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Abstract—Generation of digitally reconstructed radiographs
(DRRs) is computationally expensive and is typically the rate-lim-
iting step in the execution time of intensity-based two-dimensional
to three-dimensional (2D–3D) registration algorithms. We address
this computational issue by extending the technique of light field
rendering from the computer graphics community. The extension
of light fields, which we call attenuation fields (AFs), allows most
of the DRR computation to be performed in a preprocessing
step; after this precomputation step, DRRs can be generated
substantially faster than with conventional ray casting. We derive
expressions for the physical sizes of the two planes of an AF neces-
sary to generate DRRs for a given X-ray camera geometry and all
possible object motion within a specified range. Because an AF is a
ray-based data structure, it is substantially more memory efficient
than a huge table of precomputed DRRs because it eliminates the
redundancy of replicated rays. Nonetheless, an AF can require
substantial memory, which we address by compressing it using
vector quantization. We compare DRRs generated using AFs
(AF-DRRs) to those generated using ray casting (RC-DRRs) for
a typical C-arm geometry and computed tomography images of
several anatomic regions. They are quantitatively very similar: the
median peak signal-to-noise ratio of AF-DRRs versus RC-DRRs
is greater than 43 dB in all cases. We perform intensity-based
2D–3D registration using AF-DRRs and RC-DRRs and evaluate
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registration accuracy using gold-standard clinical spine image
data from four patients. The registration accuracy and robustness
of the two methods is virtually identical whereas the execution
speed using AF-DRRs is an order of magnitude faster.

Index Terms—Digitally reconstructed radiographs, image-
guided therapy, intensity-based 2D–3D image registration, light
fields.

I. INTRODUCTION

I N ORDER TO use preoperatively acquired three-dimen-
sional (3-D) images for intraoperative therapy guidance,

and plans (e.g., biopsy trajectory and radiation beam trajecto-
ries) constructed in the coordinate system of the preoperative
image data, the images must be registered to a coordinate
system defined in the operating room. One way to achieve this
is to register the preoperative 3-D image to an intraoperative
two-dimensional (2-D) image. Registration of an X-ray com-
puted tomography (CT) image to one or more X-ray projection
images (e.g., simulator images, portal images, fluoroscopy im-
ages, and amorphous silicon detector images) is a particularly
interesting example of 2-D to 3-D (2D–3D) registration that has
a number of clinical applications, including patient placement
for radiotherapy planning and treatment verification [3], [4],
radiosurgery [5], cranial neurosurgery [6], neurointerventions
[7], [8], spinal surgery [9], [10], orthopedic surgery [11], and
aortic stenting procedures [10], [12], [13].

The 2D–3D registration problem involves taking one or more
X-ray projection (2-D) images of the patient’s anatomy and
using those projections to determine the rigid transformation

(rotation and translation) that aligns the coordinate system
of the CT (3-D) image with that of the X-ray projection im-
ages and thereby the operating room. Fig. 1 shows a schematic
representation of the 2D–3D registration process. In general,
most of the proposed solutions to this problem fit into this gen-
eral framework. We are interested in intensity-based 2D–3D
image registration where the reference image is one or more
X-ray projection images and the floating image is a CT image
[6], [10], [13]–[21]. The method involves computing synthetic
X-ray images, which are called digitally reconstructed radio-
graphs (DRRs), by casting rays through the CT image using a
known camera geometry. The DRR pixel values are simply the
summations of the CT values encountered along each projec-
tion ray. The pose (position and orientation) of the CT image
(given by the transformation ) is adjusted iteratively until the
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Fig. 1. Schematic overview of the 2D–3D registration process. For intensity-
based 2D–3D registration, the reference image is an intra-operative X-ray
projection (2-D) image. It is used as is, with little or no processing. The floating
image is a CT (3-D) image. It is processed by generating DRRs (synthetic
X-ray projection images) for various orientations of the CT image relative to
the X-ray imaging system. The optimizer searches for the rigid transformation
T that produces the DRR most similar to the real X-ray projection image.
The optimal transformation is used to align the CT coordinate system with that
of the operating room.

DRR it produces is most similar to the X-ray projection image.
A variety of similarity measures have been used, including cross
correlation, entropy, mutual information (MI), gradient corre-
lation, pattern intensity, and gradient difference [19]. More re-
cently similarity measures based on image intensity gradients
have been used [18], [20].

Generation of DRRs is computationally expensive and is typ-
ically the rate-limiting step in the execution time of intensity-
based 2D–3D registration algorithms. In this paper, we address
this computational issue by extending the technique of light field
rendering from the computer graphics community. The exten-
sion of light fields, which we call attenuation fields (AFs), al-
lows most of the DRR computation to be performed in a prepro-
cessing step; after this precomputation step, DRRs can be gener-
ated substantially faster than with conventional ray casting. We
review light field rendering and discuss our extension to AFs
for the generation of DRRs. Our AF is similar in concept to
the Transgraph introduced by LaRose et al. [22]. This paper ad-
dresses several important issues. We derive expressions for the
physical sizes of the two planes of an AF necessary to generate
DRRs for a given X-ray camera geometry and all possible object
motion within a specified range. An AF can require substantial
memory, which we address by compressing it using vector quan-
tization. We compare quantitatively DRRs generated using AFs
(AF-DRRs) to those generated using ray casting (RC-DRRs) for
a typical C-arm geometry and CT images of several anatomic re-
gions. Finally, we perform intensity-based 2D–3D registration
using AF-DRRs and RC-DRRs and evaluate registration accu-
racy using gold-standard clinical spine image data from four
patients.

II. THEORY

A. Light Fields

Light fields were originally proposed by Levoy and Hanrahan
[23]. A similar idea called the Lumigraph was simultaneously
and independently presented by Gortler et al. [24]. Light fields
were designed as a means for performing fast 3-D rendering.
Essentially, light fields provide a method of parameterizing the
set of all rays that emanate from a static scene. Each ray is rep-
resented by its intersection with two arbitrary planes in space

Fig. 2. Two-plane parameterization of a light field. Each ray R that emanates
from a static scene is represented by its intersection with two planes in space.
By convention, the coordinate system on the first plane is (u; v) and on the
second plane is (s; t). This two-plane parameterization means that each ray in
space can be thought of as being represented by one point p = (u ; v ; s ; t )
in a 4-D space.

Fig. 3. View-based rendering using a light field. If one is able to calculate all
rays inside a light slab, one can generate an image from a novel focal point (large
solid circle inside light slab) by determining which rays are involved (thick lines)
and associating them with their corresponding pixel value. Sampling the space
of rays in the slab (thin lines) is a straightforward matter of generating images
of the scene in question with the focal point on the (u; v) plane (small solid
circles on (u; v) plane) and using the (s; t) plane as the image plane. In practice,
there is a finite number of rays. Each pixel for the novel viewpoint image is
calculated by computing its corresponding ray’s 4-tuple (u; v; s; t) and either
finding its nearest neighbor or performing quadrilinear interpolation among the
neighboring samples.

(Fig. 2). By convention, the coordinate system on the first plane
is and on the second plane is . This two-plane pa-
rameterization means that each ray in space can be thought of as
being represented by one point in a four-di-
mensional (4–D) space. As a practical matter, the planes are fi-
nite, representing a particular viewpoint of the scene. In practice

, and are restricted to values between 0 and 1 and, thus,
points on each plane are restricted to lie within a convex quadri-
lateral. The plane can be thought of as the focal plane
and the plane as the camera (image) plane. The shape cre-
ated by connecting the and planes together is called
a light slab, which represents all light that enters the restricted

plane and exits the restricted plane.
If one is able to calculate all infinitely-many rays inside

this light slab, one can recreate almost any image with a focal
point inside the light slab simply by determining which rays
are involved and associating them with their corresponding
pixel value (Fig. 3). Practically, we cannot generate all rays
in the light slab. We can, however, generate a large number
of them and, provided we have reasonably dense coverage of
the space, generate missing values by interpolating between
existing discrete samples. Sampling the space of rays in the
slab is a relatively straightforward matter of generating images
of the scene in question with the center of projection (focal
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Fig. 4. (a) Standard light field. Each pixel on the image plane represents the
amount of light reflected to the center of the projection from the surface its ray
intersects. (b) Light field for DRR generation (AF). The virtual image plane
allows the same two-plane parameterization as in standard light fields. In this
case, however, the rays are extended to an effective image plane situated beyond
the CT image (the scene) so that each pixel may be associated with the sum of
linear attenuation coefficients along its ray.

point) on the plane and using the plane as the image
plane (Fig. 3). These images are skewed perspective images
and each one represents a 2-D slice through the 4-D space of all
rays. Given a novel viewpoint within the slab, we can calculate
each pixel value by computing its corresponding ray’s 4-tuple

and either finding its nearest neighbor or performing
quadrilinear interpolation among the neighboring samples.
These operations can be done in constant time, which greatly
reduces the computational expense relative to ray casting.

B. Attenuation Fields (Light Fields for Generation of DRRs)

Light field rendering is not necessarily an obvious choice for
DRR generation. A static “scene” is replaced by 3-D image data.
Also, pixel values represent very different things in the two con-
texts. In both cases, a pixel corresponds to a ray through space.
However, in traditional light field rendering, a vector-valued
pixel represents the amount of light (and its spectral compo-
nents, e.g., red, green, and blue channels) reflected from the
first surface in the scene its ray intersects in the direction of that
ray. By contrast, a scalar-valued DRR pixel is the integral of the
linear attenuation coefficients its ray encounters along the path
from the source to the destination.

To accommodate these differences, we modify the light
field generation process by introducing the virtual image plane
(Fig. 4). We call the extension of light fields for generation of
DRRs attenuation fields (AFs). Essentially the virtual image
plane is placed exactly where the plane would be if

we considered the CT data to be a 3-D scene and performed
standard light field rendering. The two-plane parameterization
of the rays is, thus, unchanged from the normal case. In the
creation of an AF, however, instead of generating images with
the standard definition of pixels, we associate each sample

with a scalar function , which
is the integral of the linear attenuation coefficients encountered
along the ray

(1)

where is the total attenuation, is the linear attenua-
tion coefficient derived from the CT value at point , and
is the distance between discrete samples along the ray [25].1 In
standard ray casting, computation along a ray stops as soon as it
intersects an opaque surface. In DRR generation by ray casting,
the ray is traced through the entire CT image volume to deter-
mine its sum. To do so while maintaining the same parameteri-
zation of rays in space, we must cast the rays beyond the virtual
focal plane onto the effective focal plane. The values we use
to generate the light field are then those that lie on the image
created on the effective focal plane. In both cases, the image
created is a skewed perspective image. The main difference is
that in regular light field generation the effective image plane
remains fixed and between the scene and the focal plane. In AF
generation, the virtual image plane remains fixed while the ef-
fective image plane can move and lies on the other side of the
scene from the focal plane.

We can create an AF by generating DRRs from multiple view-
points and then use the AF to generate DRRs from novel view-
points using the same interpolation of 4-D ray space that Levoy
and Hanrahan [23] used. Fig. 5 shows sample images used to
create an AF. Although the AF is created by generating DRRs
by ray casting from multiple viewpoints on the focal plane, the
AF is really a ray-based data structure that stores the total at-
tenuation for each ray in a dense set of rays. The total attenua-
tion of each ray of a DRR from a novel viewpoint is determined
by computing the ray’s 4-tuple and either finding its
nearest neighbor (total attenuation of the closest ray in the AF)
or performing quadrilinear interpolation among the neighboring
samples (Fig. 3). The substantial reduction in the computation
time of generating DRRs using AFs relative to performing ray
casting is that use of the AF essentially allows the total attenu-
ation to be looked up in a set of precomputed values rather than
computed using the integral or summation in (1). Because an AF
is a ray-based data structure, it is substantially more memory ef-
ficient than a huge table of precomputed DRRs because it elim-
inates the redundancy of replicated rays.

1To a good approximation, we can model the X-ray imaging process as a
linear attenuation of X-rays as they pass through an object. This ignores the
effects of scatter and beam hardening. The attenuation factor for ray R is
exp(U ). The incident X-ray intensity is proportional to this attenuation factor
and is transformed to an X-ray image intensity according to the characteristics
of the imaging system and post-processing filters. Typically, this transformation
includes a negative logarithm, in which case the X-ray image intensity is a linear
function of U . We create an AF using (1), but in principle other factors in the
X-ray imaging process and post-processing transformations can be accounted
for when creating the AF and/or when generating DRRs from the AF.
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Fig. 5. Sample images used to create an AF. Each image, which is a DRR
generated using conventional ray casting, represents a slice through the 4-D ray
space keeping (u; v) constant. The DRRs are generated in the anterior-posterior
direction from a CT image of the pelvic region. The (u; v) plane is a square with
the length of a side equal to L . The value of u is�L =2; 0, and +L =2 in the
left, middle, and right column images, respectively. The value of v is�L =2;0,
and +L =2 in the bottom, middle, and top row images, respectively. Each pixel
in an image corresponds to a particular value of (s; t). The intensity gradients
near the edges of these images are caused by rays that obliquely traverse the
corners of a rectangular CT image.

We are interested in using AFs to generate DRRs for in-
tensity-based 2D–3D image registration. In this case, the focal
point (X-ray source) and detector are fixed and the CT image
moves during the iterative registration process. This is equiva-
lent to a fixed CT image and a moving viewpoint, and this is
how the AF is used in our registration method.

We note that two of the principal problems often encountered
with traditional light field rendering, occlusions and variations
in illumination, are not issues in the extension to AFs for gen-
eration of DRRs.

C. Attenuation Fields: Geometry

Given a camera geometry and a range of motion of the object
(CT image) relative to the camera, we need to know the physical
sizes of the and planes necessary to generate DRRs
for all possible motion within the specified range. In this sec-
tion we derive an expression for the physical sizes of the
and planes. First, we define some assumptions and termi-
nology. Both planes are assumed to be square and parallel, with
the length of a side of the plane equal to , the length of
a side of the plane equal to , and the distance separating
them given by . We assume, without loss of generality, that the
center of the plane is at the origin and that the plane
is units away in the positive direction with its center at the
X-ray source on the -axis. The AF geometry and coordinate
system is illustrated in Fig. 6.

The range of motion is a neighborhood of transformations
about an initial transformation , which places the CT image
such that it is centered on the plane (Fig. 6). Note that
we are placing the plane through the center of the initial
(expected) position of the CT image. Because each pixel in the
AF is associated with the sum of attenuation coefficients along
its ray (Fig. 4), the placement of the plane is arbitrary.
This placement simplifies the analysis of the physical sizes of

Fig. 6. The AF geometry and coordinate system for generation of DRRs
similar to X-ray projection images that would be obtained with a 12-in C-arm
fluoroscope with focal distance 1 020 mm. The (u; v) and (s; t) planes are
assumed to be square and parallel. The length of a side of the (u; v) plane is
L , the length of a side of the (s; t) plane is L , and the distance separating
the planes is f . The (s; t) plane lies in the xz coordinate plane with its center
at the origin. The (u; v) plane is f units away in the positive y direction
with its center at the X-ray source on the y-axis. In this example, the distance
f = 650 mm puts the (s; t) plane in the center of a typical CT image of
a patient that would be lying on an operating room table. The CT image is
assumed to be a cube with the length of a side equal to w.

the and planes. The neighborhood of transforma-
tions is defined by a maximum rotation about each axis and
a maximum translation along each axis. Specifically, each
transformation in the neighborhood is defined as

(2)

where the superscripts and denote rotation and trans-
lation, respectively, and the subscripts , and denote the
coordinate axis. The rotations and translations are within the
specified range. For example, is a rotation about the -axis
where the rotation angle .

Consider the set of all rays which can be generated by a light
slab. Basically, we can generate any ray that intersects both the

plane and the plane. It is important to notice the role
played by symmetry. It suffices to consider this problem in the

-plane since the symmetry of the construction implies that
the same results must hold for the -plane as well. It is also
instructive to observe that we need to consider only the trans-
formations at the corners of the neighborhood defined by
and because, if these transformations generate images from
rays that intersect both planes, given that these transformations
define a convex region, all intermediate transformations must
also generate images from rays that intersect both planes.

We begin our analysis of the size of the plane
by starting with a camera with a fixed field of view (FOV)
[Fig. 7(a)]. We define the most extreme ray as being the one
that is cast farthest from the origin and, thus, is the ray closest
to missing the plane. The main idea of our analysis is that if
we consider the most extreme ray, and rotate and translate it so
that it is cast as far from the origin as possible, we know that
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Fig. 7. Analysis of the size ofL . (a) Initial transformation. (b) Rotation about
x-axis. (c) Rotation about y-axis. (d) Rotation about z-axis. (e) Translation
along x-axis. (f) Translation along y-axis.

the point where this ray intersects the -plane represents the
necessary extent of the plane.

In the initial configuration, all rays along the border of the
viewing frustum of the camera are equally extreme. First, we
rotate about the -axis as depicted in Fig. 7(b). Due to sym-
metry, we can rotate in either the positive or negative direction
without loss of generality. As a result of this rotation, the two
rays on the lower corners of the viewing frustum (shown in
bold) are the most extreme. Next we rotate about the -axis
[Fig. 7(c)]. This results in a single most extreme ray, which we
then rotate about the -axis in such a way that it is cast
even further from the origin [Fig. 7(d)]. Finally, we translate this
ray by along the -axis [Fig. 7(e)] and along the -axis
[Fig. 7(f)] so that it moves as far as possible from the origin.
Note that a translation in the -axis direction has no effect in
this analysis, which is restricted to the -plane. The necessary
length of the plane is determined by observing where
this extreme ray intersects the -plane.

Finally, we determine by computing where the extreme
ray intersects the -plane. Let be the concatenation of all
the transformations in this analysis, where the transformation
is represented as a 4 4 homogeneous matrix, and be the
3 3 rotation matrix component of . We define and
as the 2 4 and 2 3 truncations of and , respectively,
that ignore the component. Let be the ini-
tial focal point and be a vector

that describes the direction of the most extreme ray in the anal-
ysis above in the initial configuration. The angle is one-half
of the FOV angle. The transformation in this analysis maps
and to and , respectively, where the component
is ignored after transformation. The line defined by the most
extreme ray after transformation intersects the plane at

. Thus, we determine by solving

(3)

After concatenating the transformations and performing some
manipulation and simplification, we arrive at the following ex-
pression for :

(4)

where

(5)

and

(6)

In these equations, the variables , and represent the
trigonometric functions , and

. If and are relatively small, then the expres-
sion for can be reduced using small-angle trigonometric
approximations to

(7)

The analysis of the size of the plane is similar to
the analysis of above. We determine by solving (3). One
important difference is that the translations of are in the op-
posite direction (in this case along the -axis and along
the -axis). Also, the line defined by the most extreme ray after
transformation intersects the plane at .
The resulting expression for is

(8)

where the expression for is identical to that for in (6) and

(9)

The expression for can be reduced using small-angle trigono-
metric approximations to

(10)

D. Attenuation Fields: Memory

An important issue is the size of the AF. To effectively sample
a 4-D space, one needs a large number of images and, thus, an
AF can require substantial memory (Table I). For example, an
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TABLE I
MEMORY SIZE AND CREATION TIME OF AFS

AF that represents attenuation with two bytes, has a reso-
lution of 64 64 pixels, and has a resolution of 512 512
pixels requires 2 GB memory, which is more memory than typ-
ical workstations have. For a system with an orthogonal pair of
X-ray cameras, two AFs are required, one for each camera, thus
doubling the required memory. For a rotational X-ray system
such as a C-arm fluoroscope, several AFs might be required.
Fortunately, there is a great deal of redundancy in the data. There
is redundancy in and corresponding to interpixel similarity
and redundancy in and corresponding to interimage simi-
larity. These redundancies can be exploited by compressing the
data using vector quantization.

Vector quantization is a lossy compression technique wherein
a vector of samples is quantized to one of a number of pre-
determined reproduction vectors [26]. A reproduction vector is
called a codeword and the set of codewords available to encode
a source is called the codebook. The codebook is constructed
during a training phase. The training phase finds a set of code-
words that best approximates a set of sample vectors, which is
called the training set. We perform training on a subset of the
AF rather than the entire AF to reduce the computation time
and memory requirements of the training phase. After the code-
book is constructed, encoding of the AF is performed by par-
titioning the AF into vectors and finding for each vector the
closest codeword in the codebook. The encoded AF is stored
as a set of codebook indices. Decoding of the AF is performed
simply by looking up the the indices in the codebook and out-
putting the codewords corresponding to the indices. An advan-
tage of vector quantization for our application is that decoding
is a look-up procedure and, thus, is very fast. Depending on the
size of the codebook and codevectors and the redundancy in the
data, one can achieve large compression ratios. We partition the
AF into 2 2 2 2-element tiles, which are the vectors that
are quantized. The use of 16-element tiles is possible because
of the redundancy in the data. The compression ratio is

(11)

where is the number of elements per vector, is the number
of bits per element, and is the number of codewords. The

numerator is the number of bits per vector; the denomi-
nator is the number of bits per codeword. Using code-
words that each represent a 2 2 2 2-element tile of voxels
in space ( elements per vector), two bytes per
element ( bits per element), and a codebook
consisting of up to 65 536 codewords each represented (without
using bit packing) by two bytes , the compres-
sion ratio is 16.

III. EXPERIMENTS

A. Generation of DRRs Using Attenuation Fields

We generate DRRs computed using AFs (AF-DRRs) and
compare these quantitatively to those generated using conven-
tional ray casting (RC-DRRs). The RC-DRRs were computed
using the summation approximation in (1) with mm.
Attenuation coefficients at the discrete sample points were
estimated from the nearest voxels using trilinear interpolation.
The important geometrical parameters are the angular FOV of
the X-ray camera system and the maximum range of motion
of the object relative to the camera. For these experiments we
generate DRRs similar to X-ray projection images that would
be obtained with a typical 12-inch C-arm fluoroscope. The AF
geometry for the fluoroscope is shown in Fig. 6. The angular

. The plane is centered
at the X-ray source. The plane is parallel to the
plane and the distance between the planes is mm. This
distance puts the plane in the center of a typical CT image
of a patient that would be lying on an operating room table. We
define the range of motion of the object (CT image) relative to
the camera by a maximum rotation about each axis
and a maximum translation mm along each axis.
Using the expressions derived in Section II-C, the physical size
of the plane is mm and the size of the
plane is mm.

There are four parameters of an AF. Two of the parameters
are the resolutions of the and planes. The other two
parameters are related to compression of the AF. We compress
the AF using vector quantization, so one of the compression pa-
rameters is the number of codevectors. Similar to Levoy and
Hanrahan [23], we use a subset of the pixels for training, so the
final parameter is the training set size (percentage of samples).
In order to evaluate the importance of these four parameters on
the quality of AF-DRRs, we created AFs using different values
of the parameters. We created AFs using CT images of three
anatomic regions—the skull, thorax, and pelvis. The pixel size
of the CT images was 0.5–0.8 mm; the slice thickness was 1.0,
1.25, and 2.0 mm for the skull, thorax, and pelvis CT images, re-
spectively. For each anatomic region and set of parameters, we
created two AFs for different camera orientations, one for the
anterior-posterior (AP) direction and one for the lateral direc-
tion. For each AF, we generated 600 AF-DRRs with resolution
256 256 pixels, 100 for each anatomic region and orientation,
using random camera poses within the specified range of mo-
tion ( mm). For each AF-DRR, a corre-
sponding DRR was generated using conventional ray casting.
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Fig. 8. (a) Box-and-whisker plot of PSNR values for AF-DRR
images relative to corresponding RC-DRR images. Six AFs were
generated, two orientations (AP and lateral) for each of three anatomic
regions (skull, thorax, and pelvis). The AF parameters were: (u; v)
plane resolution = 64 � 64 pixels; (s; t) plane resolution = 256 � 256
pixels; number of codevectors = 16384, and training set size = 10% of
samples. For each orientation and anatomic region, 100 AF-DRRs were
generated from the corresponding AF using random camera positions and
orientations within the specified range of motion (maximum rotation of 10
about each axis, maximum translation of 100 mm in each direction) For each
AF-DRR, a corresponding RC-DRR was generated and the PSNR value
between the two types of DRR images was computed. The central line in each
box is the median PSNR value over all 200 DRRs for that anatomic region, the
lower and upper edges of the box are the 25th and 75th percentile values, and
the length of the vertical dashed lines are 1.5 times the interquartile range.
Outliers, which are values that fall outside of 1.5 times the interquartile range,
are designated by a cross (“+”). The median PSNR values are greater than
43 dB, almost all of the PSNR values are greater than 40 dB, and very few are
less than 36 dB. (b) DRR images corresponding to the lowest PSNR value
for each anatomic region. The top row are RC-DRRs; the bottom row are
corresponding AF-DRRs. Qualitatively, even the image pairs associated with
the lowest PSNR values are very similar.

The AF-DRRs are compared quantitatively to the corre-
sponding RC-DRRs by computing the peak signal-to-noise
ratio (PSNR)

(12)

where is the maximum pixel value and is the root-mean-
square pixel value difference between the two images. We ig-
nore background pixels when computing PSNR because such
pixels artificially inflate the value of PSNR.

We picked a set of AF parameters that produced AF-DRRs
with median PSNR values above 43 dB, almost all PSNR
values above 40 dB, and few PSNR values below 36 dB.
The AF parameters are: plane resolution

pixels plane resolution pixels
number of codevectors , and training set size %
of samples. The distribution of PSNR values for the three
anatomic regions is shown in Fig. 8(a). There are few visible

differences between images with PSNR values above 30 dB
[Fig. 8(b)]. The image compression literature considers a
PSNR value above 36 dB to represent excellent image quality
[27]. Difference images between AF-DRRs and corresponding
RC-DRRs are shown for PSNR values of 36, 40, and 44 dB in
Fig. 9. In all cases the pixel value differences are small. The
difference image artifacts tend to correlate with image intensity
gradients (object edges). There is a substantial reduction in
image artifacts as the PSNR value increases from 36 to 44 dB.

The influence of each AF parameter is shown in Fig. 10. In
each plot, one of the four AF parameters was varied. The reso-
lutions of the and planes are the most important AF
parameters.

An AF with plane resolution pixels
and plane resolution pixels, which pro-
duces excellent AF-DRRs (Fig. 8), requires a memory size
of 32 MB (Table I). Using a straightforward and relatively
unoptimized implementation of ray casting, we can generate
a 256 256-pixel RC-DRR from a 512 512 512-voxel
CT image in approximately 1.5 s on a PC workstation with
one 2.2 GHz Intel Xeon processor. Thus, we can create an
AF with plane resolution pixels and

plane resolution pixels in approximately
1.7 h (Table I). Once the AF has been created, we can generate
a 256 256-pixel AF-DRR on the same PC workstation in
approximately 50 ms.

B. Two-Dimensional to Three-Dimensional Registration
Using AF DRRs

1) Gold-Standard Clinical Spine Image Data: The Cyber-
Knife Stereotactic Radiosurgery System (Accuray, Inc.,
Sunnyvale, CA) is an image-guided frameless robotic stereo-
tactic radiosurgery system that was deve loped as a noninvasive
means to precisely align treatment beams with targets [28].
Two orthogonal X-ray cameras in the treatment room establish
a coordinate frame to locate the patient’s target site with respect
to the therapy beam directions for the robotic manipulator
(Fig. 11). A pair of images from the camera system determines
the patient’s position during treatment (Fig. 12). Because
the treatment position can differ from the position in the CT
planning study, a 2D–3D image registration process is used to
find the rigid-body transformation that relates the CT position
to the treatment position. This transformation is communicated
through a real-time control loop to a robotic manipulator that
points a compact 6-MV x-band linear accelerator (LINAC).
By taking images throughout the treatment process, shifts in
patient position can be detected and the beams can be redirected
accordingly.

Patients are currently undergoing treatment of spinal cord
lesions with the CyberKnife through an extended Food and Drug
Administration treatment protocol for use of the device [29],
[30]. After informed consent is obtained and documented, a
thorough medical history is obtained, and a physical examina-
tion and neurological evaluation are performed. Before treat-
ment, each patient is fitted with a simple immobilization device.
The cervical spine patients are fitted with a molded Aquaplast
face mask (WFR/Aquaplast Corp., Wyckoff, NJ) that stabilizes
the head and neck on a radiographically transparent headrest.
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Fig. 9. (a) Sample AF-DRR image generated in the AP direction from a CT image of the pelvis. (b)–(d) Difference images between AF-DRR image and
corresponding RC-DRR image with PSNR values of 36 dB (b), 40 dB (c), and 44 dB (d). The different PSNR values were obtained by generating AF-DRR images
from AFs created with different resolutions. The difference images are displayed with a different window/level setting than the sample image to emphasize the
pixel value differences, but all difference images are displayed with the same window/level setting to illustrate that there is a substantial reduction in image artifacts
as the PSNR value increases from 36 to 44 dB.

Fig. 10. Plots of PSNR values versus AF parameters. AFs were created for two orientations (antero-posterior and lateral) and each of three anatomic
regions (skull, thorax, and pelvis). For each orientation and anatomic region, AFs were created using different parameters. For each set of parameters,
600 AF-DRRS (100 AF-DRRs for each orientation and anatomic region) were generated using random camera positions and orientations within
the specified range of motion (maximum rotation of 10 about each axis, maximum translation of 100 mm in each direction) For each AF-DRR, a
corresponding RC-DRR was generated and the PSNR value between the two types of DRR images was computed. The initial AF parameters were:
(u; v) plane resolution = 64 � 64 pixels; (s; t) plane resolution = 256 � 256 pixels, number of codevectors = 16384, and training set size = 10% of
samples. In each plot, one of the four AF parameters was varied. Each symbol represents the mean PSNR value for the 600 AF-DRRs generated with that set
of AF parameters.

Thoracic and lumbar spine patients rest in a conformal alpha
cradle during CT imaging and treatment. These supports main-
tain the general orientation of the anatomy and minimize patient
motion.

For each patient, a contrast CT scan of the region of interest
(ROI) is acquired for treatment planning and also for reference
in the image-guidance process. For spinal radiosurgery of tho-
racic and lumbar vertebrae, and most cervical vertebrae (gen-
erally C3 and below), fiducial markers are implanted percu-
taneously before CT scanning in the posterior bony elements
of the vertebral levels adjacent to the lesions to provide radio-
graphic landmarks. Because these implanted fiducials have a
fixed relationship with the bone in which they are implanted,
any movement of the vertebrae is detected and compensated by
the CyberKnife. Implantation of fiducial markers occurs in the
operating room under conscious sedation. The fiducial markers
are 2 6 mm surgical stainless-steel self-retaining tacks. Four
or more fiducials are placed in a noncoplanar pattern and spaced
approximately 25 mm apart. Three noncollinear fiducials are re-
quired to define a rigid-body transformation. Four fiducials pro-
vide redundancy in the event that one of them is obscured or oth-
erwise difficult to image. Each fiducial is implanted through stab
wounds in the skin and guided with intraoperative fluoroscopy;
they are implanted in the lamina or facet of the spine around the
lesion of interest. No complications have been reported from
this procedure, and all patients have been discharged home the
same day.

We obtained CyberKnife spinal image data for four patients.
Two of these patients have cervical vertebrae lesions (C3 and
C5) and two have thoracic vertebrae lesions (T1 and T8). For
each patient, we obtained: 1) A pretreatment CT image with
slice thickness 1.25 mm and a FOV sufficiently large to image
the entire cross section of the body. 2) Approximately 20–30
pairs of orthogonal projection X-ray images obtained at inter-
vals of approximately 60 s for the duration of treatment with the
two Flashscan 20 flat-panel amorphous silicon detector (ASD)
X-ray cameras (dpiX, LLC, Palo Alto, CA). The X-ray images
have 512 512 pixels with pixel size 0.4 mm and 12-bit inten-
sity values (they are stored as 16-bit integers, but the dynamic
range is 12 bits). Only one randomly chosen pair of X-ray im-
ages per patient is used for the work reported in this paper.
3) The camera calibration model and parameters for the two
X-ray cameras. These parameters are obtained by scanning a
calibration phantom as part of regular quality assurance testing.
4) Positions (3-D) of the four fiducial markers in the CT image.
5) Positions (2-D) of the four fiducial markers in the projection
X-ray images.

2) Two-Dimensional Three-Dimensional Image Registra-
tion Algorithm: The algorithm searches for the six parameters
of the rigid transformation that produces DRRs (synthetic pro-
jection X-ray images) that are most similar to the real projection
X-ray images. The algorithm performs four main functions
corresponding to the four shaded boxes in Fig. 1: processing of
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Fig. 11. (a) Schematic illustration of the CyberKnife Stereotactic
Radiosurgery System (Accuray, Inc., Sunnyvale, CA), which is an image-guided
frameless robotic stereotactic radiosurgery system that was developed as a
noninvasive means to precisely align treatment beams with targets [28]. Two
X-ray sources are mounted on the ceiling. Two ASD X-ray cameras are
mounted on the floor. The orthogonal X-ray projection imaging system is
calibrated so that the intrinsic and extrinsic camera parameters of both imaging
devices are known. The orthogonal X-ray camera pair establishes a coordinate
frame to locate the patient’s target site with respect to the therapy beam
directions for the robotic manipulator. A pair of images from the camera system
determines the patient’s position during treatment. The dashed lines indicate
the triangulation of the 3-D position of a fiducial marker that appears in both
ASD X-ray projection images. (b) Photograph of the CyberKnife system with a
patient lying on the treatment table. One of the ceiling mounted X-ray sources,
both of the ASD X-ray cameras, and the robot with the LINAC are visible in
this picture.

the reference image, processing of the floating image, compu-
tation of a similarity measure, and optimization. In summary, at
each step of an iterative search process, the algorithm generates
DRRs for each ASD X-ray camera viewpoint from the current
pose of the CT image, measures the similarity of the real and
synthetic X-ray images by computing the value of a similarity
measure, and finds a new pose of the CT image that increases
the value of the similarity measure. This process is repeated
until no further improvement can be made.

Processing of the reference image. We use the ASD X-ray
projection images as the reference images. We crop each refer-
ence image to include a specific ROI (Fig. 13). The ROI includes
the anatomy that will be treated. Restricting the registration to

Fig. 12. A sample pair of images from the two ASD X-ray cameras in the
CyberKnife radiosurgery system (Fig. 11). In these images, the implanted metal
fiducial markers appear as small white objects in the cervical vertebrae near the
base of the skull.

a ROI has several advantages. First, this speeds up the registra-
tion process. In particular, DRRs are computationally expensive
to create, and their generation is typically a bottleneck in the
execution of the registration process. The DRRs are generated
only for the ROI. Also, the similarity measure is computed only
for the ROI. Second, the registration should be more accurate
within the ROI. The smaller the ROI, the less likely that struc-
tures within the ROI have moved relative to each other between
the time the preoperative CT is acquired and the time the proce-
dure is performed. The definition of the ROI is performed man-
ually and requires minimal effort. We generally specify an ROI
that includes a vertebra of interest plus the two adjacent verte-
brae. The size of the ROI is typically about 200 200 pixels.

Processing of the floating image: At each step of the it-
erative search process, DRRs are generated for each ASD
X-ray camera viewpoint from the current transformation
(pose) of theCT image. We generate AF-DRRs using two
AFs, one for each of the X-ray cameras. The AF parame-
ters are: plane resolution pixels
plane resolution pixels number of codevectors
16 384, and training set size 10% of samples.

Similarity measure. We perform registration using the simi-
larity measure MI [31], [32], which is an intensity-based image
similarity measure that is commonly used in medical image reg-
istration [33] and has been used in 2D–3D image registration
[13], [19], [21]. There are two X-ray projection images and two
corresponding DRRs. The MI similarity measure is the sum of
the MI for each real-synthetic image pair

(13)

where the subscripts 1 and 2 refer to the two orthogonal real-
synthetic image pairs.

Optimization strategy: We currently use a fairly simple best
neighbor search strategy similar to that in [34]. Basically the
search process takes an initial transformation as input. The
twelve closest neighbors in parameter space are computed by
varying each transformation parameter by some given step size.
There are twice as many neighbors as parameters because the
step size is both added and subtracted in order to look in both
directions. Each neighbor is itself a transformation and is
evaluated by generating DRRs using and the geometry of
each X-ray camera and computing the similarity between the



1450 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 24, NO. 11, NOVEMBER 2005

Fig. 13. (a) Example ASD X-ray projection image. The box delineates the manually selected ROI. We generally select an ROI that includes a vertebra of interest
plus the two adjacent vertebrae. Three bone-implanted fiducial markers are visible in the ROI. (b) A magnified view of the selected ROI. The window/level settings
in (a) and (b) are different. (c) An AF-DRR corresponding to the ROI in (b) generated from a registered CT image of the same patient using the camera geometry
of the X-ray imaging system used to acquire the image in (a).

DRRs and the reference X-ray projection images. The neighbor
with the best value of the cost function is picked, its neighbors
examined, and so on until no further improvement in the value
of the cost function can be made for the current step size. The
process is repeated using a smaller step size until some prede-
termined resolution. The parameter step sizes are normalized
using a scaling factor such that for a given step size, the average
motion of all projected voxels in the projection plane is approx-
imately equal for all parameters [35].

The search is performed hierarchically (coarse-to-fine) in two
passes, the first with smoothed versions of the reference im-
ages, and the second with the actual reference images. The ref-
erence images are smoothed in the first pass using a Gaussian
filter with mm. This has the effect of smoothing the cost
function in order to help avoid local optima and to produce a
good initial transformation for the second step. This approach
is a multi-scale search strategy rather than a multi-resolution
search strategy, which we have used in previous 3D–3D image
registration work. Because the 2-D images have a relatively lim-
ited number of pixels, we opt to blur the images and use all of
the pixels rather than subsample the images in order to better
estimate the joint probability density function and joint entropy,
which are used to compute MI (the reader is referred to [33],
[34] for details about how MI is computed from the joint prob-
ability density function and joint entropy). The initial step size
for the first pass corresponds to an average motion of projected
voxels of 5 mm. This is successively decreased to a final step
size of 0.5 mm. The initial and final step sizes for the second
pass are 2 mm and 0.1 mm, respectively.

During the iterative search process, we use a CT image origin
that is centered in the region of interest. The selection of this
origin is performed manually and requires minimal effort. For
spine image registration, we generally specify an origin that is
a point in the center of the vertebral body of interest. Using an
origin that is centered in the region of interest helps decouple the
rotation and translation parameters during the iterative search.

3) Assessment of Registration Accuracy and Robustness: A
gold-standard reference transformation is determined using the
implanted metal fiducial markers. Each pair of corresponding

2-D projection X-ray fiducial positions is backprojected to re-
construct the 3-D fiducial position. The rays do not intersect ex-
actly. We take as the 3-D coordinate the midpoint of the shortest
line segment between the two rays. The length of this shortest
line segment was mm for most of the markers in this
study. Then we perform a point-based registration by finding
the rigid transformation that aligns the 3-D fiducial positions
from the CT image with the 3-D backprojected fiducial posi-
tions from the X-ray images, such that the distance between cor-
responding points is minimized in the root-mean-square sense.
This point-based registration problem has several closed-form
solutions [36]. We use the method of Arun [37], which is equiv-
alent to the first solution published by Schönemann [38].

We calculate the registration error of the transformations
being evaluated by using as a reference gold standard the
fiducial marker-based transformation. Specifically, we cal-
culate the target registration error (TRE) of the registration
transformation being evaluated as the distance between the
position of a target point in CT mapped to physical space by the
gold-standard reference transformation and its position mapped
by the transformation being evaluated. The analysis is similar
to the ones performed in [39]–[41]. West et al. [39] reported
summary statistics of TRE at ten defined anatomic locations
widely distributed in the head. In this paper we compute TRE
for each registration as the mean value of TRE at all voxels
inside a rectangular box bounding the vertebra of interest.

4) Results: We examined the shape of the image similarity
cost function by varying the transformation parameters about
the gold-standard transformation, one parameter at a time.
Fig. 14 shows the results for the translation parameters for one
patient. The value of MI is slightly higher using AF-DRRs
than RC-DRRs, but the smoothness, shape, and location of the
maximum are nearly identical for both types of DRRs.

Initial transformations were generated by perturbing the gold-
standard reference transformation by adding randomly gener-
ated rotations and translations. The initial transformations were
characterized by computing the TRE for the transformation and
grouped into eight initial TRE intervals: 0–2, 2–4, 4–6, 6–8,
8–10, 10–12, 12–14, and 14–16 mm. For each patient and each
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Fig. 14. Image similarity between a pair of real, clinical ASD images
and DRRs generated from the corresponding CT image after translation
(top three plots) and rotation (bottom three plots). The image similarity
metric is MI. The translation and rotation parameters were varied about the
gold-standard transformation, one parameter at a time, in steps of 0.1 mm
and 0.1 , respectively. The curves are labeled with symbols every 1 mm and
1�, respectively. The solid circles represent results obtained using AF-DRRs;
the open squares represent results using RC-DRRs. The AF parameters
were: (u; v) plane resolution = 64 � 64 pixels; (s; t) plane resolution =
256 � 256 pixels; number of codevectors = 16 384, and training set size =
10% of samples. The maxima occur at �t = 0:1 mm, �t = �0:2 mm,
�t = �0:4mm, �r = �1:2 ;�r = �0:1 , and �r = 0:6 . Rotation
about the x-axis, which is oriented in the cranial-caudal direction of the patient
and corresponds to out-of-plane rotation for both X-ray cameras, typically has
the broadest peak and is the dominant component of registration error.

type of DRR (AF-DRR and RC-DRR), 240 registrations were
performed, 30 in each of the eight misregistration intervals.2 The
TRE value was computed for each registration transformation.

Fig. 15 shows the histogram of TRE values produced
using AF-DRRs. Most transformations produced TRE values

mm distributed in a relatively tight cluster (this histogram
represents results from all four patients; the distribution is
tighter for a single patient than for the combined results from
all four patients). The remaining transformations produced
widely scattered TRE values mm. Such transformations
represent the registration process getting stuck in a local optima

2This is stratified sampling. Initial transformations were randomly generated
until there were at least 30 transformations in each of the eight misregistration
intervals. At this point, most intervals contained more than 30 transformations.
Then 30 transformations were randomly picked from the set of randomly gen-
erated transformations in each of the eight misregistration intervals.

Fig. 15. Histogram of TRE values produced by the 2D–3D image registration
algorithm using AF-DRRs. Most transformations produced TRE values
<2:5 mm distributed in a relatively tight cluster (this histogram represents
results from all four patients; the distribution is tighter for a single patient than
for the combined results from all four patients). The remaining transformations
produced widely scattered TRE values >5 mm. Such transformations represent
the registration process getting stuck in a local optima during the iterative
parameter search. Based on the histogram distribution, and the fact that a
transformation with a TRE value <2:5 mm is potentially clinically useful, the
registrations were characterized as either “successful” if the TRE <2:5 mm
or “unsuccessful” if the TRE >2:5 mm. The histogram of TRE values using
RC-DRRs is very similar to that obtained using AF-DRRs.

TABLE II
TWO-DIMENSIONAL (2-D) TO THREE-DIMENSIONAL (3-D) SPINE IMAGE TRE

during the iterative parameter search. Based on the histogram
distribution, and the fact that a transformation with a TRE value

mm is potentially clinically useful, the registrations were
characterized as either “successful” if the mm or
“unsuccessful” if the mm. The histogram of TRE
values using RC-DRRs is very similar to that obtained using
AF-DRRs.

The registration accuracy and robustness results are summa-
rized in Table II. The TRE values that are listed are the mean
TRE for all successful registrations. Fig. 16 shows how the
percentage of successful registrations depends on the accuracy
of the initial transformation. The registration algorithm almost
always produces successful registrations as long as the initial
transformation has a TRE mm. However, the robustness
quickly decreases as the initial transformation gets further from
the correct transformation. The registration accuracy and ro-
bustness are virtually identical using AF-DRRs and RC-DRRs.
The difference in overall mean TRE is 0.1 mm and is not
statistically significant (two-tailed paired -test, ).
The execution time using AF-DRRs is approximately 100 s
whereas the execution time using RC-DRRs is approximately
3 000 s using a PC workstation with one 2.2-GHz Intel Xeon
processor.
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Fig. 16. Percentage of successful registrations for initial transformations
with different initial TRE values. Each data point represents a 2 mm range of
initial TRE values. The labels “AF-DRR” and “RC-DRR” denote registrations
performed using AF-DRRs and RC-DRRs, respectively.

IV. DISCUSSION

A variety of fast volume rendering algorithms have been
proposed, including the shear-warp method [42], frequency
domain methods that use the Fourier slice projection theorem
[43], space-leaping techniques using distance transforms [44],
[45], and splatting methods [46], [47]. A special graphics board
for volume rendering is commercially available (VolumePro
500, TeraRecon, Inc., San Mateo, CA). An important limitation
of most of these methods, including this graphics board, is
that they support only orthographic rendering. A more recent
version of this graphics board (VolumePro 1000) supports
perspective rendering, but unlike the case of orthographic
rendering, perspective rendering using this board requires an
additional software library running on the computer’s CPU to
perform some of the computation, and generation of DRRs from
a typical CT image takes slightly less than 1 s (personal commu-
nication with TeraRecon). A promising software-based volume
rendering method that performs fast ray casting by highly
optimizing the software and using single instruction multiple
data instructions available in Intel processors has recently been
reported; rendering of a 512 512 512-voxel image volume
takes about 250 ms (4 fps) using a PC workstation with two
2.2 GHz Intel Xeon processors [48]. The use of splat volume
rendering for generating DRRs has recently been reported;
generation of a DRR takes about 100 ms (10 fps) if only voxels
with intensity greater than 0 HU are used, but visual inspection
revealed that quality of the splat rendering DRRs is lower than
that of RC-DRRs (unfortunately no quantitative comparison
using a measure such as PSNR was performed) [49]. Another
promising volume rendering method generates 3D perspective
renderings using texture-mapped volume rendering, which
takes advantage of texture hardware (2-D or 3-D) on modern
graphics boards [50], [51], but we are not aware of any pub-
lished work using or evaluating hardware-based rendering to
generate DRRs. The use of AFs is faster than these special-
ized rendering methods and the image quality of AF-DRRs is
nearly identical to that of RC-DRRs (based on both visual and
quantitative comparison). For example, using comparable Intel

processors, we generate AF-DRRs with resolution 256 256
pixels in approximately 50 ms with a single processor whereas
[48] generates perspective renderings with the same resolution
in approximately 250 ms with two processors. The generation
of AF-DRRs is easily parallelized and should run approxi-
mately twice as fast with two processors. Nonetheless, these
specialized rendering methods are still useful for our AF-based
method. The AF is created from DRRs, and these specialized
methods will speed up the precomputation of the AF.

We use the two-plane parameterization originally suggested
by Levoy and Hanrahan [23]. In the 2D–3D registration appli-
cation reported in Section III-B, the X-ray imaging system has
two orthogonal cameras that are fixed in space. We use two
AFs, one for each camera view. However, with C-arm fluoro-
scopes, the X-ray imaging system is rotated about the patient.
One approach to deal with the large range of motion of the X-ray
imaging system is to use multiple AFs. Another approach we
are currently exploring is to use a cylindrical parameterization
of the AF.

One issue discussed by Levoy and Hanrahan [23] that we do
not address is anti-aliasing. When we generate AF-DRRs, we
sample the 4-D space and expose ourselves to the po-
tential problem of aliasing. However, we perform quadrilinear
interpolation, and the resulting smoothing applies an inherent
anti-aliasing step. Also, we generate reasonably dense AFs. We
have not yet observed any artifacts due to aliasing. If our AFs
were particularly sparse, we would probably need to perform
some prefiltering.

One potentially interesting aspect of AF-DRRs is the avail-
ability of fast image gradients. Interpolation in and is an in-
herent part of generating an AF-DRR. This bilinear interpola-
tion, however, is simply a weighted combination of the nearest
neighbors in and for a given ray. To calculate fast image gra-
dients, the interpolation weights could be altered to mimic a gra-
dient operator such as a Sobel filter. The output of an AF-DRR
generation scheme modified in this way would be a gradient
image that requires the same amount of computation time as a
normal AF-DRR. This could be particularly useful for a regis-
tration algorithm using a gradient-based optimization.

The AF-DRRs we generate are substantially blurred relative
to real X-ray projection images (Fig. 13). But they are visually
and quantitatively very similar to the RC-DRRs we use to create
the AF. The quality of the AF-DRRs is partially reduced by
compression and interpolation between discrete samples, but is
limited primarily by the quality of the DRRs used to create the
AF. Any approach that can generate higher quality DRRs, such
as the use of a better algorithm or a higher-resolution CT image,
can be used to generate DRRs for the creation of the AF, and the
resulting AF-DRRs will also be higher quality.

Levoy and Hanrahan [23] created both virtual light fields,
which were generated from rendered images, and real light
fields, which were generated from digitized images. In this
paper, we created AFs using DRRs, which are synthetic X-ray
images computed by casting rays through a CT image using a
known camera geometry. It is also possible to create AFs using
real X-ray images. For example, the X-ray images that are
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acquired for a cone-beam CT image are essentially an AF with
a cylindrical parameterization and with space sampled
in only one dimension (the arc of rotation). An AF could
be generated by systematically moving an X-ray source and
detector pair to various orientations in order to better sample

space. It might be possible to accomplish this with, for
example, a motorized C-arm X-ray system such as is available
in a modern angiography system. Radiation exposure could be
minimized by limited the orientations to a small neighborhood
and also by collimating the X-ray beam to a region of interest.

Execution time is an important consideration for the clin-
ical application of 2D–3D registration algorithms. Generation
of DRRs during the optimization search is the primary com-
putational expense in the intensity-based 2D–3D registration
process. Using a PC workstation with one 2.2 GHz Intel Xeon
processor, computation of an AF-DRR with 200 200 pixels
(which is the typical size of an ROI in our registration work)
requires about 30 ms. Each iteration of the parameter search re-
quires the generation of 24 DRRs (two DRRs per transformation
parameter per image, six rigid transformation parameters, two
orthogonal images) and, thus, each iterative step requires about
720 ms. With our simple best neighbor search strategy, the op-
timization requires approximately 100–150 iterations and, thus,
the total execution time is about 100 s. Using a gradient-based
search, we can reduce the number of iterations in the search to
about 30–40 iterations and, thus, the total execution time can
be reduced to about 25 s. Also, the generation of AF-DRRs is
easily parallelized. By using two faster processors, such as the
currently available 3.6 GHz Intel Xeon processor, we should re-
alistically be able to generate an AF-DRR in about 10 ms and
reduce the execution time of our intensity-based 2D–3D regis-
tration algorithm to about 5 s.
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