/black stretching and
mean-brightness preservation may easily be incorporated into the
optimization. Analytic solutions for some of the important criteria
are presented. Finally, a low-complexity algorithm for contrast
enhancement is presented, and its performance is demonstrated
against a recently proposed method.

Index Terms—Histogram equalization, histogram modification,
image/video quality enhancement.

I. INTRODUCTION

ONTRAST enhancement plays a crucial role in image

processing applications, such as digital photography,
medical image analysis, remote sensing, LCD display pro-
cessing, and scientific visualization. There are several reasons
for an image/video to have poor contrast: the poor quality of
the used imaging device, lack of expertise of the operator,
and the adverse external conditions at the time of acquisition.
These effects result in under-utilization of the offered dynamic
range. As a result, such images and videos may not reveal all
the details in the captured scene, and may have a washed-out
and unnatural look. Contrast enhancement targets to eliminate
these problems, thereby to obtain a more visually-pleasing
or informative image or both. Typical viewers describe the
enhanced images as if a curtain of fog has been removed from
the picture [1].

Several contrast enhancement techniques have been intro-
duced to improve the contrast of an image. These techniques can
be broadly categorized into two groups: direct methods [2], [3]
and indirect methods [4], [5]. Direct methods define a contrast
measure and try to improve it. Indirect methods, on the other
hand, improve the contrast through exploiting the under-utilized
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regions of the dynamic range without defining a specific con-
trast term. Most methods in the literature fall into the second
group. Indirect methods can further be divided into several sub-
groups: i) techniques that decompose an image into high and
low frequency signals for manipulation, e.g., homomorphic fil-
tering [6], ii) histogram modification techniques [7]-[17], and
iii) transform-based techniques [18]-[22]. Out of these three
subgroups, the second subgroup received the most attention due
to its straightforward and intuitive implementation qualities.

Contrast enhancement techniques in the second subgroup
modify the image through some pixel mapping such that the
histogram of the processed image is more spread than that of the
original image. Techniques in this subgroup either enhance the
contrast globally or locally. If a single mapping derived from
the image is used then it is a global method; if the neighborhood
of each pixel is used to obtain a local mapping function then
it is a local method. Using a single global mapping cannot
(specifically) enhance the local contrast [10], [13]. The method
presented in this paper is demonstrated as a global contrast
enhancement (GCE) method, and can be extended to local
contrast enhancement (LCE) using similar approaches.

One of the most popular GCE techniques is histogram equal-
ization (HE). HE is an effective technique to transform a narrow
histogram by spreading the gray-level clusters in the histogram
[23], [24], and it is adaptive since it is based on the histogram
of a given image. However, HE without any modification can
result in an excessively enhanced output image for some appli-
cations (e.g., display-processing).

Various methods have been proposed for limiting the level
of enhancement, most of which are obtained through modi-
fications on HE. For example, bi-histogram equalization was
proposed to reduce the mean brightness change [7]. HE pro-
duces images with mean intensity that is approximately in
the middle of the dynamic range. To avoid this, two separate
histograms from the same image are created and equalized
independently. The first is the histogram of intensities that
are less than the mean intensity, the second is the histogram
of intensities that are greater than the mean intensity. A sim-
ilar method called equal area dualistic sub-image histogram
equalization (DSIHE) was proposed in which the two separate
histograms were created using the median intensity instead
of the mean intensity [8]. Although they are visually more
pleasing than HE, these two techniques cannot adjust the level
of enhancement and are not robust to noise, which may become
a problem when the histogram has spikes. Also, it should be
noted that preserving the brightness does not imply preservation
of naturalness. One method to deal with histogram spikes is
the histogram low-pass filtering [9]. Another method proposes
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modifying the “cumulation function” of the histogram to adjust
the level of enhancement [10], but both of these methods are
still sensitive to problems created by histogram spikes. These
two methods apply gaussian blurring in the spatial domain to
obtain a low-pass filtered histogram or a modified cumulation
function [9], [10]. The image blurring operation alone may still
be insufficient for large spikes in the histogram; modifying the
cumulation function alone enables adjustment of enhancement
but does not directly handle histogram-spike related problems.
In addition, both of these methods are LCE methods, which
are known to be more computationally complex than GCE
methods and they not only highlight details in the image but
also enhance noise. One recent method proposed by Wang
and Ward [14] suggests modifying the image histogram by
weighting and thresholding before histogram equalization.
The weighting and thresholding is performed by clamping the
original histogram at an upper threshold P, and at a lower
threshold P, and transforming all the values between the upper
and lower thresholds using a normalized power law function
with index r > 0.

There are also unconventional approaches to the histogram-
based contrast enhancement problem [11], [12]. Gray-level
grouping (GLG) is such an algorithm that groups histogram
bins and then redistributes these groups iteratively [11]. Al-
though GLG can adjust the level of enhancement and is robust
to histogram spikes, it is mainly designed for still images.
Since gray-level grouping makes hard decisions on grouping
histogram bins, and redistributing the bins depends on the
grouping, mean brightness intensity in an image sequence can
abruptly change in the same scene. This causes flickering,
which is one of the most annoying problems in video enhance-
ment. Although a fast version of the algorithm is available,
GLG’s computational complexity is high for most applications.

Contrast enhancement techniques in the first and third
subgroups often use multiscale analysis to decompose the
image into different bands and enhance desired global and local
frequencies [6], [18]-[22], [25]-[27]. These techniques are
computationally complex but enable global and local contrast
enhancement at the same time by enhancing the appropriate
scales.

The aforementioned contrast enhancement techniques per-
form well on some images but they can create problems when
a sequence of images is enhanced, or when the histogram has
spikes, or when a natural looking enhanced image is strictly
required. In addition, computational complexity and controlla-
bility become an important issue when the goal is to design a
contrast enhancement algorithm for consumer products. In sum-
mary, our goal in this paper is to obtain a visually pleasing en-
hancement method that has low-computational complexity and
can be easily implemented on FPGAs or ASICs and works well
with both video and still images. The contributions of this paper
in achieving this goal are:

* to describe the necessary properties of the enhancement
mapping T'[n], and to obtain T'[n] via the solution of a
bi-criteria optimization problem;

* to incorporate additional penalty terms into the bi-criteria
optimization problem in order to handle noise robustness
and black/white stretching;
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* to present a content-adaptive algorithm with low computa-

tional complexity.

In the next section, contrast enhancement is explained. In Sec-
tion III, the contrast enhancement using the proposed frame-
work is explained in a progressive manner. Then, the proposed
low-complexity method is presented in Section IV. Simulation
results and discussions are presented in Section V. Finally, the
conclusion is provided in Section VI.

II. CONTRAST ENHANCEMENT

Histogram-based contrast enhancement techniques utilize
the image histogram to obtain a single-indexed mapping 7'[n]
to modify the pixel values.! In HE and other histogram-based
methods, mapping function is obtained from the histogram or
the modified histogram, respectively [23]. HE finds a mapping
to obtain an image with a histogram that is as close as possible
to a uniform distribution to fully exploit the dynamic range.
A histogram, h[n], can be regarded as an un-normalized dis-
crete probability mass function of the pixel intensities. The
normalized histogram p[n] of an image gives the approximate
probability density function (PDF) of its pixel intensities.
Then, the approximate cumulative distribution function (CDF),
¢[n], is obtained from p[n]. The mapping function is a scaled
version of this CDF. HE uses the image histogram to obtain the
mapping function; whereas, other histogram-based methods
obtain the mapping function via the modified histogram. The
mapping function in the discrete form is given as

T = |27 = 1) o] +05 )

where B is the number of bits used to represent the pixel values,
and n € [0,28 — 1]. Although the histogram of the processed
image will be as uniform as possible, it may not be exactly uni-
form because of the discrete nature of the pixel intensities.

It is also possible to enhance the contrast without using the
histogram. Black stretching and white stretching are simple but
effective techniques used in consumer-grade TV sets [1]. Black
stretching makes dark pixels darker, while white stretching
makes bright pixels brighter. This produces more natural
looking black and white regions; hence, it enhances the contrast
of the image. Linear black and white stretching can be achieved
by the mapping

n X Sp, n<b
T[n] = ¢ n x g[n], b<n<w 2)
w+ (N —w) X 8y, w<n

where b is the maximum gray-level to be stretched to black and
w is the minimum gray-level to be stretched to white, g[n] is
any function mapping the intensities in between, and sy, s,, are
black and white stretching factors both of which are less than
one.

III. HISTOGRAM MODIFICATION

To fully exploit the available dynamic range, HE tries to
create a uniformly distributed output histogram by using a

IThe term “pixel intensity” will sometimes be used to refer to the pixel values
in single-channel images.
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Fig. 1. Modified histogram equalization results using (6) for image Door. (a) Original image, (b) enhanced image using (6) with A = 0, (c) enhanced image using

(6) with A = 1, (d) enhanced image using (6) with A = 2.

cumulated histogram as its mapping function. However, HE
often produces overly enhanced unnatural looking images.
One problem with HE rises from large backward-difference
values of T'[n], i.e., T[n] — T'[n — 1] may be unusually large.
To deal with this, the input histogram can be modified without
compromising its contrast enhancement potential. The modi-
fied histogram can then be accumulated to map input pixels to
output pixels, similar to HE.

It is important to note that when the input distribution is al-
ready uniform, the mapping obtained from cumulating the input
distribution is T'[n] = n, which identically maps input to output.
Hence, to lessen the level of enhancement that would be ob-
tained by HE, the input histogram h; can be altered so that the
modified histogram h is closer to a uniformly distributed his-
togram u, according to a suitably chosen distance metric.

The modified histogram can be seen as a solution of a bi-cri-
teria optimization problem. The goal is to find a modified his-
togram h that is closer to u as desired, but also make the residual
h — h; small. This modified histogram would then be used to
obtain the mapping function via (1). This is a bi-criteria opti-
mization problem, and can be formulated as a weighted sum of
the two objectives as

min ||h — hi|| + A|h — u|| 3)
where h, h;, h, andu € R26%1 and ) is a problem parameter.2
As A varies over [0, 00), the solution of (3) traces the optimal

2R256x1 assumes 8-bit/channel bit-precision for simplicity.

trade-off curve between the two objectives. HE obtained by A =
0 corresponds to the standard HE, and as A goes to infinity it
converges to preserving the original image. Therefore, various
levels of contrast enhancement can be achieved by varying \.

A. Adjustable Histogram Equalization
An analytical solution to (3) can be obtained when the
squared sum of the Euclidean norm is used, i.e.,

h = argmin ||h — hy||»> + A|[h — u]|»> 4)
h

which results in the quadratic optimization problem

h = argmin[(h — h;)" (h — h;) + A(h — w)"(h —u)]. (5)

h
1 A
(e () o

The modified histogram fl, therefore, turns out to be a weighted
average of h; and u. Simply by changing A, the level of en-
hancement can be adjusted instead of the more complex non-
linear technique given by Stark [10].

An example image and enhanced images using modified his-
togram equalization with three different A values (0, 1, 2) are
shown in Fig. 1. When A is zero, the modified histogram is
equal to the input histogram; hence, the standard HE is applied.

The solution of (5) is

h; + Au

fl:
1+A
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Fig. 2. The mappings and histograms for Fig. 1. (a) Mappings for three different A values used in Fig. 1, (b) original histogram, modified histogram with A = 2

and the uniform histogram.

The resulting image is over-enhanced, with many unnatural de-
tails on the door and loss of details on the doorknob. When
A is increased to one, the penalty term comes into play and
the enhanced image looks more like the original image. For
A = 2, the level of enhancement is further decreased and the
details on the doorknob are mostly preserved. In Fig. 2(a), the
mappings for the three A values are given. As )\ increases, the
mapping becomes more similar to T'[n] = n line. The fixed
point observed around gray-level value of 76 is a repelling fixed
point.3 Although the level of enhancement is decreased with in-
creasing J, the slope* of the mapping at the fixed point, n*, is
still rather large. The slope at n* determines how fast the inten-
sities in the enhanced image move away from the fixed point
[28]. This may become especially important for images with
smooth background in which gray-level differences in neigh-
boring pixels look like noise. An example for this situation is
shown in Fig. 9(b) and (c).

The problem of T[n*] having a large slope arises from spikes
in the input histogram. The original histogram given in Fig. 2(b)
exhibits spikes and the modified histogram has also spikes at the
corresponding intensities. This sensitivity to spikes is observed
because /5 norm heavily penalizes large residuals, therefore, is
not robust to spikes. One way to deal with histogram spikes
is to use ¢; norm for the histogram approximation term in the
objective while using £» norm for the penalty term. Hence, the
problem in (4) is changed to

. ) 5

h = argmin ||h — h;||; + A||h — u|2". (7
h

To transform this mixed norm problem into a constrained

quadratic programming problem, the first term can be ex-

pressed as a sum of auxiliary variables

h = argmin[t”1 4+ A(h — u)”(h — u)]
h

3Please see chapter 14 of “Mathematical Methods and Algorithms for Signal
Processing” by Moon and Stirling [28] for a detailed discussion of repelling/
attractive fixed points.

4The term “slope” is used to refer to the slope of the T'(«), interpolated (i.e.,
continuous) version of T[n].

subject to
-t 2 (h—h;) 2t

where t € R?6%! and represents the auxiliary variables,> and
1 € R?36%1 jg a vector of ones. However, this constrained
quadratic programming problem has high computational com-
plexity since there are 512 optimization variables. Hence, this
approach will not be pursued and is presented here for com-
pleteness.

Another way to deal with the histogram spikes in the input
histogram is to use one more penalty term to measure the
smoothness of fl which reduces the modified histogram’s
sensitivity to spikes.

B. Histogram Smoothing

To avoid spikes that lead to strong repelling fixed points, a
smoothness constraint can be added to the objective. The back-
ward-difference of the histogram, i.e., h[¢] — h[i — 1], can be
used to measure its smoothness. A smooth modified histogram
will tend to have less spikes since they are essentially abrupt
changes in the histogram.

The difference matrix D € R?55%256 is bi-diagonal

-1 1 0 --- 0 0 0

0 -1 1 0 0 0
D= z :

0 0 0 -1 1 0

0 0 0 0 -1 1

with the additional penalty term for smoothness, the optimal
trade-off is obtained by

min |[h = hy|ls* + A[h = ull2” +7[[Dh],%. (@)
The solution of this three-criterion problem is
h = ((1+\)I++D"D)~!(h; + Au). )

5< symbol denotes vector/componentwise inequality.
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Fig. 3. Histogram smoothing results using (9) for image Palermo. (a) Original image, (b) enhanced image using (9) withy = 0 and A = 1, (c) enhanced image
using (9) with v = 0 and A = 3, (d) enhanced image using (9) with v = 1000 and A = 1.

While (6) results in a weighted average of h; and u, (9) further
smoothes this weighted average to avoid spikes. The first term
in (9), thatis, S~ = ((1+\)I++vDT D)~ in fact corresponds
to a low-pass filtering operation on the averaged histogram. This
can be seen by expressing S = ((1+A)I+~vDTD) explicitly as
(10), shown at the bottom of the page, where S is a tridiagonal
matrix. Each row of its inverse can be shown to be a zero-phase
low-pass filter by using a theorem of Fischer and Usmani [29].
Hence, a penalty term for smoothness corresponds to low-pass
filtering the averaged histogram. This shows that the proposed
framework provides an explanation for the histogram low-pass
filtering approaches investigated in the literature, as in Gauch’s
work [9], from a different perspective.

To illustrate the performance of histogram smoothing, the
image given in Fig. 3(a), which is captured from a compressed
video stream, is enhanced using adjustable histogram equaliza-
tion with and without histogram smoothing. Fig. 3(b) and (c)
adjusts the level of enhancement with v = 0, A = 1 and
v = 0, A = 3, respectively. After enhancement, both exhibit ar-
tifacts, which are observed as black grain noise around the text.
These artifacts arise from the strong repelling fixed-point in the
mapping created by the spikes of the original histogram. The
ringing-artifact pixels that have intensities less than the back-
ground pixels are mapped to even darker intensities. Histogram
smoothing with v = 1000 solves this problem as can be seen in
Fig. 3(d). The mappings for the corresponding enhanced images
are given in Fig. 4. The slope, T(x), at the spike bin gray-level
has been successfully reduced with histogram smoothing.

Although histogram smoothing is successful in avoiding his-
togram spikes, it has a shortcoming. For a real-time implemen-
tation S~ has to be computed for each image as ~ needs to
be adjusted based on the magnitude of the histogram spikes.
Even though there are fast algorithms for inverting tridiagonal
matrices that require only O(7n) arithmetic operations [30] as
opposed to O(n?3/3), it is still unacceptable because of the ap-
plication at hand (i.e., LCD display processing). This renders

150} P B
100 - 8

50

¥=1000, . =1

L L L L
50 100 150 200 250

Fig. 4. Mappings for the enhanced images given in Fig. 3.

the algorithm not easily implementable on FPGAs. Instead of
using (9), a low-pass filtering on the histogram can also be per-
formed. But the number of taps and the transfer function must
also be adaptive. Another approach that is less computationally
complex is to use a weighted error norm for the approximation
error h — h;, which is to be described next.

C. Weighted Histogram Approximation

Histogram spikes occur because of the existence of large
number of pixels with exactly the same gray-level values as
their neighbors. Histogram spikes cause the forward/backward
difference of the mapping at that gray-level to be large. This
results in an input-output transformation that maps a narrow
range of pixel values to a much wider range of pixel values.
Hence, it causes contouring and grainy noise type artifacts
in uniform regions. A large number of pixels having exactly
the same gray-levels are often due to large smooth areas in
the image. Hence, the average local variance of all the pixels

2y+ (1+ ) —2y 0 0
—2y Ay + (14 A 2y 0
5= 0 ( : (10)

_2«7

dy+(1+2X) -2y
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Fig. 5. Comparison results of histogram smoothing and weighted histogram
approximation for image Palermo. (a) Histogram smoothing using (9) withy =
1000 and A = 1, (b) weighted approximation using(12) with A = 1000.
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Fig. 6. Mappings for the enhanced images given in Fig. 5.

with the same gray-level can be used to weight the approxi-
mation error, h — h;. Histogram approximation error at the
corresponding bin will be weighted with a smaller weight.
Therefore, the modified histogram bin will not closely follow
the input histogram’s spike bin to minimize the approximation
error. The objective function with the weighted approximation
error is

min(h —h;))"W(h—h;) + A(h—u)"(h—u). (11)
where W € R256%256 g the diagonal error weight matrix, and
W (i,4) measures the average local variance of pixels with gray-
level 2. The solution of (11) is

h = (W + AI) "} (Wh; + Au). (12)

This is computationally simpler than (9). Since the first term is
a diagonal matrix, taking matrix inverse is avoided, i.e., only
simple division operations for the diagonal elements are needed
to compute its inverse.

Fig. 5 shows the weighted histogram approximation and his-
togram smoothing for comparison. The grain-noise-type arti-
facts around the text are avoided in both methods. The map-
pings for the two methods is given in Fig. 6. The difference of
the mapping corresponding to smooth background pixels has
further been reduced. However, the mapping is not as smooth as
histogram smoothing since no explicit smoothing is performed
on the modified histogram.
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D. Black and White Stretching

Black and white (B&W) stretching is one of the oldest
image enhancement techniques used in television sets. B&W
stretching maps predetermined dark and bright intensities
to darker and brighter intensities, respectively. To incorpo-
rate B&W stretching into histogram modification, where the
gray-level range for B&W stretching is [0,b] and [w, 255],
respectively, the modified histogram h must have small bin
values for the corresponding gray-level ranges. Since the length
of the histogram bins determines the contrast between the
mapped intensities, by decreasing the histogram bin length
for [0, b] and [w, 255], the mapping obtained by accumulating
the modified histogram will have a smaller forward/backward
difference for these two gray-level ranges.

An additional penalty term for B&W stretching can be added
to one of the objective functions presented in previous subsec-
tions [e.g., adjustable histogram equalization equation given in

Q)
min(h —h;)"(h—h;) + A(h—u)” (h —u) + oh™T?h (13)

where I is a diagonal matrix. I1Z(4,i) = 1 fori € {[0,b] U
[w, 255]}, and the remaining diagonal elements are zero. The
solution to this minimization problem is
h = ((1+MI+al®)" (h; + \u). (14)
In Fig. 7, histogram smoothing with and without B&W
stretching is illustrated. In this experiment, black stretch
gray-level range is [0, 20] and white stretch gray-level range
is [200, 255] with « set to 5. With the more natural look of
the black and white in the image, the contrast has greatly im-
proved. The mapping as given in Fig. 7(d) clearly shows B&W
stretching and the smooth transition to nonstretching region.

IV. Low-COMPLEXITY HISTOGRAM
MODIFICATION ALGORITHM

In this section, a low-complexity histogram modification al-
gorithm is presented. The pseudo-code of the algorithm is given
in Algorithm 1. It deals with histogram spikes, performs B&W
stretching, and adjusts the level of enhancement adaptively so
that the dynamic range is better utilized while handling the noise
visibility and the natural look requirements. Also, the proposed
algorithm does not require any division operation.

Using histogram smoothing or weighted histogram approxi-
mation is computationally complex when considering the scarce
memory and gate-count/area resources in an hardware imple-
mentation. Histogram smoothing requires either solving (9) or
explicit low-pass filtering with adaptive filter length and transfer
function. On the other hand, weighted approximation with so-
lution given in(12) requires division operation.

A. Histogram Computation

To deal with histogram spikes in a simple way, instead of
smoothing or weighting the input histogram, one can change the
way a histogram is computed. Histogram spikes are created be-
cause of a large number of pixels that have the same gray-level
and these pixels almost always come from smooth areas in the
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Fig. 7. Comparison results of histogram smoothing with and without B&W stretching for image Palermo. (a) Original image, (b) enhanced image using (9) with
~ = 1000 and A = 1, (c) enhanced image using (14) with v = 100, A = 1, and o = 5, (d) mappings for the two enhanced images in (b) and (c).

input image when they create artifacts/noise in the enhanced
image. Hence, histogram computation can be modified so as to
take pixels that have some level of contrast with their neighbors
into account, which will solve the histogram spike problem at
the very beginning. It is also possible to relate this practical ap-
proach with optimization based solutions discussed in the pre-
vious section as follows: For a successful contrast enhancement,
the histogram should be modified in such a way that the mod-
ified histogram, h, represents the conditional probability of a
pixel, given that it has a contrast with its neighbors (denoted
by C). That is, h[i] = p[i|C], where p[i|C] denotes the prob-
ability of a pixel having gray-level ¢ given the event C. Per-
forming histogram equalization on h rather than A will enhance
the contrast but not the noise, since the former will only uti-
lize the dynamic range for pixels that have some level of con-
trast with their neighbors. Noting that the histogram modifica-
tion methods presented in the previous section (e.g., weighting)
also aim to increase contrast but not the noise visibility, they
must modify the histogram in such a way that the the modified
histogram resembles p[i|C] rather than p[i]. However, one can
simply obtain p[i|C] by counting only those pixels that have
contrast, rather than solving complex optimization problems,
which in essence corresponds to dealing with histogram spikes
resulting from smooth area (noncontrast) pixels after computing
the histogram in the conventional way.

To obtain the histogram, the local variation of each pixel can
be used to decide if a pixel has sufficient contrast with its neigh-
bors. One efficient way of achieving this for hardware simplicity
is to use a horizontal variation measure by taking advantage of
the row-wise pixel processing architecture, which is available
in common video processing hardware platforms. A horizontal
one-lagged difference operation is a high-pass filter, which will
also measure noise. On the other hand, a horizontal two-lagged
difference operation is a band-pass filter which will attenuate
high-frequency noise signals. Histogram is created using pixels
with a two-lagged difference that has a magnitude larger than a
given threshold (steps 5, 6, 7). The number of pixels included in
the histogram is also counted for proper normalization.

B. Adjusting the Level of Enhancement

As described in Section III-A, it is possible to adjust the level
of histogram equalization to achieve natural looking enhanced
images. The modified histogram is a weighted average of the
input histogram h; and the uniform histogram u, as given in

(6). The contribution of the input histogram in the modified his-
togram is k* = 1/(1 + A). The level of histogram equaliza-
tion should be adjusted depending on the input image’s con-
trast. Low contrast images have narrow histograms and with
histogram equalization, contouring and noise can be created.
Therefore,  is computed to measure the input contrast using
the aggregated outputs of horizontal two-lagged difference op-
eration (step 4). Afterwards, « is multiplied by a user-controlled
parameter g, then gx is normalized to the range [0, 1] (step 11)
to get k*. It is a good practice to limit the maximum contri-
bution of a histogram, since this will help with the worst-case
artifacts created due to histogram equalization. By choosing the
maximum value that g~ can take on as a power of two, the nor-
malization step can be done using a bit-shift operation rather
than a costly division. To ensure that h; and u have the same
normalization, u is obtained using the number of pixels that are
included in the histogram (step 12). umin is used to ensure that
very low bin regions of the histogram will not result in very low
slope in the mapping function; it will increase the slope in these
regions, resulting in increased-utilization of dynamic range.

B&W stretching is performed using (14) (step 17). Parame-
ters b, w, and « can be adapted with the image content. b and
w is usually derived from the histogram as the minimum and
maximum intensities. For noise robustness, b should be chosen
as the minimum gray-level that is bigger than some predefined
number of pixels’ intensities, w can be chosen similarly. It is a
good practice to impose limits on b and w. The stretching pa-
rameter should also be adapted with image content. For dark
images white stretching can be favored, while for bright images
black stretching can be favored. o may also depend on the input
image’s contrast.

V. RESULTS AND DISCUSSION

Assessment of image enhancement is not an easy task. Al-
though it is desirable to have an objective assessment approach
to compare contrast enhancement techniques, unfortunately
there is not any accepted objective criterion in the literature
that gives meaningful results for every image. There are some
metrics used in the literature that approximate an average
contrast in the image based on entropy or other measures. If
these metrics are used, HE can achieve the best performance
even though it may not produce the visually pleasing image,
and possibly may produce an un-realistic look. However,
it is usually desired to have some quantitative measures in
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(b)

(d)

Fig. 8. Results for image Beach. (a) Original image, (b) enhanced image obtained using HE, (c) enhanced image obtained using WTHE, (d) enhanced image

obtained using the proposed algorithm.

addition to subjective assessment. Hence, we will use the fol-
lowing quantitative measures: Absolute Mean Brightness Error
(AMBE), the discrete entropy (H), and the measure of enhance-
ment (EME) [3], [16], [18]. AMBE is the absolute difference
between input and output mean [16]. The discrete entropy is
used to measure the content of an image [3], where a higher
value indicates an image with richer details. The measure of
enhancement (EME) approximates an average contrast in the
image by dividing image into nonoverlapping blocks, finding a
measure based on minimum and maximum intensity values in
each block, and averaging them. In addition, a time complexity
comparison of HE, weighted thresholded HE (WTHE), and
the proposed method is included. The proposed algorithm has
been successfully tested on a variety of test images and video
sequences. Only, a few of the results are shown in this paper.

A. Subjective Assessment

1) Gray-Scale Images: Figs. 8—10 show the original test im-
ages and their corresponding contrast enhanced versions. Their
mapping functions are shown in Fig. 12(a)—(c), respectively.
The proposed algorithm is compared with a recently proposed
contrast enhancement algorithm, (WTHE), presented by Wang
and Ward [14]; they compare WTHE against the algorithms pro-
posed by Kim [7], Yang et al. [15], Chen and Ramli [16] and
show their algorithm’s superiority. Both WTHE and our pro-

posed method show similar visual quality on many of the images
we tested. However, that is not always the case. Hence, images
included in this paper are selected among the ones that cause
different visual quality.

Usually, histogram equalized images result in the best uti-
lization of the dynamic range of the pixel values for maximum
contrast. However, this often does not mean that the resulting
image is better in terms of visual quality. This situation is also
observed with images in Figs. 8(b), 9(b), and 10(b). Undesired
artifacts become more prominent, and amplified nature of noise
degrades the quality of the image resulting in an unnatural look.
WTHE and the proposed algorithm on the other hand offers a
controllability of the contrast enhancement. Since the histogram
of the proposed algorithm is formed from the conditional prob-
ability, it does not have histogram spikes resulting from uni-
form regions; hence, the proposed method does not produce
artifacts as HE and WTHE, which are caused by having his-
togram spikes that cause high slope in the mapping function.
Even though WTHE thresholds high and low bin values to pre-
vent its undesired effect, it does not produce as pleasing results
as the proposed algorithm does. One other situation HE and
WTHE introduces artifacts is when the dynamic range of the
original image is shrunk from either one or both ends. In ei-
ther case, the resulting image is either darkened and/or bright-
ened more than necessary. The proposed algorithm, on the other
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(@)

(b)

(d)

Fig. 9. Results for image Plane. (a) Original image, (b) enhanced image obtained using HE, (c) enhanced image obtained using WTHE, (d) enhanced image

obtained using the proposed algorithm.

(b)

(©) (d)

Fig. 10. Results for image nonuniform illumination. (a) Original image, (b) enhanced image obtained using HE, (c) enhanced image obtained using WTHE,

(d) enhanced image obtained using the proposed algorithm.

hand, avoids this situation through the use of mixing of condi-
tional histogram and wu,i, as explained on lines 14—18 of the
Algorithm 1. By modifying the histogram, the proposed method
improves the natural-look of the image substantially compared
to HE and WTHE.

Fig. 8(b) is the histogram equalized image of Fig. 8(a).
The contrast of the image is maximized at the expense of
the amplified noise, and image artifacts. The resulting artifacts

are mostly in the darker regions, which is also evident from
Fig. 12(a). Darker regions become even darker, and very bright
region gets even brighter. WTHE reduces the effect of HE.
However, the resulting image still has some flavor of HE:
bodies of two people, and the trees are still darker and the
resulting image Fig. 8(c) is not as visually pleasing as Fig. 8(d).
As can be clearly seen, the mapping function in the region
around 175 has a very steep curve resulting in a stretching of
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(d)

Fig. 11. Results for image clouds. (a) Original image, (b) enhanced image obtained using HE, (c) enhanced image obtained using WTHE, (d) enhanced image

obtained using the proposed algorithm.

(b)

(d)

Fig. 12. Mappings for enhanced images in Figs. 8, 9, 10, and 11. (a) mappings of Fig. 8, (b) mappings of Fig. 9, (c) mappings of Fig. 10, and (d) mappings of
Fig. 11. Solid line indicates the HE mapping, red dashed line indicates the WTHE mapping, blue dash-dotted line indicates the proposed method, and the dotted

line indicates the no change mapping.

a very narrow region into a wider region; range of [150, 180]
is getting mapped to [60, 180]. These pixel values are mostly
due to the sand and some part of the sea. The pixel values
of the two bodies are around 60 and the pixel values of the
trees are around 40. The mapping functions for both HE and
WTHE are mapping these values into darker pixel values. This
is caused by the histogram of the original image having very
few pixel values below 40. However, in the proposed algorithm
this situation is prevented by filling bins with very low values
with i, as illustrated in Algorithm 1. Hence, the contrast
enhanced image obtained by the proposed method is visually
more pleasing than HE and WTHE.

Fig. 9(b) is the histogram equalized image of 9(a). HE image,
again, looks very unnatural. Especially, the dominance of the
sky region results in a very big slope in the mapping func-
tion around the pixel value of 250, which results in mapping
of range [250, 256] into [150, 256]. Unnatural look of the his-
togram equalized image is lessened using WTHE. However, it
is not alleviated completely. Graininess in the sky still exist
in the regions close to the plane. The proposed algorithm, on
the other hand, produces a good visual quality result; there is
no graininess in the sky and the contrast of the grass is im-
proved compared to HE and WTHE result. The success of the
proposed method in this type of images is, again, due to the
use of the conditional histogram. Big uniform regions in an
image cause corresponding bins in the histogram to be very high
compared to other bins. However, conditional histogram avoids
having very high bin values. This feature is controlled adap-
tively by the variable « in the algorithm. If an image contains
large smooth regions, then the effect of histogram is lessened so
that the resulting image preserves the smoothness and does not
introduce visual artifacts. On the other hand, if there is no domi-

nant smooth region in an image, then the effect of « is increased
to increase the contrast.

Fig. 10(b) is the histogram equalized image of Fig. 10(a). The
histogram of the original image occupies bins [75, 255]; as a re-
sult, HE results in a darkened image since it stretches the his-
togram to increase the dynamic range. A lack of pixel values
in the range [0, 74] results in mapping [75, 255] range into [0,
255] range; more specifically [75, 165] range is mapped into
[0, 50] and [165, 220] range is mapped into [50, 220]. As can
be seen from the mapping function in Fig. 12(c), mapping also
makes bright regions brighter. One can also observe that HE re-
sults in banding. Although the effect of WTHE is not as severe
as HE, it also results in darkened image and has slight banding.
The proposed algorithm on the other hand, does not darken the
image and produces a good visual quality result. The proposed
algorithm prevents stretching of the histogram due to the use of
mixing of conditional histogram and u,;,. The conditional his-
togram only counts a small number pixels since the input image
pixels do not have sufficient contrast. Therefore, the uniform
histogram dominates the conditional histogram to a good extent
with the help of k.

2) Color Images: Contrast enhancement can be easily ex-
tended to color images. The most obvious way to extend the
gray-scale contrast enhancement to color images is to apply
the method to luminance component only and to preserve the
chrominance components. One can also multiply the chromi-
nance values with the ratio of their input and output luminance
values to preserve the hue. Some examples using color images
are given in Figs. 11, 13, 14, 15, and 16.

Fig. 11(b) is the histogram equalized image of Fig. 11(a).
This image has nonuniform illumination. This becomes more
apparent with HE as it stretches the histogram to increase the
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Fig. 13. Results for image Hats. (a) Original image, (b) Enhanced image obtained using HE, (c) Enhanced image obtained using WTHE, (d) Enhanced image

obtained using the proposed algorithm.

contrast. The histogram of the original image occupies bins
[17, 233]. A lack of pixel values in the range [0, 16] and [234,
255] results in mapping [17, 233] range into [0, 255] range;
more specifically it darkens the pixels in the range [17, 118]
and brightens the pixels in the range [119, 233], which can be
seen from the mapping function in Fig. 12(d). One can easily
see that the darker clouds become even darker, and clouds
in front of the sun become even brighter resulting in loss of
details. Although the effect of WTHE is not as severe as HE,
it also results in similar artifacts. The proposed algorithm on
the other hand, does not darken the image as much as HE and
WTHE, and preserves bright regions and as a result produces a
better visual quality result.

In Fig. 13, both HE and WTHE result in loss of details in the
clouds and on top of the yellow hat, whereas the proposed algo-
rithm keeps the details while increasing the contrast. In Fig. 14,
HE makes the stones around the window and the pink flower
very bright; hence, it has an unnatural look. Although WTHE
performs better than HE, it still does not remove this effect com-
pletely. In Fig. 15, HE makes the sea darker and clouds brighter
resulting in an unnatural look. WTHE decreases the effect of
HE, however, the resulting image is not as pleasing as the one
obtained with the proposed method. Finally, in Fig. 16, WTHE
decreases the brighter look of the image obtained by HE. How-
ever, some portions of her skin still look brighter. Again, the
proposed method gives a more natural looking skin tone on both
the face and shoulders.

B. Objective Assessment

Computed quantitative measures AMBE, H, and EME listed
in Table I supplement the visual assessment presented ear-
lier. Comparison of AMBE values shows that the proposed
method outperforms both HE and WTHE in all images except
the clouds image. Although HE and WTHE give a smaller
AMBE value than the proposed algorithm in the clouds image,
it does not necessarily mean they are more faithful to the orig-
inal image. Preserving the mean brightness does not always
mean preserving the natural look of an image. HE results in
a small AMBE value because HE has an S shaped mapping
function. An S shaped mapping function causes the bright
pixels to be even brighter, and dark pixels to be even darker,
eventually resulting in a small change in AMBE, although the
resulting image has an unnatural look. The same reasoning ap-
plies to the image obtained by WTHE. Visual comparison, on
the other hand, shows that the visually closest equalized image
to the original clouds image is obtained through the proposed
method. The mapping function in Fig. 12(d) also demonstrates
this. Comparison of H values show that the proposed method
performs similar to WTHE and both of them outperform HE.
Normally, one would expect HE to give higher discrete en-
tropy value as HE results in more uniform histogram distribu-
tion. However, HE results in bin grouping and this decreases
the H value. Comparison of EME values show that HE out-
performs both WTHE and the proposed method; WTHE gives
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Fig. 14. Results for image Window. (a) Original image, (b) enhanced image obtained using HE, (c) enhanced image obtained using WTHE, (d) enhanced image

obtained using the proposed algorithm.

higher EME values than the proposed method. Since EME
measures a form of contrast, it is no surprise that HE gives the
highest value even though it does not produce the most visually
pleasing image.

C. Complexity Comparison

We analyze the time complexities of HE, WTHE, and the
proposed algorithm for an M x N image. For comparison, we
calculate the total time complexity of obtaining the enhanced
image using each contrast enhancement algorithm.

For HE, computation of the histogram requires O(M N ) time.
Calculating the mapping function from the histogram requires
O(2P) time, and finally obtaining the enhanced image using the
mapping function requires O(M N) time. Hence, the total time
complexity of HE is O(2M N + 2B).

For WTHE, computation of the histogram requires O(M N )
time. Calculating the modified histogram requires O(25) time,
and the computation of the mapping function requires O(2%)
time, and, finally, obtaining the enhanced image using the map-
ping function requires O(M N) time. Hence, the total time com-
plexity of WTHE is O(2M N + 2B+1),

For the proposed algorithm, computation of the histogram
and « requires O(M N) time. Computation of the modified his-
togram for each bin requires O(27) time, and the computation
of the mapping function requires O(27) time. And finally ob-
taining the enhanced image using the mapping function requires

O(M N) time. Hence, the total time complexity of the proposed
algorithm is O(2M N + 2B+1),

As a result, the time complexity of WTHE and the proposed
algorithm is the same and it is slightly worse than HE as HE
does not require the modification of the histogram before equal-
ization. Although WTHE and the proposed algorithm has the
same time complexity, the computational complexity of the pro-
posed algorithm is simpler than that of WTHE as WTHE re-
quires using a power law function with index r» > 0.

VI. CONCLUSION

A general framework for image contrast enhancement is pre-
sented. A low-complexity algorithm suitable for video display
applications is proposed as well. The presented framework em-
ploys carefully designed penalty terms to adjust the various as-
pects of contrast enhancement. Hence, the contrast of the image/
video can be improved without introducing visual artifacts that
decrease the visual quality of an image and cause it to have an
unnatural look.

To obtain a real-time implementable algorithm, the proposed
method avoids cumbersome calculations and memory-band-
width consuming operations. The experimental results show
the effectiveness of the algorithm in comparison to other con-
trast enhancement algorithms. Obtained images are visually
pleasing, artifact free, and natural looking. A desirable feature
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(b)

(©) (d)

Fig. 15. Results for image Island. (a) Original image, (b) enhanced image obtained using HE, (c) enhanced image obtained using WTHE, (d) enhanced image
obtained using the proposed algorithm.

(d)

Fig. 16. Results for image Face. (a) Original image, (b) enhanced image obtained using HE, (c) enhanced image obtained using WTHE, (d) enhanced image
obtained using the proposed algorithm.

of the proposed algorithm is that it does not introduce flickering, proposed method modifies it using linear operations resulting
which is crucial for video applications. This is mainly due to from different cost terms in the objective rather than making
the fact that the proposed method uses the input (conditional) algorithmic hard decisions.

histogram, which does not change significantly within the The proposed method is applicable to a wide variety of im-
same scene, as the primary source of information. Then, the ages and video sequences. It also offers a level of controlla-
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TABLE I
QUANTITATIVE MEASUREMENT RESULTS. AMBE DENOTES THE ABSOLUTE MEAN BRIGHTNESS ERROR, H DENOTES THE DISCRETE ENTROPY,
AND EME DENOTES THE MEASURE OF ENHANCEMENT

AMBE H EME
Image HE ‘ WTHE ‘ Prop. Orig. ‘ HE ‘ WTHE ‘ Prop. Orig. | HE ‘ WTHE ‘ Prop.
Beach 34.88 24.88 9.65 6.96 | 5.80 6.90 6.89 532 | 32.09 12.29 7.76
Plane 48.23 5.16 3.34 6.32 | 4.96 6.03 6.08 9.06 | 24.75 12.96 11.72
Nonuni. Illum. | 58.61 48.23 1.12 6.92 | 593 6.90 6.91 0.16 1.44 0.58 0.16
Clouds 2.11 3.55 15.54 729 | 597 7.27 7.20 4.76 16.93 9.12 6.76
Hats 23.84 12.60 3.13 6.89 | 591 6.87 6.89 5.50 | 27.15 11.88 8.13
Window 17.11 20.84 14.49 6.80 | 5.79 6.82 6.83 9.11 52.32 21.01 14.04
Island 22.18 9.88 14.13 7.01 5.96 6.97 6.98 8.02 | 51.69 20.68 13.68
Face 27.58 16.34 18.79 693 | 595 6.90 6.91 7.78 | 40.62 17.57 14.05
Average 29.32 17.68 10.02 6.89 | 5.78 6.83 6.84 6.21 30.87 13.26 9.54

bility and adaptivity through which different levels of contrast
enhancement, from histogram equalization to no contrast en-
hancement, can be achieved.

Algorithm 1: GCE Histogram Modification Algorithm

Input: Input image: f,
B&W stretch parameters: b, w, and 1/(1 4+ «)
Level of enhancement: g

Output: Modified histogram: h

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Initialize x;
foreach row m do
foreach column n do
k= K+ |flm,n] = flm,n —2]|;
if | f[m,n] — f[m,n — 2]| > Threshold then
+ + hi[f[m,n]];
+ + count;
end
end
end
Normalize gk to get k*;
u = min{count/256, Umin };
foreach bin n do
if b < n < w then
hin] = (1 — K*)u + &*hg[n];
el~se
hln] = 1/(1 + a)[(1 = £*)u + £*hi[n]];
end
end
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