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Abstract—Mutual information (MI)-based image registration
has been found to be quite effective in many medical imaging ap-
plications. To determine the MI between two images, the joint his-
togram of the two images is required. In the literature, linear in-
terpolation and partial volume interpolation (PVI) are often used
while estimating the joint histogram for registration purposes. It
has been shown that joint histogram estimation through these two
interpolation methods may introduce artifacts in the MI registra-
tion function that hamper the optimization process and influence
the registration accuracy. In this paper, we present a new joint his-
togram estimation scheme called generalized partial volume esti-
mation (GPVE). It turns out that the PVI method is a special case
of the GPVE procedure. We have implemented our algorithm on
the clinically obtained brain computed tomography and magnetic
resonance image data furnished by Vanderbilt University. Our ex-
perimental results show that, by properly choosing the kernel func-
tions, the GPVE algorithm significantly reduces the interpolation-
induced artifacts and, in cases that the artifacts clearly affect reg-
istration accuracy, the registration accuracy is improved.

Index Terms—Image registration, interpolation-induced arti-
facts, joint histogram estimation, mutual information, registration
of brain CT and MR images.

I. INTRODUCTION

M ULTIMODALITY image registration has become an
important research topic because of its great value in a

variety of applications. For medical image analysis, an image
showing functional and metabolic activity—such as single
photon emission computed tomography (SPECT), positron
emission tomography (PET), and magnetic resonance spec-
troscopy (MRS)—is often registered to an image which shows
anatomical structures, such as magnetic resonance image (MRI),
computed tomography (CT), and ultrasound. These registered
multimodality images lead to improved diagnosis, better surgical
planning, more accurate radiation therapy and countless other
medical benefits [1]. Existing image registration techniques
can be broadly classified into two categories: feature-based and
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intensity-based methods [2]. A feature-based method requires
the extraction of features common in both images. Obviously, a
feature-based method is data dependent. Since different image
data may have different features, the feature extraction algo-
rithms adopted in a feature-based image registration algorithm
are expected to be different for different registration tasks.
In contrast, intensity-based image registration techniques are
free from this limitation because they do not deal with the
identification of geometrical landmarks. The general design
criterion of an intensity-based image registration technique
can be expressed as

(1)

where and are the images to be registered. is the
transformation, characterized by the pose parameters, that
will be applied to the coordinates of each grid pointin

. is an intensity-based similarity measure calculated over
the region of overlap of the two images. The above criterion
says that the two images and are registered through
when optimizes the selected similarity measure. Among
a variety of existing similarity measures, mutual information
(MI) has received substantial attention recently because of
its ability to measure the similarity between images from
different modalities, especially in, but not limited to, medical
imaging applications [3]–[8].

Many aspects of the use of MI as the similarity measure to
be maximized have been studied. In [9]–[11], three variations
of MI are proposed to provide an overlap-invariant measure. In
[12], maximization of MI is found to be a maximum likelihood
estimation problem under very minimal assumptions. In [13],
a multiresolution optimization approach using an optimizer
specifically designed for the MI measure is presented. In [14],
a multivariate MI measure is proposed to increase the accuracy
provided that at least two highly accurate pre-registered images
are available. In [15], an upper bound is derived to provide
useful insights about the use of MI as a similarity measure.
Finally, a phenomenon called interpolation artifacts that may
appear in MI-based registration functions is studied in [16].

In [16], it is pointed out that, under certain circumstances, dis-
cussed inSection III,existing jointhistogramestimationmethods
mayresult indifferent typesofartifactpatterns inaMI-basedreg-
istration function. In that study, two joint histogram estimation
methods were examined: linear interpolation and partial volume
interpolation (PVI) [4]. It was shown that both methods may re-
sult in significant artifact patterns that introduce spurious local
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Fig. 1. Typical interpolation-induced artifact patterns for a MI-based
registration function. In both cases, the vertical axis is the MI-based measure
and the horizontal axis can bex or y or z displacement. (a) Artifact pattern
resulting from linear interpolation. (b) Artifact patter resulting from PVI
algorithm.

maxima. Typical artifact patterns resulting from these two joint
histogram estimation methods are shown in Fig. 1. These artifact
patterns have also been found when clinically obtained brain im-
ages are used. In addition to the linear interpolation and PVI, we
have foundsimilarpatternswhenother image intensity interpola-
tion methods like cubic convolution interpolation [17] and cubic
B-spline interpolation [18], [19] are used [20]. Artifact patterns
have at least two consequences: 1) they hamper the global opti-
mization process because of the introduction of many local ex-
tremaand2) they influenceregistrationaccuracy [16]because the
trueglobaloptimumisnowburiedundertheartifactpattern.How-
ever, this influence is not always negative, i.e., registration accu-
racy does not always become worse. It depends on the position
of the highest peak of the artifact pattern. To facilitate explana-
tion, let denote the pose parameters (which is a vector in
a multidimensional search space) that result in perfect registra-
tion, the pose parameters found using an artifact-free
MI-basedregistrationalgorithmand theposeparameters re-
sulting from a MI-based registration algorithm that is known to
suffer from the artifacts due to the use of an algorithm such as the
PVI algorithm. Clearly, is determined by the position of the
highest peak of the artifact pattern. If this position happens
to be closer than to , the influence of the artifacts
on the registration accuracy is positive, i.e., the registration accu-
racy is improved. On the other hand, if the distance between
and is larger than that between and , the in-
fluence is negative and the registration accuracy becomes worse.
Therefore,assuming perfect optimization, registration accuracy

woulddependonthepositionofthehighestpeakoftheartifactpat-
tern.Althoughthe influence isnotalwaysnegative, it isstilldesir-
able to develop an artifact-free MI-based registration algorithm.
Therearetworeasons:1)anartifact-freeMI-basedregistrational-
gorithm facilitates the global optimization process; and 2) when
the influence of the artifacts on the registration accuracy is nega-
tive, artifact-free MI-based registration can improve registration
accuracy. In general, it is difficult to gauge whether the influence
is positive or negative. This influence on registration accuracy is
at most half the size of a voxel [16]. To assess the influence of the
artifactson registrationaccuracy,apeak-shift (PS)measure isde-
vised in this paper (Section VI). From our experiments, it seems
reasonable to consider the influence to be negative if thePSmea-
sure is equal to or larger than 0.5. The goal of this paper is to de-
velopanartifact-free,ornearlyartifact-freeMI-basedregistration
algorithm to improve registration accuracy when the influence of
the artifacts on registration accuracy is negative.

Provided in Section II, the MI measure between two images
is solely determined by their joint histogram. In this paper, we
have developed a new joint histogram estimation scheme named
generalizedpartialvolumeestimation(GPVE).Thismethodgen-
eralizes the PVI algorithm proposed by Collignon and Maes [4]
by incorporating it into a larger framework. In this framework, a
kernel function is employed in each of the, , and directions
to estimate the joint histogram of two image volumes. It can be
shown that the PVI algorithm is a special case corresponding to
theuseof the first-orderB-splineas thekernel function ineachdi-
rection. We have applied it to the clinically obtained brain CT and
MRimagedatafurnishedbyVanderbiltUniversity [21], [22].The
evaluation of the proposed GPVE algorithm is based on its com-
parison with the PVI algorithm. Our experimental results show
that, by choosing the second-order or the third-order B-spline as
the kernel function along the direction(s) in which the artifacts
would occur if the PVI algorithm were applied, the artifacts can
be reduced significantly for CT to MR brain image registration.
In cases where thePSmeasure is equal to or larger than 0.5 when
PVI is employed, registration accuracy can be improved signifi-
cantly using a higher order kernel along the direction(s) in which
artifacts occur.

This paper is organized as follows. In Section II, we review the
theoretical background of MI-based image registration methods.
In Section III, a brief description of interpolation-induced MI
artifacts is presented. The proposed joint histogram estimation
scheme, GPVE, is presented in Section IV. A comparison of the
computational complexities of different interpolation schemes
is provided in Section V. Registration accuracies of higher order
GPVE algorithms are compared with that of the PVI algorithm
in Section VI using the Vanderbilt CT and MR brain image data.
Finally, some concluding remarks are given in Section VII.

II. M UTUAL INFORMATION BASED IMAGE REGISTRATION

MI has its roots in information theory [23]. The MI of two
random variables and is defined by

(2)
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where and are the marginal probability mass func-
tions and is the joint probability mass function. MI
measures the degree of dependence ofand by measuring
the distance between the joint distribution and the
distribution associated with the case of complete independence

, by means of the relative entropy or the Kull-
back-Leibler measure [23]. MI is related to entropies by

(3)

(4)

(5)

with being their joint entropy; and , the
entropies of and ; and and , the con-
ditional entropies of given and of given , respectively.
The definitions of these entropies are

(6)

(7)

(8)

To employ MI as a similarity measure, we need to utilize the
concept of the two-dimensional (2-D) histogram of an image
pair, the joint histogram. The joint histogramof an image pair
can be defined as a function of two variables,, the gray-level
intensity in the first image and , the gray-level intensity in the
second image. Its value at the coordinate is the number of
corresponding pairs having gray-levelin the first image and
gray-level in the second image. The joint probability mass
function used in the calculation of MI of an image pair can then
be obtained by normalizing the joint histogram of the image pair
as

(9)

From the joint probability mass function, we may obtain the
two marginal probability mass functions directly as

(10)

(11)

The MI registration criterion states that the image pair is geo-
metrically aligned through a geometric transformationwhen

is maximal. Notice that the marginal en-
tropies in (3) change with transformationbecause the image
overlap changes. The strength of the MI similarity measure lies
in the fact that no assumptions are made regarding the nature
of the relation between the image intensities in both modalities,
except that such a relationship exists.

From (2) and (9)–(11), we can see that the joint histogram
of an image pair is the only quantity required to calculate the

MI between them. As a result, the quality of the estimated joint
histogram solely determines the accuracy of this method.

Intuitively, the joint histogram can be estimated by a two-step
procedure. Denote the two images that need to be registered as

, the floating image on which a geometric transformation will
be applied and , the reference image that will be interpolated.
The first step is to estimate the intensity values inat every
transformed grid point of by employing an intensity interpo-
lation algorithm. The second step is then to determine the joint
histogram from the overlap of the floating image and the inter-
polated reference image. In practice, each interpolated intensity
value needs to be rounded to the nearest integer so that the joint
histogram can be obtained by a simple counting procedure. It is
shown in [4] that the MI registration function obtained by using
linear interpolation usually is not very smooth. To overcome
this nonsmoothness, Collignon and Maes proposed a joint his-
togram estimation scheme called PVI [4]. By using this method,
a smooth MI registration function can be obtained.

A recent study [16] pointed out that both of the methods men-
tioned above may result in certain types of artifacts in the MI
registration function as shown in Fig. 1. This has been confirmed
clinically [16]. In Section III, the conditions under which the ar-
tifacts occur are discussed.

III. I NTERPOLATION-INDUCED ARTIFACTS

It has been pointed out in [16] that when two images have
equal sample spacing in one or more dimensions, existing joint
histogram estimation algorithms like PVI and linear interpola-
tion may result in certain types of artifact patterns in a MI-based
registration function. More precisely, the artifacts will occur
when the ratio of the two sample spacings along a certain di-
mension is a simple rational number. The reason is that in this
case, many of the grid planes (or grid lines for 2-D images) may
be aligned along that dimension under certain geometric trans-
formations. Therefore, fewer interpolations are needed to esti-
mate the joint histogram of these two images than in the case
that none of the grid planes are aligned. For example, when the
ratio of voxel sizes of the two image volumes along theaxis
are 5 (mm)/3 (mm) and 1 (mm)/1 (mm) along the other two axes,
then by shifting one of the image volumes, the grids on planes
1,4,7,… of the first image volume (the one with volume size 5
mm along the axis) can be made to coincide with the grids on
planes 1, 6, 11,…, of the second image volume. In this case, the
contribution of the coincident grids to the joint histogram can be
counted directly without resorting to any form of estimation. But
if one of the image volumes is further shifted a little bit along
the axis, then none of the grids of the two image volumes will
be coincident with each other and the joint histogram has to be
estimated completely. In this case, this sudden change between
“fewer “ estimation and “substantially more” estimation causes
the artifacts. Also, the artifacts are expected to repeat for every
1 mm in the direction because in this case, there are certain
grid planes that will be aligned for every 1-mm shift in the
direction. One example is presented in Fig. 2. Simulated brain
MR T1 image with voxel size and MR
T2 image with voxel size from BrainWeb
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Fig. 2. Artifact patterns in the case where the ratio of sample spacings equal
5/3.

[24], [25] are used to produce the artifact patterns. Notice that
the artifacts occur for every 1-mm spacing as expected.

It is pointed out that abrupt changes in the joint histogram dis-
persion resulting from the PVI method for grid-aligning trans-
formations cause the concave artifact pattern [16]. Based on this,
we believe a joint histogram estimation scheme that reduces the
degree of sudden changes in joint histogram dispersion is able
to reduce the artifacts. In Section IV, we describe such an algo-
rithm by generalizing the PVI algorithm.

IV. GENERALIZED PARTIAL VOLUME ESTIMATION

Before presenting the GPVE algorithm, let us first review the
PVI algorithm proposed by Maes and Collignon [4] in the 2-D
case. This will set the stage for our algorithm by providing some
of the terminology used.

Let and be the floating image and reference image, re-
spectively, that can be considered as two mappings

(12)

where is the discrete domain of and is the discrete
domain of . The value represents the intensity of the
floating image at the grid point with coordinate
in terms of the sample spacing. Now if we let be the
transformation characterized by the parameter setthat is
applied to the grid points of and assume that maps the
grid point ( ) in image onto the point with coordinate,
in terms of sample spacing, ( ) in the image

, where ( ) is a grid point in and , . In
Fig. 3, are the grid points on the reference image

that are closest to the transformed grid point .
splits the cell into four subcells. The subcells
have areas and as shown with the constraint

. The PVI algorithm obtains the joint
histogram as follows:

(13)

Fig. 3. Graphical illustration of the PVI algorithm in 2-D space.

Let be a triangular function defined by

if
if
otherwise

(14)

then we can rewrite (13) as

(15)

and are used to specify the pixels involved in the histogram
updating procedure. Notice that in (15), the increments are all
zeros except when . In fact, when and ,
the pixel under consideration is and the corresponding incre-
ment is . When and , the pixel under considera-
tion is and the corresponding increment is. When
and , the pixel under consideration is and the corre-
sponding increment is . Finally, when and , the
pixel under consideration is and the corresponding increment
is . Now the proposed GPVE algorithm for the three-dimen-
sional (3-D) case is ready to be presented in terms of a more
general kernel function.

Let be a real valued function satisfying

where is a real number (16)

where is an integer

(17)

then for each grid point in the image
volume , the joint histogram is updated in the following
manner:

(18)

where is referred to as the kernel function of GPVE andis
the set of all integers.

Notice that the increment (contribution of each voxel in-
volved) of the joint histogram is now represented in terms of
the kernel functions along each direction. The first condition
on ensures that the increments are nonnegative while the
second condition makes the sum of the updated amounts equal
to one for each corresponding pair of points ( ) in
and ( ) in .
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Fig. 4. B-splines. (a) First order. (b) Second order. (c) Third order.

From this generalization, we can see that the PVI algorithm
proposed by Maeset al. is a special case whenis a triangular
function defined by (14). Here, we propose to use B-splines as
the kernel function because it satisfies both the conditions in
(16) and (17) and furthermore, it has finite support. Fig. 4 shows
the shapes of the first-, second-, and third-order B-splines. From
the shapes of the B-splines, it should be noticed that the kernel
function introduced in (16) and (17) is an approximator rather
than an interpolator because an interpolator has zero crossings
at positions 0, , , . The kernel function is introduced
to assign a value to the contribution of each voxel involved in
updating the joint histogram. For more details on B-spline func-
tions, interested readers are referred to [18], [19]. It is inter-
esting to point out that the triangular function defined in (14)
is identical to the first-order B-spline function. Therefore, the
PVI algorithm is actually equivalent to the first-order GPVE al-
gorithm.

Fig. 5 shows the grids in (shown as “”) that are involved in
updating the joint histogram in 2-D case using the first-, second-,
and third-order B-splines as the kernel function. In each case,
the transformed grid point appears at the center of each
plot. Fig. 5(a) shows the case when the transformed grid point
of is coincident with a grid point of and Fig. 5(b) shows the
case when the transformed grid point ofis not a grid point in

but surrounded by four grid points in.
In the GPVE algorithm, the kernel functions can be different

along different directions. That is, we can rewrite (18) as

(19)

where , and can be different kernels. For example, if we
know that the artifact is going to appear in thedirection only,
then we can choose both and as the first-order B-spline
but choose as the third-order B-spline. This is justified by
the experiments in Section VI.

From Fig. 5 we observe that, in the 2-D case, one to four en-
tries of the joint histogram are involved in updating for each
pixel in if PVI (or the first-order GPVE) is used. This is evi-
dent from the leftmost figures of Fig. 5(a) and (b). In Fig. 5(a),
only the center pixel is involved in updating whereas in Fig. 5(b)
all the four grid points surrounding the point marked by “”
are involved in updating. Similarly, nine and four grid points
are involved in updating in Fig. 5(a) and (b), respectively, when
second-order GPVE is employed. The number of grid points in-
volved in updating is determined by the size of the support of the

Fig. 5. Grid points corresponding toR that are involved in updating the joint
histogram in the 2-D case. (a) When the transformed grid point is coincident
with a grid point inR. (b) When the transformed grid point is surrounded by
grid points inR.

kernel function, which is shown as the shaded area in Fig. 5(a)
and 5(b). The length of each side of the shaded region for the
case of third-order GPVE is 4 times of the sample spacing. In
this case, 9–16 grid points are involved in updating as seen in
Fig. 5. The ratios of the maximum number to minimum number
of updated entries are 4, 2.25 and 1.78 when using the first-,
second–, and third-order GPVE, respectively. In the 3-D case,
the corresponding ratios are 8, 3.375, and 2.370. The reduction
in the values of these ratios when higher order kernels are em-
ployed gives it the ability to reduce the artifacts, since now a
certain degree of joint histogram dispersion is introduced by the
higher order kernel even when the grid points of the two images
are perfectly aligned. This reduces the sudden changes of the
joint histogram dispersion. Intuitively, the ratio needs to be one
to remove the artifacts completely because different numbers of
updated entries introduce different amounts of dispersion of the
joint histogram. However, based on our experiments presented
in Section VI, the artifacts can be hardly seen when either the
second- or third-order GPVE is used.

V. COMPUTATIONAL COMPLEXITY

When calculating the MI of two images, much of the com-
putational power is consumed while estimating the joint his-
togram; therefore, our analysis of the computational complexity
will focus on the estimation of the joint histogram only. A com-
parison of the execution times for PVI and GPVE algorithms is
also reported in this section.
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TABLE I
EXECUTION TIMES FORPVI, SECOND-ORDER GPVE,AND THIRD-ORDER GPVE ALGORITHMS

A B-spline of order can be generated by convolving the
B-spline of order 0 with itself ( ) times [18]. That is:

(20)

where is the th order B-spline and is nothing but
a rectangular pulse of the following form:

(21)

Therefore, the computational complexity of each evaluation of
the th order B-spline function is basically . Observing
Figs. 4 and 5 we know that the size of the support of theth order
B-spline function along each dimension is . This means that
the evaluation of the th order B-spline function is performed

times (in the 3-D case) to update the joint histogram
for each pixel in the floating image within the overlap region.
Thus, the entire computational load is if
the th order B-spline function is used along all the three,
, and directions. The ratios of the computational complexi-

ties for , 2, 3 in this case are 1:6.75:24. For our applica-
tion, fortunately, as shown in the next section, the higher order
kernel is required in the direction only. This reduces the com-
putational load to . Hence, the ratios of the
computational complexities for , 2 and 3 become 1:3:6.
To further reduce the computational load, we use a simple table
lookup strategy to avoid the evaluation of the B-spline functions.
We stored the values of theth order B-spline in a lookup table
from to with increments equal to 0.001.
In this manner, the evaluation of theth order B-spline becomes
a simple table lookup task and the computational load is further
reduced to . The final ratios of the computational com-
plexities for 1, 2, and 3 are, therefore, 1:1.5:2.

In our implementation, we use a code written using both
MATLAB and Microsoft Visual C++. To compare the ex-
ecution times of the PVI, the second-order GPVE, and the
third-order GPVE algorithm, we use the simulated brain
images from BrainWeb [24], [25]. The overlap region is kept as
[170 206 130] in all cases. Our platform is Dell Precision
530 with 1.8-GHz Intel Xeon CPU. The execution times for
the computation of the MI measure using PVI, second-order
GPVE along the direction only, third-order GPVE along
the direction only, second-order GPVE along, , and
directions, and third-order GPVE along, , and directions
are reported in Table I.

VI. EXPERIMENTAL RESULTS

We have implemented the first-, second-, and third-order
GPVE algorithms as a part of the MI-based image registration

TABLE II
VOXEL SIZES OF THEPD

algorithm for brain CT to MR image registration application
using clinical image data furnished by Vanderbilt University.
The results of our experimental study are presented in this
section. Registration results obtained by using a fiducial-based
registration [26] serve as the gold standard that was not avail-
able to us. Registration results that we obtained were sent to
Vanderbilt University where they compared our results with
the gold standard and provided us the accuracy measurements
achieved by our algorithm. Registration error reported in all
tables in this section is the TRE value provided by Vanderbilt.
For an in depth description of this database and the procedure
used to evaluate a participant’s registration results, please see
[21], [22]. The estimated error of the gold standard is0.39
mm for CT to MR registration [21]. In our implementation,
both CT and MR image intensities have been linearly binned
into 256 gray-levels and normalized MI is employed as the
similarity measure because it has been shown that it is more
likely to be overlap invariant for medical brain imaging ap-
plications [9]. Multiresolution optimization approach using
the simplex search algorithm [27] is employed to determine
the maximum of the MI similarity measure. The procedure
terminates when the standard deviation of each transformation
parameter of the final simplex is less than 0.001 degree for
rotations or 0.001 mm for displacements. There are two parts
in our experiments. In the first part, a practice data set (PD)
provided by Vanderbilt University, for which the gold standard
was available to us, is used to perform a preliminary test. There
is only one subject in the PD for each registration task. The
voxel sizes for this PD are listed in Table II. From Table II,
we know that the direction is the only possible direction
along which the artifacts could occur, because of the identical
slice thickness of the CT image volume and the nonrectified
MR image volumes. Experiments with four different imple-
mentations of the algorithm are performed on this data set.
Each implementation involves a unique choice of the kernel
functions. The four implementations are second-order GPVE
along the direction and first-order GPVE along and
directions, second-order GPVE along all, , and directions,
third-order GPVE along the direction and first-order GPVE
along and directions and third-order GPVE along all,
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TABLE III
REGISTRATION ERRORS FORPART 1 OF THE EXPERIMENTS

TABLE IV
REGISTRATION ERRORS FORCT-PD IMAGE DATA

, and directions. Table III shows the results. The purpose
of this experiment is to experimentally verify our statement in
Section IV that we need to employ the higher order kernel only
in the direction along which the artifacts are expected to occur.
From Table III, we can observe that the registration results are
essentially the same when higher order kernels are applied
along either all of the three axes or along theaxis only. This
observation verifies our statement made about the selection of
the kernel function in each direction. Since the use of a higher
order kernel is more computationally intensive, it suffices to
use it in only the direction that is likely to produce artifacts. It is
computationally more efficient without sacrificing registration
accuracy.

In the second part of the experiments, we compare the reg-
istration errors obtained by PVI with those obtained by higher
order GPVE. Tables IV–VI show the results of CT-PD, CT-T1
and CT-T2 image registrations for patient_001-patient_007 data
using first-, second-, and third-order GPVE algorithms. Each
higher order GPVE is performed alongcoordinate only be-
cause it is the direction in which artifacts could possibly occur.
We have shown that it is sufficient to do so in the first part of the
experiments. Entries in the columns entitled “visual influence
on accuracy” indicate whether or not the results obtained from
using the first-order GPVE (PVI) suffer from the artifacts. It can
be determined by observing the plot of the registration function
along the axis (the direction along which artifacts may occur)
after registration. One example is given in Fig. 6, which shows
the plots of the registration functions of CT-PD registration for
patient_004, patient_005 and patient_006 data sets. Three indi-
cators {no, mild, strong} are used to describe the influence of
the artifacts on the registration accuracy by visually examining
the registration functions obtained. The entry “no” indicates that
no artifacts are observed as shown in Fig. 6(a). In Fig. 6(b), al-
though the artifact pattern is observable, the position of the true
global maximum is expected to be very close to the position

TABLE V
REGISTRATION ERRORS FORCT-T1 IMAGE DATA

TABLE VI
REGISTRATION ERRORS FORCT-T2 IMAGE DATA

of the maximum determined in the presence of the artifacts. In
this case, “mild” is used to indicate that the artifact pattern is
present but its influence on the accuracy isuncertain. In other
words, the influence on the registration accuracy can possibly
be positive, as explained in the introduction section. Finally, in
Fig. 6(c) this influence is large and is most likely to decrease
the registration accuracy. In this case, “strong” is entered in the
“visual influence on accuracy” column. To help distinguish the
“strong” from the “mild,” we use cubic convolution interpola-
tion to interpolate the MI value from to 4 mm and define
aPSmeasure for each case where the artifacts are observable as
shown in Fig. 6(b) and (c). ThePSmeasure is defined as the
distance between the position of the highest peak determined
in the presence of artifacts and the position of the maximum
value determined by the interpolated curve. We classify it as a
“strong” case if thePSmeasure is no less than 0.5 mm; other-
wise, it is classified as a “mild” case. In Fig. 6(b) and (c), thePS
measures are 0.2 and 0.6 mm, respectively. In Tables IV–VI, the
numbers in the “visual influence on accuracy” column provide
this PSmeasure for each case. We want to point out here that
thePSmeasure defined above is used to helpvisually judge the
influence of the artifacts on the registration accuracy. It is by no
means an absolute measurement of the influence of the artifacts
on the registration accuracy. From Tables IV–VI, we can ob-
serve that in cases when “strong” is entered in the “visual influ-
ence on accuracy” column, the use of the second- or third-order
GPVE obviously improves registration accuracy. We believe it
is because the influences of the artifacts on the registration accu-
racy are negative in those cases. The use of higher order GPVE
significantly reduces the artifacts and therefore, the accuracies
are improved. Figs. 7 and 8 show the registration functions using
the same image data as in Fig. 6 but second- and third-order
GPVE are used. From them we see that artifacts are no longer
observed. The mean registration errors in this case are 1.7548,
0.9648, and 0.9783 mm for the first second and third GPVE,
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Fig. 6. Registration functions for CT_PD registration of patient_004� patient_006 data sets. The indicators in the “visual influence on accuracy” columns
in Tables V–VIII are “no,” “mild,” and “strong,” respectively, to specify the influence of the artifacts on the registration accuracy. In each case,x axis is the
displacement in mm andy axis is the MI measure.

Fig. 7. Registration functions of CT_PD registration of patient_004-patient_006 using second-order GPVE algorithm. Notice that no artifact pattern can be
observed in either (b) or(c). In each case,x axis is the displacement in millimeters andy axis is the MI measure.

Fig. 8. Registration functions of CT-PD registration of patient_004-patient_006 using the third-order GPVE algorithm. Notice that no artifact pattern can be
observed in either (b) or (c). In each case,x axis is the displacement in millimeters andy axis is the MI measure.

respectively. In this case, significant improvement over the PVI
algorithm in registration accuracy is achieved.

In the case that the “visual influence on accuracy” column
indicates “mild,” the artifacts are present but the influence on
the accuracy is not certain. This influence may be either nega-
tive or positive as explained in Section I. In this case, the mean
registration errors are 1.5788, 1.5963, and 1.5964 mm. The ex-
planation for this is that, in this case, the location of the true
global maximum is close to the location of the maximum

determined in the presence of artifacts. In other words, it is
a coincidence that the PVI results in such accuracy. This is con-
sistent with the observation made in [16]. To support our claim,
we can observe thePSmeasures for those “mild” cases (shown
in italic) in which PVI outperforms either the second or third
GPVE. The averagePSmeasure in these cases is less then 0.1
mm, which means the true global maximum is likely to be very
close to the maximum determined in the presence of the arti-

TABLE VII
REGISTRATION ERRORS FORRECTIFIED IMAGE DATA

facts. This supports our explanation for the relatively small loss
when higher order GPVE schemes are used in the “mild” case.
In the third case, where the artifact pattern is absent, the mean
registration errors are 2.2769, 2.1446, and and 2.2035 mm, re-
spectively, which shows a limited improvement in the accuracy.

To further compare the registration accuracy of the PVI algo-
rithm (first-order GPVE) with the second and third GPVE algo-
rithms in general (no artifacts), registration results from the rec-
tified MR images of the same patients can be used. No artifacts
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are anticipated using the rectified MR image volume because the
MR volumes are rescaled during the rectification process [21].
Table VII lists the mean registration errors over the seven pa-
tients using different joint histogram estimation schemes. From
this, we observe that the accuracies of higher order GPVEs are
essentially the same as the PVI algorithm.

VII. CONCLUDING REMARKS

MI-based image registration has become an important tool for
medical imaging applications. In many instances, interpolation
induced artifacts appear that hamper the optimization process
and influence registration accuracy. In this paper, we have pre-
sented a joint histogram estimation scheme that is specifically
designed for use with the MI-based registration algorithm. This
method employs higher order B-spline kernels during the esti-
mation of the joint histogram. It should be stressed that the mo-
tive here is not to better approximate the point spread function
(psf) but to reduce the abrupt change of the joint histogram dis-
persion caused by the PVI method. It is also the reason that it
is sufficient to apply higher order kernel along thedirection
only for the Vanderbilt University furnished brain image data,
since it is the direction in which abrupt change of the joint
histogram dispersion occurs when PVI is used.

We have evaluated the effectiveness of our approach by ap-
plying it to the brain image data provided by Vanderbilt Uni-
versity for brain CT to MR image registration application. We
employ the first-, second-, and third-order GPVE algorithms
and compare their registration accuracies and their abilities to
suppress interpolation-induced artifacts. Our experimental re-
sults indicate that in the presence of artifacts that clearly affect
registration accuracy, the use of higher order GPVE algorithms
suppresses the artifacts and improves registration accuracy con-
siderably. In the absence of artifacts, the registration accuracy
achieved by PVI and higher orders GPVE algorithms are essen-
tially the same. Thus, we have proposed a joint histogram esti-
mation method for MI-based image registration that exhibits ex-
cellent performance in the presence of artifacts as evident from
our experimental findings.
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