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Mutual Information-Based CT-MR Brain Image
Registration Using Generalized Partial Volume Joint
Histogram Estimation

Hua-mei Chen and Pramod K. Varshnefellow, IEEE

intensity-based methods [2]. A feature-based method requires
the extraction of features common in both images. Obviously, a

feature-based method is data dependent. Since different image
data may have different features, the feature extraction algo-
rithms adopted in a feature-based image registration algorithm
are expected to be different for different registration tasks.

In contrast, intensity-based image registration techniques are

Abstract—Mutual information (Ml)-based image registration
has been found to be quite effective in many medical imaging ap-
plications. To determine the Ml between two images, the joint his-
togram of the two images is required. In the literature, linear in-
terpolation and partial volume interpolation (PVI) are often used
while estimating the joint histogram for registration purposes. It
has been shown that joint histogram estimation through these two
interpolation methods may introduce artifacts in the Ml registra-

tion function that hamper the optimization process and influence
the registration accuracy. In this paper, we present a new joint his-

togram estimation scheme called generalized partial volume esti-

mation (GPVE). It turns out that the PVI method is a special case
of the GPVE procedure. We have implemented our algorithm on

free from this limitation because they do not deal with the
identification of geometrical landmarks. The general design
criterion of an intensity-based image registration technique
can be expressed as

the clinically obtained brain computed tomography and magnetic
resonance image data furnished by Vanderbilt University. Our ex-
perimental results show that, by properly choosing the kernel func-
tions, the GPVE algorithm significantly reduces the interpolation-

induced artifacts and, in cases that the artifacts clearly affect reg-
istration accuracy, the registration accuracy is improved.

a* = argopt (S (F(x), R (Ta(x)))) @
where R and F' are the images to be registerefix is the
transformation, characterized by the pose parametethat

will be applied to the coordinates of each grid po#tin

F. S is an intensity-based similarity measure calculated over
the region of overlap of the two images. The above criterion
says that the two images and R are registered through, *
whena* optimizes the selected similarity measureAmong

a variety of existing similarity measures, mutual information

ULTIMODALITY image registration has become an(MI) has received substantial attention recently because of

important research topic because of its great value iritd ability to measure the similarity between images from
variety of applications. For medical image analysis, an imagéfferent modalities, especially in, but not limited to, medical
showing functional and metabolic activity—such as singiénhaging applications [3]-[8].
photon emission computed tomography (SPECT), positronMany aspects of the use of Ml as the similarity measure to
emission tomography (PET), and magnetic resonance sppee-maximized have been studied. In [9]-[11], three variations
troscopy (MRS)—is often registered to an image which shows$ MI are proposed to provide an overlap-invariant measure. In
anatomical structures, such as magnetic resonance image (MRR], maximization of Ml is found to be a maximum likelihood
computed tomography (CT), and ultrasound. These registeretimation problem under very minimal assumptions. In [13],
multimodalityimages lead toimproved diagnosis, better surgical multiresolution optimization approach using an optimizer
planning, more accurate radiation therapy and countless otbpecifically designed for the MI measure is presented. In [14],
medical benefits [1]. Existing image registration techniquesmultivariate Ml measure is proposed to increase the accuracy
can be broadly classified into two categories: feature-based gudvided that at least two highly accurate pre-registered images
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woulddependontheposition ofthe highestpeak ofthe artifact pat-
tern. Althoughtheinfluenceis notalways negative, itis still desir-
able to develop an artifact-free MI-based registration algorithm.
Therearetworeasons: 1) anartifact-free Ml-basedregistration al-
gorithm facilitates the global optimization process; and 2) when
the influence of the artifacts on the registration accuracy is nega-

0s| / N\ tive, artifact-free MI-based registration can improve registration

0.4_/\/' A accuracy. In general, itis difficult to gauge whether the influence
is positive or negative. This influence on registration accuracy is

%% s 10 15 2 25 w0 % 40 45 at most half the size of a voxel [16]. To assess the influence of the

0.9

08

artifacts onregistration accuracy, a peak-shif(measure is de-
vised in this paper (Section VI). From our experiments, it seems
reasonable to consider the influence to be negative P8reea-
sure is equal to or larger than 0.5. The goal of this paper is to de-
velopanartifact-free, ornearly artifact-free Ml-based registration

algorithmto improve registration accuracy when the influence of

o7y the artifacts on registration accuracy is negative.

06 \ Provided in Section II, the Ml measure between two images
\ is solely determined by their joint histogram. In this paper, we

05 \ : - . . .

N have developed a new joint histogram estimation scheme named
0~ generalized partial volume estimation (GPVE). This method gen-
O e e e eralizes the PVI algorithm proposed by Collignon and Maes [4]

by incorporating it into a larger framework. In this framework, a
(b) kernel function is employed in each of they, andz directions

to estimate the joint histogram of two image volumes. It can be
Fig. 1. Typical interpolation-induced artifact patterns for a Mi-basedy gy that the PVI algorithm is a special case corresponding to
registration functlon. I_n both cases, the ve_rtlcal axis is the MI-_based measurtle . enli L .
and the horizontal axis can beor y or = displacement. (a) Artifact pattern the use ofthe first-order B-spline asthe kernelfunctionineachdi
resulting from linear interpolation. (b) Artifact patter resulting from PVirection. We have applied it to the clinically obtained brain CT and
algorithm. MR image datafurnished by Vanderbilt University[21], [22]. The

evaluation of the proposed GPVE algorithm is based on its com-
maxima. Typical artifact patterns resulting from these two joifarison with the PVI algorithm. Our experimental results show
histogram estimation methods are shown in Fig. 1. These artiffftat, by choosing the second-order or the third-order B-spline as
patterns have also been found when clinically obtained brain ithe kernel function along the direction(s) in which the artifacts
ages are used. In addition to the linear interpolation and PVI, wuld occur if the PVI algorithm were applied, the artifacts can
have found similar patterns when otherimage intensity interpoleg reduced significantly for CT to MR brain image registration.
tion methods like cubic convolution interpolation [17] and cubith cases where tféSmeasure is equal to or larger than 0.5 when
B-spline interpolation [18], [19] are used [20]. Artifact pattern&V! is employed, registration accuracy can be improved signifi-
have at least two consequences: 1) they hamper the global opdintly using a higher order kernel along the direction(s) in which
mization process because of the introduction of many local etifacts occur.
tremaand 2) they influence registration accuracy [16] because thd his paper is organized as follows. In Section I, we review the
true global optimumis now buried underthe artifact pattern. Howheoretical background of MI-based image registration methods.
ever, this influence is not always negative, i.e., registration acd-Section Ill, a brief description of interpolation-induced Ml
racy does not always become worse. It depends on the posit@hfacts is presented. The proposed joint histogram estimation
of the highest peak of the artifact pattern. To facilitate explangcheme, GPVE, is presented in Section IV. A comparison of the
tion, let a;q.1 denote the pose parameters (which is a vector gomputational complexities of different interpolation schemes
a multidimensional search space) that result in perfect registigprovided in Section V. Registration accuracies of higher order
tion, aarti—free the pose parameters found using an artifact-fréePVE algorithms are compared with that of the PVI algorithm
MIl-based registration a|gorithm ang,; the pose parameters re-n Section VI using the Vanderbilt CT and MR brain image data.
sulting from a MI-based registration algorithm that is known tGinally, some concluding remarks are given in Section VII.
suffer from the artifacts due to the use of an algorithm such as the
PVl algorithm. Clearly.,,; is determined by the position of the
highest peak of the artifact pattern. If this positian; happens
to be closer thatv,,+;— free t0 digeal, the influence of the artifacts Ml has its roots in information theory [23]. The MI of two
onthe registration accuracy is positive, i.e., the registration acecandom variablest and B is defined by
racy is improved. On the other hand, if the distance betwegn
anda;qeq is larger thanthat between ¢ free aNdaigear, the in-
fluence is negative and the registration accuracy becomes worse. I(A,B) = Z P4 p(a,b)log M
Thereforeassuming perfect optimization, registration accuracy ab Pa(a) - Pp(b)

Il. MUTUAL INFORMATION BASED IMAGE REGISTRATION
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whereP,4(a) andPg (b) are the marginal probability mass func-MI between them. As a result, the quality of the estimated joint
tions andP4 g (a, b) is the joint probability mass function. Ml histogram solely determines the accuracy of this method.

measures the degree of dependencd a@ind B by measuring

Intuitively, the joint histogram can be estimated by a two-step

the distance between the joint distributidh z(a,b) and the procedure. Denote the two images that need to be registered as
distribution associated with the case of complete independeritethe floating image on which a geometric transformation will
P4(a) - Pg(b), by means of the relative entropy or the Kullbe applied andz, the reference image that will be interpolated.

back-Leibler measure [23]. Ml is related to entropies by

I(A,B) =H(A) + H(B) — H(A, B) 3)
—H(A) - H(A| B) ()
—H(B)~ H(B | A) (5)

with H (A, B) being their joint entropyf/ (A) and H(B), the
entropies ofd andB; andH(A | B) andH(B | A), the con-

ditional entropies ofd given B and of B given A, respectively.

The definitions of these entropies are

H(A) == Pa(a)-log Ps(a) (6)

H(A,B) == Pap(a,b)-log Psp(a,b)  (7)
a,b

H(A|B)=-Y_ Paplab)-logPyp(a|b) (8)
a,b

To employ MI as a similarity measure, we need to utilize the
concept of the two-dimensional (2-D) histogram of an image
pair, the joint histogram. The joint histograirof an image pair

The first step is to estimate the intensity valuedirat every
transformed grid point of” by employing an intensity interpo-
lation algorithm. The second step is then to determine the joint
histogram from the overlap of the floating image and the inter-
polated reference image. In practice, each interpolated intensity
value needs to be rounded to the nearest integer so that the joint
histogram can be obtained by a simple counting procedure. Itis
shown in [4] that the MI registration function obtained by using
linear interpolation usually is not very smooth. To overcome
this nonsmoothness, Collignon and Maes proposed a joint his-
togram estimation scheme called PVI [4]. By using this method,
a smooth Ml registration function can be obtained.

A recent study [16] pointed out that both of the methods men-
tioned above may result in certain types of artifacts in the Ml
registration function as shown in Fig. 1. This has been confirmed
clinically [16]. In Section I, the conditions under which the ar-
tifacts occur are discussed.

I1l. | NTERPOLATION-INDUCED ARTIFACTS

It has been pointed out in [16] that when two images have

can be defined as a function of two variablgs the gray-level gqual sample spacing in one or more dimensions, existing joint
intensity in the firstimage an@, the gray-level intensity in the pistogram estimation algorithms like PVI and linear interpola-

secondimage. Its value at the coordinate 3) is the number of tjon may result in certain types of artifact patterns in a Mi-based
corresponding pairs having gray-levélin the firstimage and regjstration function. More precisely, the artifacts will occur

gray-level B in the second image. The joint probability masgnen the ratio of the two sample spacings along a certain di-
function used in the calculation of Ml of an image pair can themension is a simple rational number. The reason is that in this
be obtained by normalizing the joint histogram of the image paigse. many of the grid planes (or grid lines for 2-D images) may

as

Pap(ab) = @0

5= h(a. ) ®)

be aligned along that dimension under certain geometric trans-
formations. Therefore, fewer interpolations are needed to esti-
mate the joint histogram of these two images than in the case
that none of the grid planes are aligned. For example, when the
ratio of voxel sizes of the two image volumes along thaxis

From the joint probability mass function, we may obtain thare 5 (mm)/3 (mm) and 1 (mm)/1 (mm) along the other two axes,

two marginal probability mass functions directly as
Pa(a) =) Pap(ab) (10)
b

Pg(b) =) Pap(a,b). (11)

then by shifting one of the image volumes, the grids on planes
1,4,7,... of the first image volume (the one with volume size 5
mm along the: axis) can be made to coincide with the grids on
planes 1, 6, 11,..., of the second image volume. In this case, the
contribution of the coincident grids to the joint histogram can be
counted directly without resorting to any form of estimation. But
if one of the image volumes is further shifted a little bit along

The MI registration criterion states that the image pair is getie z axis, then none of the grids of the two image volumes will

metrically aligned through a geometric transformatiomhen

be coincident with each other and the joint histogram has to be

I(A(x), B(T'(x))) is maximal. Notice that the marginal en-estimated completely. In this case, this sudden change between
tropies in (3) change with transformati@hbecause the image “fewer “ estimation and “substantially more” estimation causes
overlap changes. The strength of the Ml similarity measure lid®e artifacts. Also, the artifacts are expected to repeat for every
in the fact that no assumptions are made regarding the natlirmm in thez direction because in this case, there are certain
of the relation between the image intensities in both modalitiegyid planes that will be aligned for every 1-mm shift in the

except that such a relationship exists.

direction. One example is presented in Fig. 2. Simulated brain

From (2) and (9)—(11), we can see that the joint histogramR T1 image with voxel siz& mm x 1 mm x 5 mm and MR
of an image pair is the only quantity required to calculate thE2 image with voxel sizé mm x 1 mm x 3 mm from BrainWeb
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Displacement (mm) in the z-direction Let f be a triangular function defined by
1—t, ifo<t<l1
513. fuy:{1+m if —1<t<0 . (14)
0, otherwise
[24], [25] are used to produce the artifact patterns. Notice thmten we can rewrite (13) as
the artifacts occur for every 1-mm spacing as expected.
Itis pointed out that abrupt changes in the joint histogram di&{ F' (z;, z;) , R (v; + p,y; + q))+
persion resulting from the PVI mgthod for grid-aligning trans-. =f(p—A)-f(a—A,) VpqeZ (15)
formations cause the concave artifact pattern[16]. Based on this,
we believe a joint histogram estimation scheme that reduces thandq are used to specify the pixels involved in the histogram
degree of sudden changes in joint histogram dispersion is abjelating procedure. Notice that in (15), the increments are alll
to reduce the artifacts. In Section 1V, we describe such an algmros except whem ¢ € {0, 1}. In fact, wherp = 0 andg = 0,

Fig. 2. Artifact patterns in the case where the ratio of sample spacings equal

rithm by generalizing the PVI algorithm. the pixel under considerationyg and the corresponding incre-
ment isw;. Whenp = 1 andq = 0, the pixel under considera-
IV. GENERALIZED PARTIAL VOLUME ESTIMATION tion isy, and the corresponding increment.is. Whenp = 0

andq = 1, the pixel under consideration js; and the corre-
Before presenting the GPVE algorithm, let us first review theponding increment iss. Finally, whenp = 1 andq = 1, the
PVl algorithm proposed by Maes and Collignon [4] in the 2-ixel under consideration js, and the corresponding increment
case. This will set the stage for our algorithm by providing some,,. Now the proposed GPVE algorithm for the three-dimen-

of the terminology used. sional (3-D) case is ready to be presented in terms of a more
Let /" and R be the floating image and reference image, rgreneral kernel function.
spectively, that can be considered as two mappings Let f be a real valued function satisfying
Frix— F(x),x€X 1) f(::o) > 0, wherez is a real number (16)
R:y - R(y),yeY (12) 2) Y f(n—A)=1, wheren isaninteger0 < A <1
where X is the discrete domain of" andY is the discrete a7

domain of R. The valueF'(x) represents the intensity of the ) ) ) )

floating image at the grid point with coordinate = (z;, =) then for each grid poink = (z;,z;,2x) € X in the image

in terms of the sample spacing. Now if we I8 be the volume F', the joint histogramh is updated in the following

transformation characterized by the parametercsahat is Manner.

applied to the grid points of and assume thata maps the o . ]

grid point (;, z;) in image F onto the point with coordinate, P (@isejpon), Ryi+ 0y + ¢y + 7))+

in terms of sample spacingy,(+ A;,y; + 4;) in the image ~— F=20)-flg=25) f(r—~Ay) Vpgrez (18)

R, where {;, y;) is a grid pointinR and0 < A;, A; < 1.1 \here f is referred to as the kerel function of GPVE afids

Fig. 3,y1,¥2,¥3,ya are the grid points on the reference imagg,e set of all integers.

R t_hat are closest to the trgnsformed grid pdit(x). Ta (x) Notice that the increment (contribution of each voxel in-

splits the celly1,y2,ys,y4 into four subcells. The subcells,g\ed) of the joint histogram is now represented in terms of

haXe areasu, w, w3 and wy as shown with the constraintyhe kermel functions along each direction. The first condition

Y im wi(Ta(x)) = 1. The PVI algorithm obtains the joint oy ¢ ensures that the increments are nonnegative while the

histogram as follows: second condition makes the sum of the updated amounts equal
to one for each corresponding pair of points,;, zx) in F

}L(F(X)./R(yl))—l-:wl forl=1...4 (13) and (l/i-l-A,,j?yj-l-Aj?yk-i-Ak) in RR.
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Fig. 4. B-splines. (a) First order. (b) Second order. (c) Third order.

&2
)
AN
o
-
N
w
-1
)
A
[S)
-
N
w

PX-]

o

EN

o

N

N

w

From this generalization, we can see that the PVI algorithm
proposed by Maest al.is a special case whehis a triangular
function defined by (14). Here, we propose to use B-splines a:
the kernel functionf because it satisfies both the conditions in
(16) and (17) and furthermore, it has finite support. Fig. 4 shows
the shapes of the first-, second-, and third-order B-splines. Fror
the shapes of the B-splines, it should be noticed that the kerne

function introduced in (16) and (17) is an approximator rather ® ®¢ ¢ ¢ & & & ¢ ¢ ¢ ¢ o
than an interpolator because an interpolator has zero crossing® ® ® ® ¢ ¢ o L
at positions 041, +2, .... The kernel function is introduced ® " o o .
to assign a value to the contribution of each voxel involved in ® ¢fOSO0 & o o .
updating the joint histogram. For more details on B-splinefunc- ®¢ ® @ ¢ ¢ o e .
tions, interested readers are referred to [18], [19]. Itisinter- ® ® ®© ® ¢ & & & & & o o

esting to point out that the triangular function defined in (14) (b)
is identical to the first-order B-spline function. Therefore, the

i i i irat- Fig. 5. Grid points corresponding @ that are involved in updating the joint
gP(\)/rIit?]Ir%omhm is actually equivalent to the first-order GPVE a'lhistogram in the 2-D case. (a) When the transformed grid point is coincident

’ o ) ) with a grid point inR. (b) When the transformed grid point is surrounded by
Fig. 5 shows the grids iR (shown as °”) that are involved in  grid points inR.

updating the joint histogramin 2-D case using the first-, second-,

and third-order B-;pline_s as the kernel function. In each Cag@rnel function, which is shown as the shaded area in Fig. 5(a)
the transformed grid poirif,, (x) appears at the center of eac

d 5(b). The length of h side of the shaded region for th
plot. Fig. 5(a) shows the case when the transformed grid poggt () © 'engin of each Side of the shaded region for the

o A : . ; ; f third-order GPVE is 4 ti f th I ing. |
of F'is coincident with a grid point af and Fig. 5(b) shows the se of third-order 'S 4 imes of e samp'e spacing. i

hen the t f d arid pointof i id point i this case, 9-16 grid points are involved in updating as seen in
case when the transiormed gnd pointrols not a grid pointin Fig. 5. The ratios of the maximum number to minimum number
R but surrounded by four grid points iR.

. . . of updated entries are 4, 2.25 and 1.78 when using the first-,
In the_ GPVE "’?'90'!”‘“” the kgrnel functions can be d'ﬁere%tecond—, and third-order GPVE, respectively. In the 3-D case,
along different directions. That is, we can rewrite (18) as the corresponding ratios are 8, 3.375, and 2.370. The reduction
in the values of these ratios when higher order kernels are em-

ployed gives it the ability to reduce the artifacts, since now a

h(F (@i, 25, 2x) , B (yi + pyj + @ 90 + 7))+ certain degree of joint histogram dispersion is introduced by the
=filp—A)-f2(0—2;)-fs(r—Ar) Vp,a,r€Z (19) nigher order kernel even when the grid points of the two images
. _are perfectly aligned. This reduces the sudden changes of the

wheref, f2 andf_g can be cﬁfferent kerne!S- FOF_ exa_mple, if W8§oint histogram dispersion. Intuitively, the ratio needs to be one
know that the artifact is going to appear in theirection only, - tg remove the artifacts completely because different numbers of
then we can choose boffy and f, as the first-order B-spline ,pdated entries introduce different amounts of dispersion of the
but choosef; as the third-order B-spline. This is justified byjoint histogram. However, based on our experiments presented

the experiments in Section VI. - in Section VI, the artifacts can be hardly seen when either the
From Fig. 5 we observe that, in the 2-D case, one to four e§scond- or third-order GPVE is used.

tries of the joint histogram are involved in updating for each
pixel in F' if PVI (or the first-order GPVE) is used. This is evi-
dent from the leftmost figures of Fig. 5(a) and (b). In Fig. 5(a),
only the center pixel is involved in updating whereas in Fig. 5(b) When calculating the Ml of two images, much of the com-
all the four grid points surrounding the point marked BY “ putational power is consumed while estimating the joint his-
are involved in updating. Similarly, nine and four grid pointsogram; therefore, our analysis of the computational complexity
are involved in updating in Fig. 5(a) and (b), respectively, whenill focus on the estimation of the joint histogram only. A com-
second-order GPVE is employed. The number of grid points iparison of the execution times for PVI and GPVE algorithms is
volved in updating is determined by the size of the support of tla¢so reported in this section.

V. COMPUTATIONAL COMPLEXITY
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TABLE |
EXECUTION TIMES FORPVI, SECOND-ORDER GPVE,AND THIRD-ORDER GPVE ALGORITHMS
Algorithm [ PVI 2" GPVE 3 GPVE 2" GPVE 3 GPVE
along z only along z only along X, vy, z along X, y, z
Execution 4.63 5.43 5.65 -12.15 13.42
time (sec)
Ratio 1 1.17 1.22 2.62 2.90
A B-spline of ordern can be generated by convolving the TABLE I
B-spline of order 0 with itselfif + 1) times [18]. That is: VOXEL SzEs OF THEPD
3 () = 87 1*30(4) = B9%30% ... x30(x 20 voxel size in mm
¢ ( ) £ : ( ) gt — £ ( ) (20) CT [0.653595x0.653595x4]
ntl times PD, T1, T2 [1.25x1.25%4]
where3" () is thenth order B-spline ang’(z) is nothing but PD_rf [1.263903x1.263903x4.1024]
a rectangular pulse of the following form: Tt [1.266464x1.266464x4.0556]
’ T2 of [1.271x1.271x4.0728]
1 if—-05<2z2<0.5
0/, _ <
ple) = <0 otherwise (21)

gorithm for brain CT to MR image registration application

. . . a
'I;]here;‘]oreatheBcon:p uta;tlona_ll co_mrt))lex_ny IOf eachoeé)valugtlon BLing clinical image data furnished by Vanderbilt University.
::_e nt4 ord gr -Eplnehuncr;uon IS farsllca 9 (n). ser\gng The results of our experimental study are presented in this
'gs. 4and S we knowthat the size ofthe support o rer section. Registration results obtained by using a fiducial-based

tl?ra]—splln?futr]ctlor}?:]ont%eaglh dlgwenlgon;l&l.t.Tmsf mearf1sthatd registration [26] serve as the gold standard that was not avail-
(ne+e\{?3u§1n|1(;r; (()in tfi 3-0Dr cegseistr())llrje d;tnectlr?en 'I(;c’irgter:igtr(;n?a able to us. Registration results that we obtained were sent to
. L pda ! 9r3Randerbilt University where they compared our results with
for each plxel_ R “0"’“”_‘9 image within the overlap3re_g|o%e gold standard and provided us the accuracy measurements
Thhus,hthe(;anméa Colmpfa“of‘a' l.oad&{g) IX O((7|1| +h1) r)] i achieved by our algorithm. Registration error reported in all
t eng odr. ert. -SP '?ﬁ unguon flsthuse aor}:gt.a tl et nele tables in this section is the TRE value provided by Vanderhbilt.
y. andz directions. 1he ratios of the computational CompeXie. - 5 jp depth description of this database and the procedure
ties forn = 1, 2, 3 in this case are 1:6.75:24. For our applic

. . ) . Qised to evaluate a participant’s registration results, please see
tion, fortunately, as shown in the next section, the higher Ordﬁl] [22]. The estimated error of the gold standare-i©.39

kerne_l IS rlelqu:;e((jﬁln the dléectlonloml;_/'. This rehduce§ the;:ohm-mm for CT to MR registration [21]. In our implementation,
putational load ta)(n) x O(n + 1). Hence, the ratios of the ;) v, =1 304 MR image intensities have been linearly binned

_(;,_or?pltjr:atlongl cortr;1pleX|t|es {Oi - 1|’|2 an 3 becom_e l:lgz?'érilto 256 gray-levels and normalized MI is employed as the
o furtherreguce the computationalfoad, we use a simpie ta ﬁﬂlarity measure because it has been shown that it is more

lookup strategy to avoid the evaluation of_the_B-spIinefunctionﬁrkely to be overlap invariant for medical brain imaging ap-
We stored the values of theth or_der B-spline in a lookup table plications [9]. Multiresolution optimization approach using
from_—(n +1)/210 (n + 1)./2 with increments equal to O'O()l'the simplex search algorithm [27] is employed to determine
In this manner, the evaluation of théh order B-spline becomesthe maximum of the MI similarity measure. The procedure

a simple table lookup tas_k and t_he computational 'F’ad IS furﬂ}‘?s-rrminates when the standard deviation of each transformation
reduced t@)(n+ 1). The final ratios of the computational com-

o Pune parameter of the final simplex is less than 0.001 degree for

plexities fprn =12, a_nd 3 are, therefore, 1‘1'_5'2' . rotations or 0.001 mm for displacements. There are two parts

In our |mplem(_antat|on, We use a code writien using bo‘iH our experiments. In the first part, a practice data set (PD)
MAT_LAB.and Microsoft Visual C++. To compare the ex- rovided by Vanderbilt University, for which the gold standard
equtlon times of the PV.I’ the second-order GPVE’ and t_ as available to us, is used to perform a preliminary test. There
_thlrd-order GPV.E algorithm, we use the S|m_u|at_ed brm@ only one subject in the PD for each registration task. The
images from Braln_Web [24], [25]. The overlap region is k_ept Roxel sizes for this PD are listed in Table Il. From Table I,
[170X.206X 130] in all cases. Our platform is D?” P_remsmr‘we know that thez direction is the only possible direction
530 with 1'8'.GHZ Intel Xeon CPU. Thg execution times foélong which the artifacts could occur, because of the identical
the computation of the MI measure using PVI, second-ordglllrce thickness of the CT image volume and the nonrectified
GPVE _alon_g thez direction only, third-order GPVE along MR image volumes. Experiments with four different imple-
the z _dlrectmn on_ly, second-order GPVE alomg Y andz mentations of the algorithm are performed on this data set.
directions, ar!d third-order GPVE along y, andz directions Each implementation involves a unique choice of the kernel
are reported in Table I. functions. The four implementations are second-order GPVE
along thez direction and first-order GPVE along and y
directions, second-order GPVE alongally, andz directions,

We have implemented the first-, second-, and third-ord#hvird-order GPVE along the direction and first-order GPVE
GPVE algorithms as a part of the MI-based image registratiafong z and y directions and third-order GPVE along all

VI. EXPERIMENTAL RESULTS
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TABLE 11l TABLE V
REGISTRATION ERRORS FORPART 1 OF THE EXPERIMENTS REGISTRATION ERRORS FORCT-T1 IMAGE DATA
Practice | 2" GPVE 2""GPVE | 3“GPVE | 3“GPVE CT-T1 first order second order third order
Data Set | alongzonly |alongx,y,z |alongzonly | alongx,y,z error (mm) | visual influence error (mm) error (mm)
error (mm) error (mm) | error (mm) | error (mm) _ on accuracy
CT PD 26493 27330 2.7009 27710 patfent_OOl 1.7707 mild (0.3) 1.2560 1.2345
CT T1 13189 13022 1.1149 1.1270 patient 002 | 12745 strong (0.7) 08215 0.8475
= patient_003 1.2328 mild (0) 1.3173 1.3035
CT T2 3.7963 3.8438 3.7749 3.8099 patient 004 | 2.9410 strong (1.2) 1.7740 1.8078
CT_PDrf 3.5656 3.5576 3.3925 3.3875 patient 005 | 1.3967 mild (0.4) 12782 1.3057
CT Tlrf 1.5403 1.5320 1.4484 1.3819 patient 006 1.3469 mild (0.2) 1.033 0.9188
CT T2rf 2.5215 2.4975 2.5099 2.5103 patient_007 0.8950 mild (0) 1.002 1.0683
TABLE IV TABLE VI
REGISTRATION ERRORS FORCT-PD IMAGE DATA REGISTRATION ERRORS FORCT-T2 IMAGE DATA
CT-PD first order second order third order CT-T2 first order second order third order
error visual influence error (mm) error (mm) error visual influence error (mm) error (mm)
(mm) on accuracy (PS) (mm) on accuracy (PS)
patient_001 1.9977 mild (0.2) 1.9228 1.9153 patient_001 2.1906 mild (0.1) 2.7672 2.8046
patient_002 1.2299 no 1.2432 1.2937 patient_002 1.5538 no 1.7799 1.8891
patient_003 2.0026 mild (0.1) 1.8938 1.7069 patient 003 1.3920 mild (0.2) 1.2336 1.2265
patient 004 3.6220 no 2.9257 2.8353 patient 004 2.7021 no 2.6294 2.7959
patient 005 | 1.8771 mild (0.2) 1.9415 2.0097 patient 005 | 1.7265 mild (0.2) 1.9959 1.9801
patient_006 1.5194 strong (0.6) 0.5897 0.5851 patient_006 1.2842 strong (0.5) 0.6738 0.6729
patient_007 | 1.4789 mild (0) 1.4535 1.4933 patient 007 | 12173 mild (0) 1.6573 1.7857

y, and z directions. Table Il shows the results. The purposef the maximum determined in the presence of the artifacts. In
of this experiment is to experimentally verify our statement ithis case, “mild” is used to indicate that the artifact pattern is
Section IV that we need to employ the higher order kernel onpresent but its influence on the accuracyigertain In other
in the direction along which the artifacts are expected to occwords, the influence on the registration accuracy can possibly
From Table Ill, we can observe that the registration results ave positive, as explained in the introduction section. Finally, in
essentially the same when higher order kernels are applieid. 6(c) this influence is large and is most likely to decrease
along either all of the three axes or along thaxis only. This the registration accuracy. In this case, “strong” is entered in the
observation verifies our statement made about the selectiorf\d@bual influence on accuracy” column. To help distinguish the
the kernel function in each direction. Since the use of a hightstrong” from the “mild,” we use cubic convolution interpola-
order kernel is more computationally intensive, it suffices ttion to interpolate the Ml value from4 mm to 4 mm and define
use itin only the direction that is likely to produce artifacts. It isPSmeasure for each case where the artifacts are observable as
computationally more efficient without sacrificing registratiorshown in Fig. 6(b) and (c). ThBS measure is defined as the
accuracy. distance between the position of the highest peak determined
In the second part of the experiments, we compare the rég-the presence of artifacts and the position of the maximum
istration errors obtained by PVI with those obtained by highealue determined by the interpolated curve. We classify it as a
order GPVE. Tables IV-VI show the results of CT-PD, CT-T1strong” case if thd?Smeasure is no less than 0.5 mm; other-
and CT-T2image registrations for patient_001-patient_007 datése, it is classified as a “mild” case. In Fig. 6(b) and (c), B
using first-, second-, and third-order GPVE algorithms. Eacheasures are 0.2 and 0.6 mm, respectively. In Tables IV-VI, the
higher order GPVE is performed alongcoordinate only be- numbers in the “visual influence on accuracy” column provide
cause it is the direction in which artifacts could possibly occuhis PSmeasure for each case. We want to point out here that
We have shown that it is sufficient to do so in the first part of thihe PSmeasure defined above is used to hafuallyjudge the
experiments. Entries in the columns entitled “visual influendafluence of the artifacts on the registration accuracy. It is by no
on accuracy” indicate whether or not the results obtained frameans an absolute measurement of the influence of the artifacts
using the first-order GPVE (PVI) suffer from the artifacts. It caon the registration accuracy. From Tables IV-VI, we can ob-
be determined by observing the plot of the registration functi@erve that in cases when “strong” is entered in the “visual influ-
along thez axis (the direction along which artifacts may occurgnce on accuracy” column, the use of the second- or third-order
after registration. One example is given in Fig. 6, which showdPVE obviously improves registration accuracy. We believe it
the plots of the registration functions of CT-PD registration fds because the influences of the artifacts on the registration accu-
patient_004, patient_005 and patient_006 data sets. Three imdéy are negative in those cases. The use of higher order GPVE
cators {no, mild, strong} are used to describe the influence significantly reduces the artifacts and therefore, the accuracies
the artifacts on the registration accuracy by visually examinirage improved. Figs. 7 and 8 show the registration functions using
the registration functions obtained. The entry “no” indicates thiite same image data as in Fig. 6 but second- and third-order
no artifacts are observed as shown in Fig. 6(a). In Fig. 6(b), &PVE are used. From them we see that artifacts are no longer
though the artifact pattern is observable, the position of the trabserved. The mean registration errors in this case are 1.7548,
global maximum is expected to be very close to the positidn9648, and 0.9783 mm for the first second and third GPVE,
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Fig. 6. Registration functions for CT_PD registration of patient_©0gatient_006 data sets. The indicators in the “visual influence on accuracy” columns
in Tables V-VIII are “no,” “mild,” and “strong,” respectively, to specify the influence of the artifacts on the registration accuracy. In eachadsas the
displacement in mm and axis is the Ml measure.
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observed in either (b) or(c). In each caseaxis is the displacement in millimeters apdwis is the Ml measure.

Registration functions of CT_PD registration of patient_004-patient_006 using second-order GPVE algorithm. Notice that no artifacampdite
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Fig. 8. Registration functions of CT-PD registration of patient_004-patient_006 using the third-order GPVE algorithm. Notice that no arifactapabe
observed in either (b) or (c). In each casexis is the displacement in millimeters apdxis is the Ml measure.

respectively. In this case, significant improvement over the PVI
algorithm in registration accuracy is achieved.

TABLE VII
REGISTRATION ERRORS FORRECTIFIED IMAGE DATA

In the case that the “visual influence on accuracy” column First order Second order Third order
indicates “mild,” the artifacts are present but the influence on ®v mt@rfolal)wn) error (mm) error (mm)
. . .. . €rror (mm
the accuracy is not certain. This influence may be either nega- 1 b recifiea 0.86 087 083
tive or positive as explained in Section I. In this case, the mean _CT_T1_rectified 0.82 0.75 0.74
registration errors are 1.5788, 1.5963, and 1.5964 mm. The ex- ~SL 12 rectified 104 0.97 101

planation for this is that, in this case, the location of the true

global maximunm;q., is close to the location of the maximumfacts. This supports our explanation for the relatively small loss
aart; determined in the presence of artifacts. In other words, itighen higher order GPVE schemes are used in the “mild” case.
a coincidence that the PVI results in such accuracy. This is cdn-the third case, where the artifact pattern is absent, the mean
sistent with the observation made in [16]. To support our claimegistration errors are 2.2769, 2.1446, and and 2.2035 mm, re-
we can observe theSmeasures for thoseniild” cases (shown spectively, which shows a limited improvement in the accuracy.
in italic) in which PVI outperforms either the second or third To further compare the registration accuracy of the PVI algo-
GPVE. The averagPSmeasure in these cases is less then Orithm (first-order GPVE) with the second and third GPVE algo-
mm, which means the true global maximum is likely to be vemthms in general (no artifacts), registration results from the rec-
close to the maximum determined in the presence of the atified MR images of the same patients can be used. No artifacts
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are anticipated using the rectified MR image volume because the4]
MR volumes are rescaled during the rectification process [21].
Table VII lists the mean registration errors over the seven pas
tients using different joint histogram estimation schemes. From
this, we observe that the accuracies of higher order GPVEs ar?G]
essentially the same as the PVI algorithm.

VII. CONCLUDING REMARKS [71

MI-based image registration has become an important tool for
medical imaging applications. In many instances, interpolation
induced artifacts appear that hamper the optimization proces$!
and influence registration accuracy. In this paper, we have pre-
sented a joint histogram estimation scheme that is specifically[9]
designed for use with the MI-based registration algorithm. This
method employs higher order B-spline kernels during the estim]
mation of the joint histogram. It should be stressed that the mo-
tive here is not to better approximate the point spread function
(psf) but to reduce the abrupt change of the joint histogram disfll]
persion caused by the PVI method. It is also the reason that it
is sufficient to apply higher order kernel along thelirection
only for the Vanderbilt University furnished brain image data,[12]
since it is thez direction in which abrupt change of the joint
histogram dispersion occurs when PVI is used. [13]

We have evaluated the effectiveness of our approach by ap-
plying it to the brain image data provided by Vanderbilt Uni- [14]
versity for brain CT to MR image registration application. We
employ the first-, second-, and third-order GPVE algorithms
and compare their registration accuracies and their abilities to
suppress interpolation-induced artifacts. Our experimental rd15]
sults indicate that in the presence of artifacts that clearly affect
registration accuracy, the use of higher order GPVE algorithmg]
suppresses the artifacts and improves registration accuracy con-
siderably. In the absence of artifacts, the registration accuragy-
achieved by PVI and higher orders GPVE algorithms are essen-
tially the same. Thus, we have proposed a joint histogram eStEiEﬂ
mation method for MI-based image registration that exhibits ex~
cellent performance in the presence of artifacts as evident from
our experimental findings. [19]
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