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Abstract—A model-based method for three-dimensional image
segmentation was developed and its performance assessed in
segmentation of volumetric cardiac magnetic resonance (MR)
images and echocardiographic temporal image sequences. Com-
prehensive design of a three-dimensional (3-D) active appearance
model (AAM) is reported for the first time as an involved extension
of the AAM framework introduced by Cootes et al. The model’s
behavior is learned from manually traced segmentation examples
during an automated training stage. Information about shape
and image appearance of the cardiac structures is contained in a
single model. This ensures a spatially and/or temporally consistent
segmentation of three-dimensional cardiac images.

The clinical potential of the 3-D AAM is demonstrated in
short-axis cardiac MR images and four-chamber echocardio-
graphic sequences. The method’s performance was assessed by
comparison with manually identified independent standards in
56 clinical MR and 64 clinical echo image sequences. The AAM
method showed good agreement with the independent standard
using quantitative indexes of border positioning errors, endo-
and epicardial volumes, and left ventricular mass. In MR, the
endocardial volumes, epicardial volumes, and left ventricular wall
mass correlation coefficients between manual and AAM were
2

= 0 94 0 97 0 82 respectively. For echocardiographic
analysis, the area correlation was 2

= 0 79. The AAM method
shows high promise for successful application to MR and echocar-
diographic image analysis in a clinical setting.

Index Terms—Active appearance model, active shape model,
cardiac segmentation, echocardiographic image analysis, mag-
netic resonance image analysis.

I. INTRODUCTION

CARDIOVASCULAR disease is the number one cause of
death in the Western world. Cardiac imaging is an estab-

lished approach to diagnosing cardiovascular disease and plays
an important role in its interventional treatment. Three-dimen-
sional (3-D) imaging of the heart and the cardiovascular system
is now possible with X-ray computed tomography, magnetic
resonance (MR), positron emission tomography, single photon
emission tomography, and ultrasound, to name just the main
imaging modalities. While cardiac imaging capabilities are de-
veloping rapidly, the images are mostly analyzed visually, and
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therefore qualitatively. The ability to quantitatively analyze the
acquired image data is still not sufficiently available in routine
clinical care. Large amounts of acquired data are not fully uti-
lized because of the tedious and time-consuming character of
manual analyses. This is even more so when three-dimensional
image data need to be processed and analyzed. Image segmen-
tation is a prerequisite to quantitative analysis, and thus devel-
oping methods for highly automated three-dimensional cardiac
image segmentation is of primary importance.

There are three main reasons why existing methods fre-
quently exhibit lower the success rate in comparison with
human expert observers, especially when applied to clinical-
quality images: existing methods do not incorporate a sufficient
amount of a priori knowledge about the segmentation problem;
do not consider three-dimensional or temporal context as an in-
tegral part of their functionality; and position the segmentation
boundaries at locations of the strongest local image features
not considering true anatomical boundary locations.

A number of 3-D medical image analysis approaches have
occurred recently, many of them addressing one or more of the
above-mentioned shortcomings of available segmentation tech-
niques. A detailed review of existing 3-D cardiac modeling ap-
proaches is provided in [1]. In the context of our work and con-
sidering the goal of segmenting three-dimensional volumetric
and temporal cardiac images and image sequences, statistical
modeling of 3-D shape and 3-D image properties is crucial.
Vemuri et al. concentrated on a 3-D model that combines de-
formed superquadric primitives with a local displacement field
expressed on an orthonormal wavelet basis [2]. As a result of
this orthonormal basis, the shape parameters become physically
meaningful, and thus a preferred shape can be imposed based
on parameter distributions in a set of training samples. Simi-
larly, Staibet al.developed a three-dimensional balloon model
[3]. The model is parameterized on an orthonormal Fourier basis
such that the statistics of the Fourier coefficients in a training
set allow a constrained image search. Model fitting in these two
methods is performed by balancing an internal energy term with
an external, gradient-derived scalar field.

Cootes and Taylor developed a statistical point distribution
model (PDM) and demonstrated its utility for two-dimensional
(2-D) image segmentation [4], [5]. One of the primary contribu-
tions was an ease of automated learning of the model parameters
from sets of corresponding points as well as the PDMs ability to
incorporate shape and boundary gray-level properties and their
allowed variations. Applications to segmentation of echocar-
diographic data [6] and deep neuroanatomical structures from
MR images of the brain may serve as examples [7]. Following
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the point distribution model ideas, Kelemenet al.built a statis-
tical model of three-dimensional shapes using parametric sur-
face representations [8]. Similar to PDMs, shape and gray-level
information in the boundary vicinity was incorporated in the
model. The method’s performance was demonstrated on 3-D
segmentation of neuroanatomical structures. A multiscale 3-D
shape modeling approach called M-reps was developed by Pizer
et al. [9]. M-reps support a coarse-to-fine hierarchy and model
shape variations via probabilistically described boundary posi-
tions with width- and scale-proportional tolerances. Three-di-
mensional echocardiographic image segmentation using core
atoms was reported by Stetten [10]. Davatzikoset al.presented a
deformable model in which geometric information is embedded
via a set of affine-invariant attribute vectors; these vectors char-
acterize the geometric structure around a model point from a
local to a global scale, forming an adaptive focus deformable
statistical shape model [11]. The methodology was applied to
segmentation of neuroanatomical structures.

In all the above-referenced approaches, the models primarily
hold information about shape and its allowed variations. The
information about image appearance is only considered in close
proximity to the object borders. A powerful, model-driven
segmentation technique called active appearance model (AAM)
was recently introduced by Cooteset al. [12]–[14]. An AAM
describes the image appearance and the shape of an object in a
set of examples as a statistical shape-appearance model. AAMs
can be applied to image segmentation by minimizing the
difference between the model and an image along statistically
plausible shape/intensity variations (analysis by synthesis).
AAMs have shown to be highly robust in the segmentation of
routinely acquired single-phase single-slice cardiac MR [15]
and echo images [16], because they exploit prior knowledge
about the cardiac shape, image appearance, and observer
preference in a generic way. For a detailed background on
AAMs and their application to image segmentation, the reader
is referred to [13].

Until now, AAMs have only been applied to 2-D images
and to normalized (fixed-phase) 2-D time sequences [15]–[17].
Two-dimensional active appearance motion models [16], [17]
have demonstrated the ability of time-continuous segmentation
by exploiting temporal coherency in the data. However, these
2-D time AAMs do not represent a true 3-D approach. Their
segmentation ability is limited to cases with fixed numbers of
preselected frames; they rely on a priori knowledge of image
frame correspondences within each cardiac cycle.

The primary contribution of this paper is the development of
a fully three-dimensional active appearance model (3-D AAM)
that requires no additional interactively supplied information.
A demonstration of its segmentation performance in volumetric
or temporal image segmentation of cardiac structures is given
below. No 3-D AAM has been reported to date that is capable of
successful segmentation of cardiac MR and echocardiographic
images. The model’s behavior is learned from manually traced
segmentation examples during an automated training stage. The
shape and image appearance of the cardiac structures are con-
tained in a single model. This ensures a spatially and/or tem-
porally consistent segmentation of three-dimensional cardiac
images.

II. M ETHODS

A. Point Distribution Model Concept

Point distribution models describe populations of shapes
using statistics of sets of corresponding landmarks of the
shape instances [4], [5], [18]. By aligning shape samples
(consisting of landmark points) and applying a principal com-
ponent analysis (PCA) on the sample distribution, any sample

within the distribution can be expressed as an average shape
with a linear combination of eigenvectorssuperimposed

(1)

In two-dimensional models, eigenvectors
form the principal basis functions, while in a three-dimen-

sional model; eigenvectors are formed.
(The minimum operator is needed since we frequently have
more corresponding shape points than training set samples.) In
both cases, the corresponding eigenvalues provide a measure for
compactness of the distribution along each axis. By selecting
the largest eigenvalues, the number of eigenvectors can be re-
duced, where a proportion of the total variance is described
such that

Total where Total (2)

B. Representing Shape of 3-D Cardiac Ventricles

Extending the two-dimensional PDM to three dimensions is
a nontrivial task. To create a compact and specific model, point
correspondences between shapes are required. Even if land-
mark points are easily identifiable in both models, specifying
uniquely corresponding boundary points in between these land-
marks is difficult in 3-D. In a 2-D case [15], boundary points
may be identified by evenly sampling points on a boundary
from one landmark to the next. In a 3-D case, the problem lies
in defining a unique sampling of the object surfaces.

For the purpose of ventricular segmentation, a normalized
cylindrical coordinate system is defined with its primary axis
aligned with the long axis of the heart and the secondary axis
aligned with the posterior junction of the right and left ventricles
in the basal slice. The cardiac ventricles resemble a cylindrical
or paraboloid shape. First, contours are sampled slice-by-slice
at even angle increments. To transform the rings in the nor-
malized cylindrical coordinate system, each point on the ring is
connected by a straight line to the next adjacent corresponding
point on the rings above and below. Starting from the apex slice
to the basal slice, a fixed number of slicing planes are placed
evenly along the long axis. New points are interpolated where
the planes intersect the lines. This yields a set of corresponding
boundary points for each sampled left ventricle across the pop-
ulation of ventricles (Fig. 1).

C. Three-Dimensional Point Distribution Models

Aligning shape samples to a common scale, rotation, and
translation is important for a compact model to be generated
during the PCA stage. Procrustes analysis [19], [20] is used,
whereby an arbitrary shape is selected as the initial average
shape estimate. All the other shapes are aligned to this average
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Fig. 1. A cross-sectional depiction of transforming a cardiac MR stack with
manually placed landmarks to a normalized cylindrical coordinate system.

using a least squares minimization. A new average is computed
by a simple mean across the corresponding points, and the al-
gorithm repeats until convergence.

For the 2-D case, aligning one shape to another can be solved
analytically by minimizing scale, rotation, and translation terms.
Extending to 3-D, the minimization of scaling, translations, and
rotation differences along the three axes may lead to singular-
ities known as gimbal lock. Assuming that 3-D translation is
represented by a separate translation vector, a quaternion
representation of scaling and rotation avoids such behavior [21].

A quaternion is defined as the linear combination of a scalar
term and three right-handed orthonormal vectors (, ,
and )

(3)

The magnitude of the quaternion is defined as

(4)

and any unit length quaternion can be written as

(5)

where is a unit vector and represents a rotational twist along
the unit vector. Thus, any scaling and rotation in 3-D can be
expressed as a quaternion, where scaling is expressed by the
magnitude of the quaternion and the 3-D rotation is expressed by
the direction of the unit vector and rotation . The Cartesian
rotation matrix is shown in (6) at the bottom of the page.

Together, the position and orientation of a 3-D ob-
ject can be represented as a seven-element pose vector

.
The alignment of two 3-D shape instances is accomplished

using a well-known procedure given by Beslet al. [22] to op-
timize for and . Aligning all the shapes is a matter of em-
ploying the Procrustes analysis using Besl’s procedure to calcu-
late the pose parameters. Once shape alignment is finished, prin-
cipal component analysis is applied to the 3-D models in a way
that is no different from the conventional 2-D application [5].

D. Modeling Volume Appearance

The first part of creating an appearance model of volume is to
warp all the sample volumes to the average shape to eliminate
shape variation and bring voxel-wise correspondence across all
the training samples, such that the voxel intensities can be rep-
resented as a shape-free vector of intensity values. Warping an
image to a new image involves creating a function that
maps control points to as well as the intermediate points
in between. For the 2-D case, either piecewise affine warping
or thin-plate spline warping is adequate. In our models, piece-
wise warping is preferred because it is significantly faster than
thin-plate spline warping.

In 2-D piecewise affine warping, landmark points are used to
construct the shape area as a set of triangles. The well-known
Delaunay triangulation algorithm is suitable for computing
such a triangular mesh and can be found in many computational
geometry references. Individual triangular patches are locally
warped using barycentric coordinates. Given a triangle with
the three corners , , and , we can represent any point

within the triangle as , where
and . In order for a point to

fall inside a triangle, , , must be true.
Piecewise affine warping is implemented as follows.
For each pixel location in :

1) Find the triangle that contains by solving , , and
for each triangle and finding the triangle where ,
, .

2) Find the equivalent pixel location by computing
, where , , and are the triangle

points from the original image.
3) Copy the pixel value in located by into the warped

image located at . Some form of pixel interpolation
such as bilinear may be used at this stage.

In our 3-D models, piecewise affine warping is extended to
tetrahedrons with four corners , , , and . Any point
within the tetrahedron is represented as

. In a general case, creating a tetrahedral representation of
volume is solved using a 3-D Delaunay triangulation algorithm.
However, due to the cylindrical nature of the left ventricular
(LV) shape, a manually defined volume partitioning in regular
tetrahedrons was utilized. Each slice level is constructed of pie-
shaped wedges built on four tetrahedrons with exterior profile
cubes built with five tetrahedrons. Piecewise affine warping is
implemented in a similar fashion as in the 2-D case. Because
all volumes are warped to the average volume, barycentric co-
ordinates are precomputed for each fixed voxel point,
eliminating the time-consuming process of searching for the en-
closing tetrahedron for each voxel point during the matching.
Due to the regular geometry of the tetrahedrons in our volume
partitioning, the barycentric coordinate computation did not be-
come ill-posed.

(6)
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After the warping phase, the shape-free intensity vectors are
normalized to an average intensity of zero and an average vari-
ance of one to remove the effects of brightness and contrast vari-
ations across scans. Next, PCA is applied to the shape-free in-
tensity vectors to create an intensity model. In agreement with
the AAM principle, shape information and intensity informa-
tion are combined into a single active appearance model. Lastly,
another PCA is applied to the coefficients of the shape and in-
tensity models to form a combined appearance model [23].

In the equations below, the subscriptcorresponds to shape
parameters and the subscriptrepresents intensity (gray-level)
parameters. To summarize, the 3-D AAM is created as follows.

1) Let denote a vector of 3-D landmark points for a given
sample . Compute a 3-D PDM and approximate each shape
sample as a linear combination of eigenvectors, where

represents the sample shape parameters.
2) Warp each image to the mean shape using a warping such

as piecewise affine or thin plate spline warping to create
shape-free intensity vectors.

3) Normalize each intensity vector, applying a global intensity
transform with parameters , to match the average intensity
vector .

4) Perform a PCA on the normalized intensity images.
5) Express each intensity sample as a linear combination of

eigenvectors, where represents the sample
shape parameters.

6) Concatenate the shape vectorsand gray-level intensity
vectors in the following manner:

(7)

where the weighting matrix is a diagonal matrix relating
the different units of shape and intensity coefficients.

7) Apply a PCA to the sample set of allvectors, yielding the
appearance model

(8)

E. Matching 3-D AAM to Image Data

Matching an appearance model to image data involves mini-
mizing the root mean square (rms) intensity difference between
the image data and appearance model instance by modifying
the affine transformation, global intensity parameters, and
appearance coefficients. A gradient descent method is used that
employs the relation between model coefficient changes and
changes in the voxel intensity difference between the target
image and synthesized model [23]. This relation is derived
during a training stage.

Let and represent the translation and quaternion trans-
formation parameters andthe intensity transform parameters.
As shown above, shapeis derived in the target image from the
appearance coefficient and the affine transformation vectors

and . Then, shape intensity vector is sampled from the
target volume data after warping the space defined byto the
mean shape . The model intensity vector is derived from
the appearance coefficientswith the global intensity corrected
via . The error function is the rms difference of .

Gradient descent optimization requires the partial derivatives
of the error function defined by the intensity of the target and
synthesized model volume. While it is not possible to create
such a function analytically, these derivatives may be approx-
imated using fixed matrices computed by randomly perturbing
model coefficients for a set of known training images and ob-
serving the resulting difference in error images [23]. Using a
set of training images, their corresponding modeling parame-
ters , , , and are randomly displaced, thus creating a dif-
ference between and . From the parameter displacements
and the resulting difference intensity vectors, gradient approx-
imating matrices , , , and can be determined using
reduced-rank multivariate linear regression. Alternatively, the
gradient matrices may be built one column at a time by aver-
aging the Gaussian weighted differences between the target and
synthesized image of each individual model perturbation. The
latter method is preferred for 3-D AAM matching due to lower
memory requirements, better representation of high order eigen-
modes, and faster computation. This iterative refinement tech-
nique of precomputed fixed matrices versus brute-force gradient
descent optimization was formulated by Cootes [13] as well as
by Baker and Matthews [24]. Formally, the gradient matrices
are created as follows.

1) Select an object from the training set with known appear-
ance model parameters, , , and .

2) For each element in the model parameters,, , , or ,
perturb a single element by a fixed with the rest of ,

, , and assigned to zero. Typically, is perturbed
within 1.5 standard deviation,by 3–5 voxels, and ,
by 10% of their original value.

3) Let . Compute shape and texture .
4) Apply an affine transformation toby first transforming

using and , then transforming the result by and .
This cascaded transform is required to maintain linearity.

5) Create the image patch warped from the target image to
the mean shape using shape.

6) Apply global intensity scaling to by using first and
then scaling the result by .

7) Compute .
8) Compute the slope, . Weight the slope by a

normalized Gaussian function with the3 standard devia-
tion set to the maximum and minimum model perturbation
values.

9) Accumulate the slope with previous slopes for that given
element.

10) Go to Step 2) and repeat until all elements and perturba-
tions of each element are sufficiently covered. Place the
average slope into the appropriate column in the gradient
matrices , , , or .

11) Go to Step 1) and repeat until there is sufficient coverage
of displacement vectors.

The corresponding model correction steps are computed as

(9)

(10)

(11)

(12)
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Matching the AAM to the image data is accomplished as fol-
lows.

1) Place the mean appearance model ( ; defined by
the initial model position) roughly on the object of interest
and compute the difference image .

2) Compute the rms error of the difference image.
3) Compute the model corrections, , , and from the

difference image [(9)–(12)].
4) Set .
5) Compute new model parameters as ,

, , and .
6) Based on these new parameters, recompute and find

the rms error.
7) If the rms error is less than, accept these parameters and

go to Step 2).
8) Else try setting to 1.5, 0.5, 0.25, 0.125, etc., and go to

Step 5. Repeat steps 5–8 until the error cannot be reduced
any further.

III. CASE STUDIES

To investigate the clinical potential of the reported 3-D active
appearance model under clinically realistic conditions, AAMs
were trained and tested in two substantially different medical
imaging modalities: multislice short-axis cardiac magnetic res-
onance and four-chamber echocardiographic image sequences.
While the overall approach is identical in the two reported ap-
plication areas, some modality- as well as application-specific
differences exist and are provided as follows.

A. Cardiac MRI

Data: Cardiac MR image sequences were collected from 38
normal subjects and 18 patients, yielding a total of 56 short-axis
3-D cardiac MR data sets. Patients were selected who were
suffering from different common cardiac pathologies (among
others, different types of myocardial infarction, hypertrophic
cardiomyopathy, arrhythmia). Images were acquired using stan-
dard electrocardiography (ECG) gated fast field echo MR pulse
sequences on a Philips Gyroscan NT 15 scanner. Slices were ac-
quired in a per-slice manner, under breathhold in end-expiration.
End-diastolic images were used in this study. Image resolution
was 256 256 pixels, with a field of view of 400–450 mm and
slice thickness of 8–11 mm. Between eight and 14 slices were
scanned to at least cover the entire left ventricle, depending on
LV dimensions and slice spacing.

Independent Standard:The left ventricular endocardium
and epicardium were manually traced by an expert observer
who was blinded to the results of the computer analysis.
Following common practice in clinical quantitative cardiac MR
analysis, endocardial (ENDO) contours were drawn behind the
papillary muscles and trabeculae, and epicardial (EPI) contours
were drawn on the inside of the epicardial fat layer. The apical
slice was defined as the last slice with both ENDO and EPI
contours visible. Apex slices with merely a small visible
muscle cap were excluded. In each slice, a reference point
was manually placed at the posterior junction of the left and
right ventricular walls to define point correspondence between
different samples as required during the AAM training.

Fig. 2. A wireframe representation of the mean LV shape in the normalized
cylindrical coordinate system.

Training Using Leave-One-Out Approach:To maximize
the effective size of the training set, validation was performed
using a leave-one-out approach [25]. AAM models were trained
on image and contour data from 55 subjects, and the model
matching performance was subsequently evaluated on the one
left-out data set. The training process was repeated 56 times,
always leaving out a different data set, which was then used
for validation. The model voxel size varied from one data set
to another, but in general with 3 subsampling, the model
occupied approximately 6000 voxels and required about 1 h of
training and 2–3 min for matching on a 1-GHz Windows PC.

Matching Procedure:In midventricular short-axis MR im-
ages, the left ventricle can usually be identified as an approxi-
mately circular object [Fig. 3(a)]. This fact is used for automated
initialization of the 3-D AAM. A previously validated Hough
transform-based method determines a 2-D centroid of the LV
long axis for each MR image slice [26]. A 3-D centroid of a
line segment fitted through the 2-D centroids of individual MR
slices defines the initial position of the 3-D AAM.

To make the 3-D segmentation procedure completely inde-
pendent from any user interaction regarding the rotation and
scale of the heart in the short-axis plane, the matching process
was repeatedly performed for a range of five orientations and
three scales. This multiple initialization is important because
AAM matching may be dependent on initial positioning since
gradient descent may contain local minima. The matching re-
sult yielding the smallest quadratic intensity error was selected
as the final match. The matching procedure resulted in a set of
endo- and epicardial contours for each volumetric MR image.

Quantitative Validation: To exclude obvious matching er-
rors from further quantitative analyses, matching results were
visually evaluated. A matching result was scored as acceptable
when the ENDO and EPI contours in the majority of slices
showed good agreement with the image data. The number of un-
acceptable results yielding matching failures is reported. Studies
with a poorly localized apex but with correctly localized mid-
ventricular segments were graded as acceptable. In some cases,
the 3-D model did not deploy far enough to span over all the
slices for which manual contours were available. Then, manual
contours were present in extreme apical or basal slices but no
automatic contours were identified there. Such segmentations
were not excluded, and the numbers of slices missed by the
AAM method are reported below.

To quantitatively assess the performance of the 3-D AAM ap-
proach, surface positioning errors were determined comparing
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(a) (b)

Fig. 3. Example cardiac MR images used for validation. (a) LV segmentation was performed in volumetric images consisting of 8–12 full-size MR images like
the one shown here. (b) Subimages depicting LV detail in all nine images of this volumetric data set. See Fig. 4 for the segmentation results.

Fig. 4. Segmentation results in testing-set image data. (a) Manually identified contours forming an independent standard. (b) Three-dimensional AAM determined
segmentation of the left ventricle. The 3-D AAM segmentation was performed in full-size image volumes; see Fig. 3.

the automatically detected endo- and epicardial surfaces with
the independent standard. The average signed and unsigned sur-
face positioning errors were defined by measuring the distances
between points along rays perpendicular to the centerline be-
tween the respective manual contours and the computer-deter-
mined surfaces; 100 rays were used for each contour. Surface
positioning errors are expressed in millimeters as meanstan-
dard deviation. A negative sign of the signed error value means
that the automatically determined surface was inside of the ob-
server-defined surface.

Three clinically important measures were calculated and used
for performance assessment: LV cavity volume, LV epicardial
volume, and LV myocardial mass. The volumetric indexes were
determined using all slices for which both manually traced con-
toursand computer-determined surfaces were available and were
expressed in cm. The LV mass measurements are reported in.
Regression analysis was used to compare the computer mea-
surements with the independent standard.

Results: Fig. 4 shows an example of an automatically ana-
lyzed volumetric MR data set. Fig. 5 demonstrates several stages
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Fig. 5. 3-D AAM matching process. (a) The initial position of the model in the volumetric data set. (b), (c) Stages during the iterative model matching process.
(d) The final match. Note the color coding of all frames and the coordinate axes. The color-coded straight lines show position of frames in the other twocutting
planes.

of the model matching process, starting with the initial model
position and ending with the final fit. The leave-one-out valida-
tion yielded 56 fully automatically detected 3-D segmentation
results depicting endocardial and epicardial surfaces—with all
testing surfaces being fully disjoint from the training sets. In 53
out of 56 cases, the matching procedure resulted in an accept-
able match. In three cases (two patients and one normal subject),
the matching diverged from a plausible solution because it was
attracted by a neighboring structure. These three cases were ex-
cluded from further quantitative analyses.

In the 53 volumetric MR images, manually identified con-
tours were available in 391 MR slices. As mentioned above, the
3-D model sometimes does not fully deploy in the longitudinal
direction to cover the apical or basal slices. In 28 of 53 data
sets, computer-determined contours were present in all slices
for which manual contours were available. In 18 data sets, com-
puter-determined contours were missing in one MR slice (apical
or basal), and in seven data sets, two MR slices with missing
contours were present. Overall, the 3-D AAM identified con-
tours in 359 of 391 MR slices, or in 96.2% of all cases in which
manual contours were deemed identifiable. The 359 slices were
used for quantitative validation.

Mean signed endo- and epicardial surface positioning errors
were 0.46 1.33 mm and 0.29 1.16 mm, respectively,

showing a slightly negative border detection bias. The mean
unsigned positioning errors were 2.75 0.86 mm for the
endocardial contours and 2.630.76 mm for the epicardium,
demonstrating small absolute differences from the independent
standard (voxel sizes ranged from 1.561.56 8 mm to
1.76 1.76 11 mm). Fig. 6 shows a very good correlation of
the manually identified and 3-D AAM-determined LV endo-
and epicardial volumes as well as correlation of computer-de-
termined LV wall mass with the independent standard.

B. Echocardiography

The 3-D AAM segmentation was also applied to endocar-
dial border detection in echocardiographic ultrasound image
sequences. In these temporal sequences, the third dimension
represents time. Spatial 2-D coordinates were converted from
pixels into millimeters by applying the image calibration
factor. A consistent 3-D set is formed by converting the time
dimension (s) into a spatial dimension (mm) using a fixed ratio
(“speed” of 40 mm/s). This ratio was chosen to obtain similar
sizes of the 3-D object in all three dimensions. A consistent
3-D voxel space is obtained in which the shape and appearance
of the heart over a full cardiac cycle can be modeled as a
3-D object. A 3-D AAM for this object was applied to image
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(a) (b) (c)

Fig. 6. Comparison of observer-defined and computer-determined LV measurements in 53 volumetric MR images used for validation. (a) Endocardial volume.
(b) Epicardial volume. (c) Myocardial mass.

Fig. 7. Motion of the left ventricular endocardium in ultrasound four-chamber
cross-section represented as a 3-D object. Time axis from bottom left to top
right.

sequences extending over three cardiac cycles. This approach
allows fully automated detection of time-continuous contours
in time sequences of arbitrary length without knowledge of end-
diastolic (ED) and end-systolic (ES) time points. The model
adjusts itself in both time and space and locates a complete
cardiac cycle automatically. This is an important difference
from the previously reported 2-D time AAM approach [16].

In a training set, corresponding shape points on the endocar-
dial contour are defined for each frame of one complete cardiac
cycle (ED to ED) based on expert-drawn contours. Point corre-
spondence in the third (time) dimension is defined by using the
relative cardiac phase of each image. The relative cardiac phase
of each image is modeled as a value between zero and two, de-
fined for systolic frames as the frame’s relative position between
ED and ES (range 0–1) and for diastolic frames as its relative po-
sition between ES and following ED incremented by one (range
1–2). For each training case, 17 time slices with equidistant
relative phase (starting and ending with ED) are identified by
nearest neighbor interpolation. Of these frames, the 2-D shape
point coordinates are extended to 3-D spatial coordinates by
multiplying the frame’s time by the speed ratio. The resulting
3-D shape is represented as a surface of 3-D points (Fig. 7).
The image appearance of the heart is modeled as a vector of
voxel intensity values in an image volume patch spanned by the
manual contour surface, extended equally in all directions. Parti-
tioning of the image volume into regular tetrahedrons was coded

specifically for this shape. The actual image volume was sam-
pled sparsely (factor 5–7) after appropriate Gaussian filtering to
limit the dimension of the intensity vector to a practical size of a
few thousand voxels. The 3-D AAM provides time-continuous
segmentation for one complete cardiac cycle, located automat-
ically in both time and space. An ultrasound-specific initializa-
tion procedure was followed, in which the model was allowed
to iterate from 25 different initializations (five 3-D size factors
ranging between 0.9 and 1.3 compared to the average size and
five temporal positions along the time axis). The matching re-
sult with the lowest quadratic intensity error was considered the
best match.

Data: To allow comparison of 3-D AAM results with the
2-D time AAM approach, the method was tested on the
same data set [16]. Sets of transthoracic echocardiographic
four-chamber sequences were acquired at 25 frames/s from 129
unselected infarct patients participating in a clinical trial. These
were single-beat (end-diastole to end-diastole) sequences with
15–33 image frames per heartbeat artificially extended to three
cardiac cycles as described above. Images were digitized at a
resolution of 768 576 pixels with different calibration factors
(0.28 to 0.47 mm/pixel). The total data set was split randomly
into a training set of 65 patients and a testing set of 64 patients.
The model voxel size varied from one data set to another,
but in general with 8 subsampling the model occupied
approximately 7000 voxels, required about 1 h of training and
2–3 min for matching on a 1-GHz Windows PC. The larger
subsampling of the echocardiographic model reduced the voxel
size and complexity to approximately the same as the MR
model, resulting in similar training and matching times.

Independent Standard:In all sequences, an expert observer
who was blinded to the computer analysis results manually out-
lined the contours of the endocardium in all frames of the image
sequences. To compare the performance of 3-D AAMs with
that of human experts, inter- and intraobserver variabilities of
manual contour tracing were determined in a subset of 19 ran-
domly chosen image sequences. Manual contour definition was
independently repeated by the same expert observer and by an-
other expert observer.
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Fig. 8. Example of the 3-D AAM matching process in an ultrasound time sequence. The position of the model within the 3-D image data is shown in red. The
independent standard is shown in green. Top row gives the initial positioning of the 3-D AAM; bottom row provides its final match. The left three panelsrepresent
image information along three perpendicular planes cutting through the three-dimensional data set. The leftmost column provides an image within the temporal
plane; the two middle columns depict image data along the horizontal and vertical cutting planes. Note the color-coding of all frames and the coordinate axes. The
color-coded straight lines show position of this frame in the other two cutting planes. In the rightmost panel, a 3-D rendering of model and independent standard
is shown.

Quantitative Validation: To compare the automatically de-
tected contours with the observer-identified independent stan-
dard, the number of segmentation failures was determined. Fail-
ures were identified as segmentations in which the 3-D AAM-
defined borders did not agree well with the independent stan-
dard (average unsigned spatial distance component7.5 mm).
In the successfully segmented images, unsigned three-dimen-
sional endocardial border positioning errors were defined as
unsigned distances between matched model points and image-
based 3-D shape points extracted for the testing-set images in a
same manner as the training-set shape points. These distances
were calculated in 3-D and also split into spatial and tem-
poral components, where the temporal component can be
expressed in mm or milliseconds by inverting the “speed” con-
version specified above. Furthermore, endocardial areas were
determined for all time slices; regression analysis was used to
compare the computer-determined areas with the independent
standard.

Results: In 57 of the 64 tested echocardiographic image
sequences (success rate 89%), the 3-D AAM-defined borders
agreed well with the independent standard. An example of the
matching procedure is given in Fig. 8. In the successful 57
temporal sequences, three-dimensional absolute endocardial
surface positioning errors were 3.90 1.38 mm; the 2-D
spatial component was 3.35 1.05 mm, which compares
favorably with two-dimensionally determined (within the same
image frame) interobserver variability of 3.82 1.44 mm.
The intraobserver variability was 2.32 0.75 mm. The result
also compares reasonably well with the previously reported
two-dimensional endocardial border positioning errors of 3.35

1.22 mm (success rate 97%) achieved by our less general
2-D time active appearance motion model implementation
[16]. The temporal error of border positioning was 37.029.6
ms, less than a single frame duration of 40 ms. Frame-based
endocardial area regression over the 57 successful matches is
given in Fig. 9.

Fig. 9. Comparison of observer-defined and computer-determined LV
endocardial areas in all time slices of the 57 echocardiographic four-chamber
sequences (969 images) used for validation.

IV. DISCUSSION

A method for three-dimensional segmentation of medical im-
ages has been presented and its performance demonstrated in
two cardiac image analysis applications. The method allows
fully automated segmentation of volumetric or temporal im-
ages. Its inherent 3-D character incorporates information con-
text in all three dimensions—a feature frequently not possible
with previous approaches. The step leading from existing 2-D
active appearance models to a functional 3-D AAM is not an
easy one. Mastering the fully 3-D behavior will facilitate the
method’s extension to analysis of three-dimensional temporal
sequences, one of the ultimate goals of medical image analysis.
This discussion will focus on three areas: 1) performance of the
current method; 2) its limitations with respect to design of 3-D
AAMs for clinical applications; and 3) future extensions of the
methodology to facilitate four-dimensional image analysis.

A. Performance of the Current Method

The described method is fully automated, with no user inter-
action. This is a significant strength in comparison to existing
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semiautomated approaches to cardiac segmentation that require
almost undivided attention of the analysis operator. In addi-
tion, the value of the matching function after the 3-D AAM’s
convergence can identify the situation when the model failed
to segment the cardiac structures successfully, thus potentially
allowing to incorporate yet another level of automated quality
control. Consequently, it should be possible to identify segmen-
tation successes with high confidence and then limit review of
the results to a small number of image data sets for which the
possibility of imperfect segmentation is indicated.

At present, performance robustness is achieved by multiple
initializations; 15 initial positions of the model were used for
MR segmentation and 25 different initializations for echocar-
diographic data. This approach improves the results but also in-
creases computational demands. While the processing times are
quite favorable—between 2–3 min for one data set in both appli-
cations (this includes the multiple initializations; 1-GHz Win-
dows PC)—the number of model matching processes can be
decreased by replacing brute-force multiple initializations with
better positioning of the model. For example, information about
the ventricular size and orientation is available in MR data from
the Hough transform steps. In ultrasound, an estimate of ED and
ES frames can be derived from ECG information or image se-
quence analysis, and there are several methods for estimating
the size and position of ventricles automatically. No such infor-
mation is currently utilized.

The border positioning errors as well as the volume and mass
measures revealed a slight but systematic bias toward smaller
contours. The presented 3-D AAM assumes the image data to be
truly three-dimensional. However, the MR data sets are acquired
over several heartbeats as sequences of 2-D slices, not in a volu-
metric fashion. Individual slices are frequently acquired during
separate breath-holds. Differences in inspiration level and thus
heart position lead to variable shifts in the LV position between
slices. The effect of these shifts is threefold.

1) During the training of the model, unsystematic shifts are
modeled in the shape model, decreasing the sensitivity of
the model with respect to real shape variation.

2) During the matching, the match for multiple other adja-
cent slices is greatly disturbed by a single shifted slice.

3) The border positioning and volumetric errors are affected
by the shifted slices.

This may well explain a large part of the underestimation of the
reported MR volume measures.

For the ultrasound application, results were promising but
less convincing than those achieved using our previously re-
ported 2-D time AAM approach. Area regression (Fig. 9) over
the 57 successful matches exhibited a systematic area underes-
timation of 3.8% ( , ). Compared
to the 2-D time AAM ( , ; area
underestimation 2.9%), a slightly higher systematic area error
and a flatter regression line were observed. In part, this can be
attributed to the extra degree of freedom with which the 3-D
AAM has to cope. The 2-D time AAM uses a priori knowl-
edge of the phase/time aspect. However, the non-Gaussian dis-
tribution of intensity values in ultrasound is likely an even more
important problem. Its indication is that model localization in
the time dimension is much more accurate than in the spatial

localization. For the 2-D time AAM approach in ultrasound,
intensity distributions were normalized nonlinearly to deal with
ultrasound-specific intensity properties [16]. This resulted in a
substantially improved accuracy of the border localization. The
nonlinear normalization improved both the systematic area un-
derestimation and the slope of the area regression line. The 3-D
version of this correction has not yet been developed. After its
implementation, further improvements of segmentation accu-
racy in the echocardiographic images are expected.

Another problem observed in the testing case studies is as-
sociated with incomplete deployment of the model in the lon-
gitudinal direction in the MR studies. In 32 of 391 MR
slices, the contours were not determined by the 3-D AAM due
to insufficient pulling force in the longitudinal direction, thus
not covering one of the apical or basal slices. Currently, such
slices were excluded from quantitative assessments. Missing
slices may, however, substantially influence volumetric indexes
of complete ventricles. Substantial MR slice thickness and con-
sequently lack of detail in thedirection are the main reason. In
the analyzed data sets, there is a lack of a clear “end” of the LV at
the basal level. Making the 3-D AAM to cover the entire longi-
tudinal length of the cardiac ventricles requires future attention.
In addition, the apical part of the ventricle only asserts a small
influence in the volumetric matching error function, due to the
relatively small volume of the apex. As a result, the matching
procedure tends to “sacrifice” apex accuracy for better mid-ven-
tricular accuracy. Currently, improvements in apex boundary
localization performance by nonuniformly weighting the three
parts of the ventricle (apical, mid-ventricular, basal) are being
investigated.

B. Current Limitations

Point correspondence between shapes is a critical factor for
3-D AAMs to become a general purpose method for segmen-
tation of volumetric data. Due to the limited complexity of the
left ventricle shape, simple parameterization of the surface was
sufficient in this work. However, developing methodologies
for creating point correspondence among a population of more
complex 3-D shape instances is an actively researched area.

There are several solutions to developing correspondence in
volumetric data. One of the simplest, representing a 3-D shape
as a stack of 2-D contours, was used in our implementation.
Another popular method is projecting landmark points on
a spherical coordinate system, but this method is generally
limited to single convex objects [27]. Lorenzet al. present a
method whereby a 3-D template mesh is created from a shape
instance. This template is deformed to other shape instances
in the population providing landmark and intermediate points
[28]. Duta et al. specify an automatic construction of 2-D
shape models by approximating shape instances to polygons
of a common number of boundary points. These polygons are
aligned using Procrustes analysis, and the corresponding points
are extracted from the nearest polygon vertices [29]. Although
a 2-D method is reported, it may be extended to 3-D models. A
framework for automated landmark identification in 2-D was
reported by Hillet al. [30]. The correspondence algorithm that
was developed with PDMs in mind locates a matching pair of
sparse polygonal approximations by maximizing a landmark
similarity cost function using a greedy algorithm. Extension
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to 3-D is under investigation. Guestet al. describe point
correspondence based on sensitivity of the point being matched
to movement [31]. The driving idea is that a perturbation of
reliable corresponding points shall not result in large displace-
ments. The method was used for 2-D and 3-D registration of
pre- and postoperative facial range scans. Kelemenet al.create
point correspondence by an area-preserving parameterization
followed by object-oriented normalization of its starting point,
thus yielding a continuous mapping function between similar
objects in 3-D [8]. Lastly, Daviset al. create statistical shape
representation based on minimizing the total information
required to encode and decode the original shape samples using
information theory. This is done by creating corresponding
points via a parametric representation of each individual shape
and optimizing this function with respect to the compactness
of the final shape model [32].

As with 2-D AAMs, another limitation of 3-D AAMs is an un-
certainty of adequate covering of all pathologies in training sets.
Although the AAM technique demonstrated segmentation reli-
ability, there are always concerns using a model-based method
built upon a finite set of training data to correctly handle often
grossly abnormal patient data. One solution to this problem is
to utilize larger training sets to cover all representative patholo-
gies. User interaction is another solution to the limitations of a
finite model. Cootes proposes adding a statistical framework to
the AAM matching technique, thereby introducing a prior term
to the matching phase. Using this model, a user can interac-
tively provide constraints to landmarks improving the accuracy
of the matching [33]. Another possible technique is allowing
the user to interactively correct segmentation results and adapt
the AAM model to incorporate these corrections. Taking advan-
tage of the inherent linearity of AAM models, it is believed that
such modifications may be used to improve the model. Lastly,
local deformations are often lost due to the overgeneralizing of
PCA given a finite number of samples in the training set. We
previously reported the hybrid AAM whereby an edge-based
technique such as ASM is employed simultaneously with the
region-based AAM. After each iteration, the shape and pose
results are combined using a weighted average. This method
was originally proposed for fully automated segmentation of
2-D cardiac MR and shown to produce better results than AAM
alone [15].

To keep data size, memory requirements, and processing time
within acceptable limits, subsampling of image data was applied
in generating the intensity models (up to a factor of eight for
ultrasound). Although appropriate Gaussian filtering was used,
this may compromise the overall accuracy. Improvements in
speed and accuracy can be expected when a multiscale approach
as described by Cootes is employed [12]. However, memory re-
quirements remain a concern due to the 3-D nature of the pro-
cessed data.

C. Extensions to Allow 4-D Image Analysis

The heart is a dynamic system, making time-independent seg-
mentation inadequate. Applying 3-D AAM segmentation to the
full cardiac cycle would require multiple models for different
phases because any temporal knowledge of the interrelationship
between frames would be lost. Several existing methods have
been developed for 3-D time cardiac segmentation taking into

account the temporal relationship between frames. For example,
one technique by Jacobet al.[34] solves temporal coherency be-
tween active shape models in echocardiograms through the use
of a Kalman filter, creating a motion model to predict the cardiac
cycle in addition to a shape model. An alternative method by
Montagnatet al. [35] segments cylindrical echocardiographic
images using deformable models. Here temporal coherence is
accomplished by reinitializing the deformable model using the
previous segmentation, while incorporating a 4-D anisotropic
diffusion filter that significantly improves the spatial and tem-
poral information between frames.

To extend the 3-D AAM framework to 3-D time, we pro-
pose to incorporate a time element into the model by phase-nor-
malizing objects to a common time correspondence and con-
catenating shape and texture vectors of individual phases into a
single shape and texture vector. Such a technique has been found
efficient in 2-D time AAM and ASM models [16], [17], [36]
and is promising as a future extension of 3-D AAMs.

V. CONCLUSION

A three-dimensional active appearance model method for
analysis of volumetric cardiac images and temporal image
sequences was presented and its performance demonstrated
in two substantially different cardiac imaging modality case
studies. To our knowledge, this is the first report describing a
comprehensive design of a well-validated three-dimensional
active appearance model-based segmentation. The model’s
training from manually traced segmentation examples as well
as its segmentation of previously unseen images are fully auto-
mated. It carries substantial promise for successful application
in a clinical setting.

ACKNOWLEDGMENT

Ultrasound data and echocardiographic independent standard
were provided by F. Nijland, M.D., and O. Kamp M.D., Ph.D.,
Free University Hospital, Amsterdam. Data visualization sup-
port was provided by J. Schaap and M. Danilouchkine. Their
contribution is gratefully acknowledged.

REFERENCES

[1] A. F. Frangi, W. J. Niessen, and M. A. Viergever, “Three-dimensional
modeling for functional analysis of cardiac images: A review,”IEEE
Trans. Med. Imag., vol. 20, pp. 2–25, Jan. 2001.

[2] B. C. Vemuri and A. Radisavljevic, “Multiresolution stochastic hybrid
shape models with fractal priors,”ACM Trans. Graph., vol. 13, pp.
177–207, Oct. 1994.

[3] L. H. Staib and J. S. Duncan, “Model-based deformable surface finding
for medical images,”IEEE Trans. Med. Imag., vol. 15, pp. 720–731,
1996.

[4] T. F. Cootes, D. H. Cooper, C. J. Taylor, and J. Graham, “Trainable
method of parametric shape description,”Image Vision Comput., vol.
10, no. 5, 1992.

[5] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, “Active shape
models-their training and application,”Comput. Vision Image Under-
stand., vol. 61, pp. 38–59, 1995.

[6] A. Hill, T. F. Cootes, and C. J. Taylor, “Medical image interpretation:
A generic approach using deformable templates,”Med. Inform., vol. 19,
no. 1, pp. 47–59, 1994.

[7] N. Duta and M. Sonka, “Segmentation and interpretation of MR brain
images: An improved active shape model,”IEEE Trans. Med. Imag., vol.
17, pp. 1049–1062, Dec. 1998.



1178 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 9, SEPTEMBER 2002

[8] A. Kelemen, G. Szekely, and G. Gerig, “Elastic model-based segmen-
tation of 3-D neurological data sets,”IEEE Trans. Med. Imag., vol. 18,
pp. 828–839, Oct. 1999.

[9] S. M. Pizer, S. Joshi, T. Fletcher, M. Styner, G. Tracton, and J. Z.
Chen, “Segmentation of single-figure objects by deformable M-reps,”
in MICCAI 2001, W. Niessen and M. Viergever, Eds., Berlin, 2001, pp.
862–871.

[10] G. D. Stetten and S. M. Pizer, “Medial-node models to identify and
measure objects in real-time 3-D echocardiography,”IEEE Trans. Med.
Imag., vol. 18, pp. 1025–1034, Oct. 1999.

[11] D. Shen, E. H. Herskovits, and C. Davatzikos, “An adaptive focus
statistical shape model for segmentation and shape modeling of 3D
brain structures,”IEEE Trans. Med. Imag., vol. 20, pp. 257–270, Apr.
2001.

[12] T. F. Cootes, C. Beeston, G. J. Edwards, and C. J. Taylor, “A unified
framework for atlas matching using active appearance models,” in
Information Processing in Medical Imaging, A. Kuba and M. Samal,
Eds. Berlin, Germany: Springer-Verlag, 1999, Lecture Notes in
Computer Science, pp. 322–333.

[13] T. F. Cootes. (1999) Statistical models of appearance for computer
vision. [Online]. Available: http://www.isbe.man.ac.uk/~bim/Models/
app_model.ps.gz

[14] G. Edwards, C. Taylor, and T. Cootes, “Interpreting face images using
active appearance models,” inProc. 3rd Int. Conf. Automatic Face and
Gesture Recognition 1998, Nara, Japan, 1998, pp. 300–305.

[15] S. C. Mitchell, B. P. F. Lelieveldt, R. J. van der Geest, H. G. Bosch, J.
H. C. Reiber, and M. Sonka, “Cardiac segmentation using active appear-
ance models,”IEEE Trans. Med. Imag., vol. 20, pp. 415–423, May 2001.

[16] J. G. Bosch, S. C. Mitchell, B. P. F. Lelieveldt, F. Nijland, O. Kamp,
M. Sonka, and J. H. C. Reiber, “Automatic segmentation of echocar-
diographic sequences by active appearance models,”IEEE Trans. Med.
Imag., to be published.

[17] B. Lelieveldt, S. Mitchell, J. Bosch, R. van der Geest, M. Sonka, and
J. Reiber, “Time-continuous segmentation of cardiac image sequences
using active appearance motion models,” inInformation Processing in
Medical Imaging, ser. Lecture Notes in Computer Science. Berlin,
Germany: Springer-Verlag, 2001, vol. 2082, pp. 446–452.

[18] M. Sonka, V. Hlavac, and R. Boyle,Image Processing, Analysis, and
Machine Vision, 2nd ed. Pacific Grove, CA: PWS, 1998.

[19] C. Goodall, “Procrustes methods in the statistical analysis of shape,”J.
Roy. Stat. Soc. B, vol. 53, no. 2, pp. 285–339, 1991.

[20] F. L. Bookstein,Morphometric Tools for Landmark Data. Cambridge,
U.K.: Cambridge Univ. Press, 1991.

[21] S. Altmann, Rotations, Quaternions and Double Groups. Oxford,
U.K.: Clarendon, 1986.

[22] P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 14, pp. 239–256, Feb.
1992.

[23] T. F. Cootes, G. J. Edwards, and C. Taylor, “Active appearance models,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 23, pp. 681–685, June
2001.

[24] S. Baker and I. Matthews, “Equivalence and efficiency of image align-
ment algorithms,” inProc. Comput. Vision Pattern Recognition Conf.,
vol. 1, 2001, pp. 1090–1097.

[25] K. W. Bowyer, “Validation of medical image analysis techniques,”
in Handbook of Medical Imaging, M. Sonka and J. M. Fitzpatrick,
Eds. Bellingham, WA: SPIE, 2000, vol. 2, Medical Image Procesing
and Analysis, pp. 567–607.

[26] R. J. van der Geest, V. G. M. Buller, E. Jansen, H. J. Lamb, L. H. B.
Baur, E. E. van der Wall, A. de Roos, and J. H. C. Reiber, “Comparison
between manual and semiautomated analysis of left ventricular volume
parameters from short-axis MR images,”J. Comput. Assist. Tomogr., vol.
21, no. 5, pp. 756–765, 1997.

[27] C. Brechbuhler, G. Gerig, and O. Kubler, “Parameterization of closed
surfaces for 3D shape description,”Comput. Vision Image Understand.,
vol. 62, pp. 154–170, 1995.

[28] C. Lorenz and N. Krahnstover, “3D statistical shape models for medical
image segmentation,” inProc. 2nd Int. Conf. 3-D Digital Imaging and
Modeling, 1999, pp. 414–423.

[29] N. Duta, A. K. Jain, and M.-P. Dubuisson-Jolly, “Automatic construction
of 2D shape models,”IEEE Trans. Pattern Anal. Machine Intell., vol. 23,
pp. 433–446, May 2001.

[30] C. J. Hill, A. Taylor, and A. Brett, “A framework for automatic land-
mark identification using a new method of nonrigid correspondence,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 22, pp. 241–251, Mar.
2000.

[31] E. Guest, E. Berry, R. Baldock, M. Fidrich, and M. Smith, “Robust point
correspondence applied to two- and three-dimensional image registra-
tion,” IEEE Trans. Pattern Anal. Machine Intell., vol. 23, pp. 165–179,
Feb. 2001.

[32] R. Davies, T. F. Cootes, and C. J. Taylor, “A minimum description length
approach to statistical shape modeling,” inProc. 17th Conf. Information
Processing in Medical Imaging, 2001, pp. 50–63.

[33] T. F. Cootes and C. J. Taylor, “Constrained active appearance models,”
ICCV, vol. 1, pp. 748–754, 2001.

[34] G. Jacob, A. Noble, M. Mulet-Parada, and A. Blake, “Evaluating a robust
contour tracker on echocardiographic sequences,”Med. Image Anal.,
vol. 3, no. 1, pp. 63–75, 1999.

[35] J. Montagnat, M. Sermesant, H. Delingette, G. Malandain, and N. Ay-
ache, “Anisotropic filtering for model based segmentation of 4D cylin-
drical echocardiographic images,”Pattern Recogn. Lett. (Special Issue
on Ultrasonic Image Processing and Analysis), vol. 24, no. 4–5, pp.
815–828, Feb. 2003.

[36] G. Hamarneh and T. Gustavsson, “Deformable spatio-temporal shape
models: Extending ASM to 2D+ Time,” in Proc. 12th Br. Machine
Vision Conf., 2001, pp. 13–22.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


