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Abstract. Deformable registration of images obtained from different
modalities remains a challenging task in medical image analysis. This
paper addresses this problem and proposes a new similarity metric for
multi-modal registration, the non-local shape descriptor. It aims to ex-
tract the shape of anatomical features in a non-local region. By utiliz-
ing the dense evaluation of shape descriptors, this new measure bridges
the gap between intensity-based and geometric feature-based similarity
criteria. Our new metric allows for accurate and reliable registration of
clinical multi-modal datasets and is robust against the most considerable
differences between modalities, such as non-functional intensity relations,
different amounts of noise and non-uniform bias fields. The measure has
been implemented in a non-rigid diffusion-regularized registration frame-
work. It has been applied to synthetic test images and challenging clinical
MRI and CT chest scans. Experimental results demonstrate its advan-
tages over the most commonly used similarity metric - mutual informa-
tion, and show improved alignment of anatomical landmarks.

1 Introduction

Advances in medical image registration techniques have resulted in a number of
robust and accurate methods for deformable registration of scans of the same
modality [1]. However, the registration of images from different modalities re-
mains challenging. Alignment of multi-modal images helps to relate relevant
information from different scans and to find the corresponding anatomical loca-
tion of the response of functional imaging in structural scans. Intensity relations
between those scans are not functional and can vary locally.

Mutual information (MI) is derived from information theory and measures
the statistical dependency of two random variables. It was first introduced to
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Fig. 1: Estimation of the non-local shape descriptor for the same feature at loca-
tion xi in two different modalities, red and blue colour channels of cryosection
(see text for further details).

medical image registration for the rigid alignment of multi-modal scans [2][3],
and later used successfully in a variety of applications, including deformable
registration. It is based on the assumption that a lower entropy of the joint
intensity distribution corresponds to a better alignment. However, in several
practical applications, additional constraints must be made or extensions added.
Several weaknesses of MI for non-rigid registration have been identified [4]. For
example, it is affected by non-uniform intensity distributions like bias fields. MI
is intrinsically a global measure and therefore local deformations can lead to
local minima in the solution as shown in [5]. To overcome these difficulties, we
introduce a novel similarity metric for multi-modal image registration.

2 Non-local shape descriptor

We propose the non-local shape descriptor (NLSD), which defines a response
related to the shape of image features at each location in both images to be
registered. The shape descriptor is well adapted to medical image registration
purposes, because it aims to extract anatomically meaningful geometric shapes.

The proposed similarity term is derived from a very efficient denoising tech-
nique, non-local means [6]. For the purpose of denoising it is necessary to find
structural similarity in an extended non-local region of an image feature. The
values of the most similar patches in the non-local search window contribute to
a weighted average of the denoised central voxel. In this paper we will use the
non-local weights to extract a geometric descriptor, which forms the basis of the
proposed multi-modal similarity metric. A related descriptor, the self-similarity
descriptor, has been presented for the application of object detection in [7].

We search for similar patches in a limited non-local region N around the
current voxel of interest xi. Within N all patches Pj are compared to the patch
centred on xi. This concept is illustrated in Fig. 1, showing a magnification
of an image feature in two different modalities, in this case the blue and red
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colour channel of a cryosection. The dashed white line delimits the non-local
search region, while the green squares outline exemplary patches Pj , and the
red square the central patch Pi.

A weight w(xi,xj) is assigned to each location xj in N according to an ex-
ponentially decaying distance function based on the Euclidean distance between
two patches Pi and Pj .

w(xi,xj) = exp

(

−
∑

∆x ‖I(xi +∆x)− I(xj +∆x)‖2√
2σ2

)

(1)

where ∆x is defined over the range of voxels within a patch centred at 0. We
thereby try to find patches within the non-local search region that are similar
to the central patch. The value for σ2 is the local variance of the noise and can
be directly estimated from the 3D image data (see [8] for details).

The similarity metric at a given position x is defined as the normalised cross
correlation (NCC) of the respective weights w1 and w2 for the images I1 and I2:

NLSD(x) =

∑

k ((w1(x,xk)− w1) · (w2(x,xk)− w2))
√
∑

k(w1(x,xk)− w1)2
√
∑

k(w2(x,xk)− w2)2
, k ∈ Nx (2)

where w is the mean of all weights within the non-local region Nx. NCC is
robust against noise, but to accommodate for missing correspondences a mutual-
saliency weighting [9] could potentially be beneficial.

We have implemented the calculation of this new similarity term as a convo-
lution filter to evaluate the SSD of two patches. The pointwise product of both
images is obtained and subsequently convolved with a uniform averaging filter.
For the calculation of the weights within the non-local region N the second im-
age is shifted by xk −x0(∀k ∈ N ) and the averaging filter is applied again. This
implementation speeds up the calculation of the similarity metric substantially
and avoids the need for preselection of potentially good weights as proposed in
[8]. The size of the non-local region should be as large as possible, but for prac-
tical applications a size of 15x15 for 2D experiments and 7x7x7 for 3D images
together with a patch size of 3x3 and 3x3x3, respectively, has been found to be
sufficient to obtain good responses for the shape descriptor.

3 Registration framework

Within the non-rigid registration, we aim to minimize the following cost function
w.r.t. the deformation field u = (u, v, w)T , consisting of a non-linear similarity
term S (dependent on u) and a diffusion regularization term:

argmin
u

=

∫

Ω

S (I1(x), I2(x + u))2 + α tr
(

∇u(x)T∇u(x)
)2

dx (3)

Simple gradient descent methods show slow convergence, especially in homoge-
nous regions [10]. Since the objective function to be minimized is of the form
of

∑

i f
2

i , we can apply the Gauss-Newton optimization method, where f is
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(a) Modality 1 (b) Modality 2 (c) LNMI (d) NLSD

Fig. 2: Feature location in both images ((a) red and (b) blue channel of colour
cryosection). Response in search window of (c) LNMI and (d) NLSD. Our pro-
posed method shows a more discriminative peak in the centre.

minimized iteratively with the update rule: (JT
J)ugn = −J

Tf , where J is the
derivative of f w.r.t. u. This can be adapted to our regularized cost function.
We simplify the notation to S = S (I1(x), I2(x)) and ∇S = ( δS

δu
, δS
δv
, δS
δw

)T and
∆u = ∇ (∇(u(x)). The regularization term is linear w.r.t. u as the differen-
tial operator is linear. The resulting update step given an initial or previous
deformation field uprev is given by:

(

∇ST∇S + α∆
)

ugn = −(∇STS + α∆uprev) (4)

Equation 4 is solved using an iterative solver. The final deformation field is
calculated by the addition of the update steps ugn. The parameter α balances
the similarity term with the regularizer. We set α = 1 in all experiments.

We have also implemented MI, the classic choice of a multi-modal similarity
criterion, within the same deformable registration framework. For the variational
optimisation we need to evaluate the similarity function at each location, there-
fore a local derivation of mutual information is used, as described in [11]. An
overview of the possibilities of variational implementations other statistical sim-
ilarity terms, as well as a discussion of a locally weighted computation of the
global measures, is given in [12].

Given the joint probability p12(i) of the co-occurrence of an intensity pair
i = (i1, i2)

T in two images I1 and I2 and the two marginal intensity probabilities
p1(i1) and p2(i2), local normalised mutual information (LNMI) at location x is
defined as (using the global entropy of I1 for normalization):

LNMI(x) = log

(

p12(I1(x), I2(x))

p1(I1(x)) · p2(I2(x))

)

1
∫

x
p1(I1(x)) log(p1(I1(x)))dx

(5)

The joint and marginal histograms are recalculated at each iteration and smoothed
with a Parzen window kernel of size 5x5 with a standard deviation of 0.5. We
use 128 histogram bins.

4 Saliency and robustness of correspondences

We examine the ability of our new similarity metric to distinguish between
anatomical features in different modalities under the influence of local defor-
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(c) TRE with increasing
strength of deformations.

Fig. 3: (a,b) Saliency and robustness of both similarity metrics are compared.
(c) TRE of registrations of synthetic deformations (see text for details). LNMI
is displayed with solid lines and circles, NLSD with dashed lines and squares.

mations, additive noise and non-uniform bias fields. A ground truth is provided
by using two images of different colour channels taken from a cryosection of the
Visible Human Project, which are intrinsically aligned. A number of landmarks
were selected at the same location in both images using the Harris corner de-
tector. The similarity metric was then calculated between a point in the first
image and all locations in the second image within a window of 23x23 around
that location. Figure 2 shows one selected point and the search window in both
images. The proposed metric can better distinguish the local maximum in the
centre.

We run these comparisons over all feature locations and quantify the results
using two criteria. First, the distance of the maxima of the similarity function
is compared with the ground truth location. Deviations of more than 3 pix-
els are counted as false correspondences. We define the fractional amount of
false matches as robustness. Second, the saliency or discrimination between the
maximum and its surrounding values is quantified by convolving the similarity
response with a Mexican hat function (σ = 1), so that high positive values are
characteristic for a high saliency in the similarity function (see Fig. 3 (a,b)).

5 Results

We performed registrations, using a multi-resolution scheme, for the synthetic
test images on which a simulated deformation was applied. The deformations of
varying strengths are obtained using a uniform B-spline grid and random control
point displacements. In Fig. 3 (c) the average target registration error (TRE)
between ground truth deformations and registration are compared for LNMI
and NLSD for increasing magnitudes of deformations. For larger deformations,
NLSD shows higher accuracy, and the TRE remains almost unaffected, while for
LNMI the TRE strongly deteriorates. This demonstrates the disadvantages of
mutual information, when the initial estimate of the joint intensity distribution
is not close enough to the real distribution, due to large deformations, and the
similarity term is susceptible to local optima.
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(a) Detail view of slices of
CT target volume

(b) MRI, aligned using
LNMI

(c) MRI, aligned using
proposed metric (NLSD)

Fig. 4: Axial slices through CT and MR image of the lungs of two patients with
empyema. Contours of CT are shown for visual guidance. Landmarks in top row:
descending aorta (©) and carina (�) after non-rigid registration compared to
the gold standard (+) demonstrate a better alignment for NLSD. The example
below shows a substantial improvement for the dome of the diaphragm (arrow).

We then applied our proposed technique to a clinical dataset of 11 patients,
which were scanned with both CT and MRI. All patients suffered from empyema,
a lung disease where the pleura gets infected and excess fluid fills up the pleural
space. This causes the lung to collapse and the extra fluid turns into an abscess.
Both modalities are useful for detecting this pathology, but because the patients
are scanned in two different sessions and at different levels of breath-hold, there
are non-rigid deformations which make it difficult to relate the scans for the
clinician. A particular challenge for the registration are large slice thicknesses
of up to 8 mm used for the MRI acquisition. The background is removed using
a threshold and a morphological filter. For the registration, first a rigid body
transformation is estimated using a blockmatching algorithm [13]. In the second
step, the proposed non-rigid registration is performed, using a multiresolution
scheme with 3 levels. Similarity terms and their derivatives are recalculated
before each iteration of the Gauss-Newton optimisation method. The iterations
are stopped when the mean of the cost function does not further decrease.

We compare the results of our proposed metric, non-local shape descriptors
(NLSD), against local normalised mutual information (LNMI). The running time
for one 3D registration of images with a size of 253x253x132 voxels is 43 minutes
for NLSD and 24 minutes for LNMI on a single core. The range of values for the
determinant of the Jacobian of the deformation fields are [0.25, 1.81] for NLSD
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(b) Landmark registration error

Fig. 5: Quantitative evaluation of registration outcome: � before registration,
� rigid-body alignment, � non-rigid registration using LNMI, and � using the
proposed metric NLSD.

and [0.26, 1.81] for LNMI, thus no physically implausible folding occurred and
all transformations are invertible.

The registration outcome for two cases is displayed in Fig. 4. The target CT
volume is shown along with the aligned MR images with deformable registration
using LNMI and our proposed metric. Both the contours of the CT and man-
ual anatomical landmarks reveal the advantages and improved accuracy of the
presented method. To compare our findings quantitatively, we first calculated
the intensity-based similarity before and after registration using the presented
metrics. Although an improvement of a similarity function does not necessarily
ensure anatomical correspondence, it can highlight differences between meth-
ods. We use mutual information calculated within cubic blocks of 303 voxels
to reduce the influence of the non-uniform bias field in the MRI scans. Figure
5 (a) shows an improvement of this measure using NLSD, for all seven cases,
over MI. Additionally a clinical expert manually selected landmarks for the four
remaining cases. Between 12 and 15 corresponding landmarks were selected in
the four image pairs, containing both normal anatomical locations and disease
specific places. It must be noted that some of the landmarks are very challeng-
ing to locate, both due to low scan quality (motion artifacts) and changes of the
pathology in the diseased areas between scans. On average, the target registra-
tion error (TRE) could be further reduced by about 2 mm using our new metric
compared to LNMI (see Fig. 5 (b)).

6 Conclusion

In this work a new similarity metric for deformable multi-modal registration
is proposed. The non-local shape descriptor (NLSD) aims to extract the most
descriptive geometric features in medical images, while being nearly independent
of non-functional intensity relations, non-uniform intensity fields and additive
noise. This new metric can robustly find correspondences in different modalities
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and strongly discriminate between salient points. The technique is implemented
in a variational, diffusion-regularized registration framework and compared to
the most commonly used alternative - mutual information. We demonstrate that
NLSD achieves much improved and more accurate registration results, especially
in the case of large deformations. We validate our findings for the application
of deformable registration of clinical MR and CT scans of diseased patients.
Anatomical landmarks chosen by an expert clinician show improved alignment
using our metric. A more thorough evaluation, including more landmarks and
a comparison within different transformation models, will be addressed in the
future.
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