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Abstract

The problems of segmentation and registration are traditionally approached individually, yet the accuracy of one is of great importance
in influencing the success of the other. In this paper, we aim to show that more accurate and robust results may be obtained through
seeking a joint solution to these linked processes. The outlined approach applies Markov random fields in the solutiariroiien a
posteriori model of segmentation and registration. The approach is applied to synthetic and real MRI data.

O 2003 Elsevier B.V. All rights reserved.

Keywords Segmentation; Registration; Joint; Combined

1. Introduction

specific prior model, the success of any approach is

dependent primarily on the discriminative power of the

Two of the most fundamental problems in medical

likelihood model for the data. It was demonstradednby

image analysis are those of segmentation: meaningfulet al. (1996)that multiple measurements could improve

labelling of raw data, and registration: alignment of
information from multiple datasets. In most previous work
segmentation and registration have been performed con-
secutively which has the disadvantage that errors propagate
from one to the other. This paper examines whether
combining segmentation and registration yields any advan-
tage in accuracy, speed or robustness.

The major challenge in combining segmentation and
registration is to ensure convergence and prevent poor
estimates of either segmentation or registration from
harming the other. A key idea is to incorporate partially
registered datasets in a combined class model and esti-

segmentation for preregistered data. This observation is
true for multispectral imaghayk et al., 1998)and for
mono/multimodal sequences where the imaged object is ir
motion as for many imaging modalities this also decorre-
lates noise. It is reasonable to expect an increase in
accuracy from combined segmentation over separate seg
mentation if errors arising from misalignment can be
contained.
Registration attempts to obtain a transformation which
matches multiple data sets, under the assumption that some
correlation exists. Current methods are divisible into two
types; pixel-based and feature-based téBhovgues

mates of segmentation labels in a registration criteria. 1992; Maintz and Viergever, 1998For different reasons

Theoretically this employs the total available information
more advantageously and benefits both classification and
registration accuracy. An additional challenge is to avoid a
significant increase in the computational load.
Segmentation, in the sense of spatial clustering, attempts
to reduce the variation in image appearance to a small set
of discrete labels. The accuracy of this process is depen-
dent on the presence of noise, intensity inhomogeneities
and biological factors. In the absence of an application-

both approaches suffer problems. Pixel-based methods rely
on describing similarity between the images as some
distance measure calculated from the pixel (intensity)
values. The best candidate point matches are found and
regularized under the general assumption that the deforma
tion field is continuous and smooth. This assumption tends
to result in boundary delocalization as neighbouring re-
gions often have different physical properties. This is
difficult to avoid without knowledge of class. Feature-

based methods are those where matches between (ana-
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tomically) significant points are sought. Biological struc-
tures are often difficult to mark with repeatable accuracy
and as such

introduce localization error. This is
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compounded where geometric information is not retained dent when multiple objects exist. In addition, only a single
and only the point’s location is usedPennec, 1998)In contour of point-to-point correspondences is obtained.
addition, image features are typically extracted semi-auto- An alternative to general combined methods are ap-
matically and the time intensiveness for the user leads to plication-specific Active Appearance Models and Atlas
few points being used and a sparse field approximation to technf@uedes and Taylor, 2001; Pizer et al., 1999).
the true deformation. The addition of a segmentation label these a model is built through a principal component
to registration potentially allows these problems, for both analysis of a training set of examples. Although theoret-
types of registration, to be overcome. The maximum a ically very effective, good performance requires training
posteriori estimate of a segmentation label field is essen- data which captures all significant variation. Also, similar-
tially a probabilistic edge map, in addition to being a ly to active contours, they can be highly initialization-
region segmentation field. Retaining a probabilistic de- dependent.
scription of edges as opposed to a binary edge map should We favour a Markov random field framework, a mathe-
create a more discriminative and robust registration mea- matical technique for embedding local spatial information
sure. It also provides knowledge of where the deformation (Besag, 1974, 1986; Geman and Geman, 1984thin
is not likely to be smooth for non-rigid registration. which we seek to obtamaaimum a posteriorestimate

In seeking to combine segmentation and registration it is of the segmentation and registration. This aids implicit
desirable to avoid the mentioned difficulties. Additionally embedding of spatial information into the registration
consecutive implementation can lead to propagation of criterion. This paper primarily focuses on rigid registration,
errors from one to the other. This is difficult to detect and though extension to non-rigid registration and examples of
impossible to correct without their combination. In theory, its application are also considered in Sections 3.3 and 5. In
combination should produce two principal advantages: Section 2, a Bayesian description of combined segmenta-
greater accuracy and robustness. In this paper a combined tion and registration is presented. Section 3 describes th
algorithm is developed to demonstrate these points. image models used for segmentation and registration,

Combined segmentation and registration has potential before the general algorithm and details of implementation
applications in a number of areas; essentially wherever are examined in Section 4. Results on simulated and real
both processes have previously been performed sequential- data are shown in Section 5 and discussed in Section 6.

ly. Examples include the registration of skeletonized
arterial trees in MR angiographyMcLaughlin et al.,
2002), tracking the myocardium in cardiac imaging and
treatment of tumours in breast imaging. 2. Integrating segmentation and registration

There is little previous work in this areddurn et al.
(1996) noted that registered images could be fused using a Our goal is toobtain the best possible estimate some
Bayesian MRF approach to obtain greater accuracy thanpredefined sensdor the segmentations of n multiple data
was possible separatelansal et al. (1999)leveloped a  sets degraded by nestationary noisewhich are related
Min—Max entropy-based algorithm for registration of 2D through some geometric transformatjoand to recoer
X-ray portal and 3D CT images. Their algorithm aimed to the geometric transformatiolVe cast this as maximum a
estimate the segmentation and registration of the portal posteriori (MAP) estimation of the segmentation labels
images with respect to the known CT data. They assumed¥ =[S, S,, . .., S,], transformation(s)7” given n datasets
that the segmentation labels are pixel-wise independentX,, X,,...X, and pose the solution using Markov Ran-
and so essentially obtained the maximum likelihood seg- dom Fields (MRFs).
mentation. The method switched between estimating the Use of MRFs and Bayesian MAP estimation requires a
maximum entropy segmentation and minimum entropy model to be defined for the segmentation and registration
registration. The registration was based upon a mutual processes, conditioned upon the data. This is important, as
information criterion (Maes et al., 1997; Wells et al., no matter how detailed the prior information available for
1996), modified to weight the joint histogram by the a given class of problems, the data determines a specific
likelihood of the segmentation labels. instance of that problem. The choice of a prior model, an

An active contour approach was proposedyieyzi et al. image description with parameter sét, k&€ J, and
(2001) where registration was obtained from contour Markov spatial relationship, is also critical as it determines
propagation. The contour was defined by an energy the expected relationship between data and class.
function dependent upon all the images. The segmentations The Bayesian problem may be stated for two datasets 1
were obtained from the final contour position; related to and 2 as
one another via the registration. The solution was obtained
through a two-step gradient-descent algorithm. This algo- DS TIXLX,) = PXy, Xl L, TVP(S, T) )
rithm is suited to tasks where only a point-to-point ' note P(X 4, X,) '
correspondence between single contours is required, but
suffers the drawback of being highly initialization-depen- If data independence is assumed?ten X,)=




P.P. Wyatt, J.A. Noble / Medical Image Analysis 7 (2003) 539-552 541

P(X)P(X,) which, for consistency, implies?(S,, S, The simultaneous estimation is
j) = 9’(81).9)(82)-9)( T). .This assumpt_ic_)n is used to initial- |, P(S s T X0 X )N PX X AL T2
ize the registration as it leads to writing
+In 2(S,17,) +In P(T). (5)

o
PSS, TIX 1, X)) The difference between these schemes depends signifi-
_ PXLSYPSYP(XLIS)PSIP(T) @) cantly upon the models for segmentation and registration
P(X)P(X,) ' and their interdependence. As they become more indepen-
dent the differences diminish. As the models become more
reliant the gains in simultaneous estimation appear. How-
ever, joint estimation is significantly quicker than simulta-
neous estimation. This results simply from the number of
classes to be considered. If there &fedistributions and
we allow the registration classes to bedJ in each
dimension ¥, then for joint estimation we consider
H+ (29 + 1) classes and for simultaneous estimation
H(2Y + 1), i.e. additive versus multiplicative computa-
tional complexity. More importantly, in this paper we
principally considerigid registration and consequently the
registration criterion is evaluated over the image as a
whole. For the joint algorithm, it has been found that
In P(F, TIX,, X,) minirr?izing Wi'lth Irespehct to each ﬁirectior:ff( T) inlturn,
via the Powell algorithm, is equally accurate to alternating
“n PXy, X1 T) +In A(F1T) +In P(T). (3) single steps in each direction. However, it is slightly
For rigid registration,22( ) might also be dropped as itis ~ Slower.
typically difficult to estimate a sensible prior on the global
transform other than a broad range of limits. For non-rigid ) ) )
registration, ?(7) is the deformation model imposed 3. Segmentation and registration
upon the transformation. )
Throughout this paper, we refer primarily to joint 3.1. Segmentation
estimation of segmentation and registration. It is therefore
necessary to distinguish it from simultaneous estimation. In the following sections, a familiarity with the general
We definesimultaneous estimation asupdating the esti- principles of Markov random fields (MRFs) and Hidden
mation of both the classes and transforms relating any MRF (HMRF) techniques(Besag, 1986; Geman and

(two) datasets in a single step optimization. Joint estima- ~ Géman, 1984; Greig et al., 198% assumed. An HMRF
tion may, or may not’ use the same model of Segmentationd|ﬁers from an MRF in that itis assumed f0r the MRF that

Experiments have shown that it is more robust to initialize
the parameterg for each dataset individually as if a poor
registration exists initially they can become prone to error.
The proposed algorithm switches between Egs. (1) and (2)
as their validity changes. Typically it switches once, from
using Eq. (2) to using Eqg. (1). Details are provided in
Section 3.2.

In the proposed method Egs. (1) and (2) are not
implemented directly. Instead we expat®{ ¥, J) using
Bayes’ rule and take the logarithms of both sides. The
denominator is dropped as it is constant with respect to the
data and optimization:

and registration, but alternates betweepdating the ~ the parameter$ from which the image is generated are
classes of any (two) datasets and updating the geometric known a priori whereas the HMRF iteratively updates an
transforms between them in a multi-step (two or more estimate of¢ concurrently with estimating the field labels.
steps) optimization. In practice, an MRF parameter seis normally calculated

To illustrate this, with respect to Eq. (3), the joint from a K-Means or EM algorithn{Bishop, 1995).
scheme would be It is assumed that the observed image is a rectangular

29 Gaussian Markov random field, taking labejs 9.

In P(F 00 Tol Xy, X)) The MRF used to model the local lattice interaction

cPX, XS, T)+In P(F1T) +In P(T), assumes first order nearest neighbour cliques; each site has
NPy Too X X) f0L_|r neighbours. The_ prior de.nS|t)@(9’) is modelled
using the common Ising model:
xn P(X 1, X, S i1, T) +In P(F, 1 1T,) +In P(T).
@ MAN=2 BILS)=2 B8 S)) (6)
ce (q,r)

Note that segmentation is performed first in order that the where 7 are clique potentials and,, s, are lattice sites
class labels are available for the subsequent registration.forming the nearest neighbour cliques. The clique potential
The order is important for robustness as it ensures thatis the Kronecker delta functiod and 8 >0 is a control
spatial regularization is used from the start. If it is desired parameter weighting belief in the prior versus the data
to perform registration first then initial labels from, for likelihood. The sites are isotropic and homogeneous;
example, the K-Means algorithiiBishop, 1995)could be meaning they are independent of orientation and position
used. on the lattice.
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A Gaussian mixture model (GMM) is used to model the A, A, A A A, A
. . . . - 1 2 3 1 412 A3
likelihood of the image data at a sitg,, conditioned on i

the class parametets ={uw,, o, o}, KE ¥, which are the B, 0.01 0.05 0.24 o By N R D
mean, standard deviation and weight of the distribution: B, 0.33 0.01 0.03 B, D N R
W, 1 /X3 = M\ 2 B3 0.01 0.20 0.13 Bs N D R

Pixl9) =11 —=5%— exp{—§< — > NS , .
ke (2m)" "oy k N:Null, D:Dominant, R:Retain (w; > 0.03)

When the joint class models are formed, Eqg. (7) is Fig. 2. Obtaining weightss from the joint class histogram dominant
replaced by its multidimensional equivalent. The GMM is elements.
ideal for illustrating the benefit of our approach compared
to sequential segmentation and registration. Alternative
models could be substituted.

The posterior labels are estimated from the GMM
likelihood model (Eg. (7)) and the MRF spatial prior (Eqg.
(6)) which are combined yielding

grams is used to align images. The same principle can be
used to determine which 1D segmentation classes match
and combine to form the 2D classes. The jaintensity
histogram is replaced with a joirdass histogram.Fig. 1
shows a diagram of the joint class histogram as it might
1 [/ Xq— M\ 2 look during registration. As the entropy increases, single
In @(S/Xq)‘xz {'” (@) —In (oy) _§< e > } matrix elements will be both row and column dominant.
ke K This dominance identifies the most likely candidates for
+>, BV (9). (8) matching. The joint class histogram is the mat#k%/J),
(@ from Eq. (1), and provides the weights, for the com-
We use the iterated conditional modes (ICM) algorithm Pined distributions.

(Besag, 19860 minimize Eq. (8). The ICM algorithm is A sample joint class histogram is shown fiig. 2. On
chosen to ensure quick convergence to a local minimum the left are the weight elementg as might be seen at

(~4-8 iterations). Le€ represent class labels anddata. some stage in the registration. Some of these elements are
We seek, at each step, dominant, some are significant enough to retain and the
rest may be attributed to error. From the obtained matches
s=arg r;\a>{9‘(x|s)9)(s)}. 9) at a given point during registration, the class parameders
sed

can be estimated in one of two ways. Firstly the parameters
Initially, before any registration is performed, the Gaus- of the 1D distributions can simply be projected into 2D,
sians are of single dimension41) and model the separate the weightsw, being obtained from the joint class histo-
image intensities. When sulfficiently well registered, which gram, and correlation assumed zero. Note that in combin-
is determined as described in Section 3.2, combined 2Ding datasets;, X; that
Gaussian models are formed using the intensity infor-
mation from both datasets. Combination takes the parame-J; %, = J4; > max (4, &;). (10)
ter set for each Gaussian ® ={u., e T Gikzr Ok
w}, KE J. It is this combination of data which increases The combined number of classes must be greater than the
the separation of distribution centres and reduces classifi-maximum of the separate to allow for errors in registration.
cation error, see Appendix A. Otherwise, if diagonalization is enforced then subsequent
When we switch from separate to combined class registration will be in error.
models, the new distribution parameters must be deter- Alternatively, expectation maximization (EM) estima-
mined. In both Maes et al., 1997and Wells et al., 199% tion can be employed. The combined parameters are then
the principle of increasing information of intensity histo- iteratively re-estimated from the current parameters and the

1 €| FP | TP | FP
m

g B| FP | FP | TP
BC’ AN 5

A’| TP | FP | FP

A B C

Image 1
(a) During registration. (b) Registration complete. (c) Match, during registration.

Fig. 1. Diagram of the joint class histogram obtained during registration (TP: true positive; FP: false positive).
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combined dataset at the current transformatich,'/ incorporate spatial information. Mutual information is

6 *X,, xg”). Iterative re-estimation of the parameters theoretically similar to maximum likelihood techniques
turns the MRF into a Hidden Markov random fidldhang (Roche et al., 1999nd as previously implemented have

et al., 2001).If re-estimation is employed, then an addi- not incorporated spatial information.

tional constraint is required to prevent distributions from Eg. (11) can be combined with the class pixel MAP
centering on small error regions in the joint histogram. The probabilities if desired, to increase accuracy, and can be
constraint is that the model parametegis, o; are not implemented for elastic registration. The labels themselves
independent. As combined distributions have been formed form a discrete region map and multiplication by their
according to Eq. (10)% ;_., c € J;, share means and MAP probabilities softens the representation. The MAP
variances. Re-estimation of the parameters should enforce probabilities result from the MRF MAP ICM (iterated
that if j is constant then ;_. = [w, ] = [w, constant] conditional modedfesag, 198p segmentation as calcu-

Vi. lated from the image data and prior image models.

As registration proceeds, the false positivesFig. 1 Using the segmentation labels in the registration criteria
tend towards a residual dependent upon classification allows estimation of the convergence of the registration.
errors. The relative weights reflect belief in different class The K-Means algorithm allows the estimation of the
combinations, which could be fixed if known for a weightings of each distribution present in the 1D datasets.
particular application a priori. Depending on whether we These weights appear, under maximum likelihood classifi-
believe a 1:1 correspondence exists between classes in the cation, as the row (column) sums of the match matrix of
different datasets; we can allow either a greater or smaller Eqg. (11) and are similar under MAP classification. The
number of classes to be included in the GMM through convergence can be estimated as the ratio of the entropy of
modifying the weights obtained from the joint class the class match matrix, attth@eration, to the match
histogram. This allows flexibility in modelling registration matrix where maximal correlation, i.e. a one-to-one corre-
as either pure deformation (one-to-one correspondence) or spondence, exists.
as change between the classes in different images (many-
to-one). For example, if an object doubles in size this could 2 PSR S TN PLL T S
be modelled with a diagonal class matrix indicating a Cl,,ergence " — —
unique match between classes and that (say) class A has 2 PSn SN P(Fn, S5)
grown where class B has shrunk. Equally, a corre- ke
spondence modelled with a non-diagonal class matrix (12)

would indicate that part of class A has become B. In terms
of application, the former is suited to tracking where the
latter is suited to tumour growth or recession.

Eq. (12) thereby allows switching between Egs. (1) and

(2), at some user set threshold of convergence. It has been

There are two further roles for the joint class histogram. heu_rlstlc_ally se_t at 0.9. This helps avoid obtaining a poor
registration which then leads to decreased accuracy in the

The first and most important is as a registration criterion . . . .
and the second is in determining the degree of registrationj.omt segmentation. It should be noted that the coefficient,

converaence in Eqg. (12), is nonlinear.
9 ' For the purposes of the maximizatio#( J) is dropped

for rigid registration as there is normally no useful prior
knowledge of the range of the translation and rotation

. . o parameters. Rigid registration is performed using the
A class-based information theoretic criteria similar to Powell method(Press et al., 1992nd Eq. (11).

that of mutual informationMaintz and Viergever, 1998;

Roche et al.,, 1999)s used. At each step of the joint

segmentation and registration (JS&R) estimation a sub- 3.3. Non-rigid registration
optimal set of segmentation labels exists. Consider the

3.2. Rigid registration

following measure: Although we primarily consider segmentation combined

with rigid registration, a simultaneous block-matching

Iy g.= 2 P S So)N PLFns F), (11) non-rigid algorithm has also been implemented. The
ke

intention is to demonstrate that, whilst the proposed
calculated from the jointclass histogram of the two  approach for rigid registration can be extended to non-rigid
images, instead of the joinintensity histogram. This registration, it is poorly suited for this generalization
class-based information measure is fast to calculate, asdespite its success on rigid registration.
typically 2—5 class labels exist versus (approximately) 256  The principal difference for non-rigid registration is that
intensity levels. The smaller matrix size means fewer a transformation regularization priof?(7), is required.
calculations are required for Eqg. (11) compared to mutual An isotropic Gaussian prior is assumed for regularization,
information. More importantly, as the class labels of Eq. definingt, =[t,, t ], t, =I[t,, t ], as the translations at a
(11) are those of the posterior estimate they implicitly pair of neighbouring lattice sites:
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te—t,

Oy

(13) irrespective of additional costs from block matching. If
block matching is used and the likelihoods are re-estimated
at each step the computational cost is currently prohibitive.
The obvious solution of using the pixel intensities, which
do not change, loses the benefit of the spatial prior.

The second problem, robustness of block matching, is
dependent on the block size compared to the noise level.
With noisier modalities larger block sizes tend to be
required. This leads to an inconsistency in assumptions:

g the block used for assessing the candidate likelihoods is
discretely displaced by some rigid deformation where the

2} algorithm is significantly higher than the joint algorithm

PT) = (277)1/20_ exp) — 5
t

The parametep; performs, for the transform, the equiva-
lent function to the spatial MRF paramet@r

The non-rigid likelihood registration criteria used is the
same as for rigid registration; that of Eq. (11). However, it
is updated in a different way. For most, if not all, non-rigid
algorithms it is desirable to calculate the likelihood of a
point-to-point correspondenamce. To avoid an expensive
recalculation of the likelihoods at each step, it is assume
that they can be calculatemhce from the initial segmenta- h ) 4 .
tion labels at a given level. Ideally the likelihoods should transformation to be recovered is believed non-rigid.
be recalculated as they are not independent of changes in ACcuracy is possibly the biggest problem. Block match-
the segmentation. In our method, 7 block is used to Ing takes no mhgrent_ account of deforma'uon or rotation of
calculate the most likely entropic match over a small area the Plock. This implies that criteria such as Ml or the
+4 pixels. Letﬂgx(t) denote the class entropy calculated correlation ratio, which have no inherent invariance to

from this 7X 7 block subset of the Markov fiel@ centred th(;ejg evintsh V,V'” nc_)t _colpe well with these. S|tuat|o_ns.
on x and shifted by a local translaticn The likelihood of Additionally, their statistical nature means that information

a particular translation is simply ‘@(‘%x/t) _ ‘%x(t)' is averaged and hence high frequency changes can be lost.

The combination of these likelihoods with the transform Th'TQ' leads 1o delocal|z§t|on In- their estimates where
prior of Eq. (13) and segmentation Eq. (8) yields the regions are not symmetrical, an effect enhanced by the

combined segmentation and registration equation: application of.an Isotropic prior.
To summarize, the poor suitability of an entropy or Ml

3 Xq — M\ 2 type criterion and block matching for combined segmenta-

In @(s,t/xq)ock ‘ {In (@) —In (@) +< 20 > } tion and non-rigid registration results from its requirement
ex Oy i - . . . .

for multiple data points. To avoid this requires a basic

S BY(9) + 7, (1) +{In (o) + gt 2} reformulation of the matching criteria to use point-based
an 7 ! V20, ' information, ideally incorporating some predictive capacity
(14) to facilitate the search. The non-rigid algorithm is demon-

strated on a sequence of mouse heart images in Section 5.
wherex,, refers to the joint dataxf, x3*] with x?* obtained
by nearest neighbour interpolation from the second dataset.

Although block matching is a natural extension of the 4. Implementing the joint segmentation and
proposed rigid algorithm, for the purposes of combining registration algorithm
segmentation with non-rigid registration it is not ideal.
Block matching is hampered by four connected problems The complete algorithm, for both the rigid and non-rigid
relating to computational feasibility, robustness, accuracy case, is described iRig. 3 with references to the relevant
and inconsistency in its assumptions. equations. The operat@, , indicates downsampling by a
Firstly, block matching uses a small square of perhaps factor of 2, with ¢* X indicating convolution of the data

=7X7 pixels to determine matches. It is assumed these arewith a low pass filter, namely a Gaussian with= 0.5 and
rigid. The block is then shifted to a number of discrete kernel size of 3 pixels. The countersand L represent,
locations and the similarity measure is calculated at each.respectively, the number of datasets and number of levels.
A reasonable number of points is required in order that a Initialization requires that the number of class#sbe
measure such as mutual information has sufficient data toeither estimated using, for example, a minimum descrip-
be relatively robust. A simultaneous algorithm wishes to tion length(Leclerc, 1989}ype method or chosen heuristi-
update segmentation and registration at each step and focally. Currently it is manually specified (typically 3 or 4
an MRF at each point. This implies a substantial amount of classes). There is no requirement that all datasets have the
block overlap and hence an extremely high computational same number of classes. Otherwise the algorithm is
cost. Block matching normally calculates a set of candidate unsupervised.
likelihood matches which are then regularized. As the The choice of the number of scales is difficult. For the
segmentation will change at many locations each step, it ispurposes of registration a large number of scales is
not possible to do this in a single step except approximate-desirable to avoid convergence to local minima and allow
ly. The large number of parameters to be estimated for a single (scaled) pixel translation to move further. How-
segmentation and non-rigid registration suggest that it be ever, for the purposes of segmentation we desire fewer as
performed simultaneously to avoid local minima. As noted iterative isotropic blurring of an image weakens boundaries
in Section 2 computational complexity of the simultaneous and averages regions. This can lead to errors in segmenta-
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set K = manual initialisation.
fori=1ton
forl=1toL X! =Dp[G,+X\"|  end
for z € Xtz =random(k € K,) end
(Initialize ) forke K, = ¥ zd(s=k)/ ¥ d(s=k) end
zeXk zeXk
(Perform K-means) argT:f,;eK (mez):“ arg™™ || z — ||>

Vk Calculate wy, oy, given uy.

end
forl1=Lto 0
= EOZM — %
set ﬁfield — 1 7f3parent = 2011

do (loop until converged at level)
if(rigid) do
if(separate) foreach i €n calculate S; = argl’§ InP(S;/X;) (equation 2)
else (combined) calculate S = arg™% InP(S/X,, X532, -+, XI) (equation 1
end
(Perform Registration) £ = arg™" (S, S7 ), Powell method (equation 11)
while(€ < &revious)
else (nonrigid) calculate argi'¢*P(S, T) using ICM. (equation 14)
end
foreach k € K Update 6 given P(S!/X;, X352, -, XIn).
while(change above threshold) (see equation 15)
if(1>0) (Initialize Next Level)
(T =27, T — 27, T — )
foreach i en S\ ' = §.
foreach k € K Update 6, assuming P(S!™!) = P(S!/X,, X357, -+ -, XTn).
end
end

Fig. 3. The complete combined segmentation and registration algorithm.

tion at a low resolution being propagated down the al., 1989).As Fig. 4 shows, bilinear interpolation intro-

pyramid. The number of scales has been set at three duces an offset to the mean and variance. Although this is
including the original image. This prevents too much drift beneficial within a region, as it reduces the variance
in the distribution means. The pyramid may also be similarly to low pass filtering, it is not so at the edges.
constructed using median filtering, which can perform Nearest neighbour interpolation is better for ensuring that
better for particularly noisy images. incorrect data estimates are not introduced to the seg-
An additional Markov prior, with the same functional mentation.
form as the spatial prior of Eq. (6), is used to represent the ,
. . L . ny No

parent—child relationship in the hierarchgy.therefore has . )
two different values, the parerg,,..,, being half that of ws wy Bilinear Interpolation
the spatialB;,.,4- As the image is downsampled by a factor Yiwi=1
of two in each direction between levels, each parent has o f (.

. . M= ZZ ‘sz(nl)
four children except at the edges. Given that the data are ) Wy ) )
not of infinite extent, points inevitably exist where multiple 0" =3 wioy,
data are not available for all points. Where this case exists, " n3
the single GMM is used ang@ is reduced by a factor of ™ T2
V2. The non-rigid transform regularization parameter
2. Nearest Neighbour Interpolation

In (Maes et al.,, 1997 the use of partial volume b p= farg™™ || p—n; ||)

(bilinear) interpolation is advocated over nearest neighbour s ' i
interpolation for constructing the joint histogram for 0f =0y, (i =argy™ [ p —ni )

registration. The proposed algorithm agrees in using 7 n3
bilinear 'merpOIa‘tlon ,to ConStr_UCt the 10,"'“ CIaS,S hIStOQra_‘m Fig. 4. Nearest neighbour versus bilinear interpolation. The expected
but uses nearest neighbour interpolation for interpolating mean and variance across a single pixel with different neighbouring

data for the segmentation likelihoods in Eq. (&reig et distributions.
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The algorithm terminates on one of two conditions. If Table 1 _ . .
the segmentation model parameter @e being updated ~ Algorithm robustness with respect By, en (8 fieia= 1 & noise= 60, K =
the algorithm terminates whed converges to a user

defined toleranced,,,,.< 0.05. This change is assessed Boareni O 05 1 15 5 10

as the weighted change in distribution parameters at theib HMRF  FCC 0.88 090 092 092 094 093

nth iteration: LSEx 043 045 046 048 060 071

s PR

6change_% wk< \/m > (15)
JS&R FCC 093 093 093 094 094 093

In addition, the algorithm terminates when there is no LSEx 035 036 037 038 048 065

change in the registration parameters as this implies that LSEs 052 053 054 054 061 076

the segmentation has converged. HD 819 341 341 343 377 525

5. Results Misregistrations are simulated by giving the JS&R
algorithm different initial translations and rotations. An

Results are presented on simulated Gaussian datasets to example obtained for correct recovery of p@rameters

illustrate the principle of our method, as well as some of °, I)=8, T, = 13 is shown inFig. 5.Varying quantities

the issues in JS&R. Further examples are given on MR of noise are added to the images to simulate different

brain images and a sequence of mouse cardiac MR images. guality data. The JS&R algorithm is compared to three
standard algorithms. To examine segmentation accuracy,

5.1. Yynthetic images comparison is made to an HMRF using a GMM for single

intensity data. An example of segmentation is shown in
Fig. 5(a,d) shows two synthetic images. These have Fig. 5(b,e)for the sample images. A further comparison is
been created using Gaussian classes with means, for (a) of made with an HMRF using the multimodality data and a
[50, 100, 150, 200] (gray levels) and for (b) [200, 150, correct registration. This provides the bounding accuracy
100, 50] (gray levels). The classes have standard deviation to which it is hoped JS&R will be close. Ir 16640,

of ~45 (gray levels). Note that the second image simulates image pairs have been processed for varying initial trans-
a ‘'multi-modality’ version of the first. These images are forms. This equateg@ofor each initial position at each
examples of those used in testing the robustness and of the four noise levels. The measures used to evaluate th
accuracy of the algorithm on data with known ground error are defined in Appendix C.

truth. Tables 1 and 3how the variability of the segmentation

(a) Image A (b) Segment A:using A (¢) Segment A:using A&B

(d) Image B (e) Segment B:using B (f) Segment B:using A&B

Fig. 5. 2 images with 4 classes, Gaussian noise (sizex250 pixels).
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Table 2 _ . . they exist to be set. For varying initial conditions, the
plgorinm robusiness with respect Wiaa (Fren™ 05 @060 fraction of correct recoveries of the transform is assessed.
=4 Correct is defined a8+0.1°, [T, + T,| < 0.2 pixels.Table
Algorithm 7.y 0O 05 1 15 5 10 3 shows the comparison between intensity Ml and the
1D HMRF  FCC 071 081 090 093 09 094 JS&R joint class entropy criterion. As can be seen, at low
LSEx 030 038 045 049 074 111 Jevels of noise there is little difference between the two,
LSEeo 049 053 060 065 098 184 4 gt higher noise class-based MI is more reliable. As
HD 232 294 352 398 756 131 N .
noise increases further =75, both start to fail more
JS&R ECC 081 088 093 095 096 093 Significantly. Class-based Ml remains more robust. In
LSEx 028 033 036 039 072 121 summary, for the entire set of registrations tested 78.4%
LSEoc 046 048 053 055 1.00 193 were recovered correctly by the intensity Ml algorithm and
HD 226 272 341 354 803 125 9604 hy the combined algorithm.
Table 4 compares the recovered segmentations for the
JS&R algorithm to a 1D HMRF and a 2D MRF given the

noise

accuracy with the two key parametefs,.cn, Brieia AS known registration. As can be seen, the JS&R algorithm
would be expected, the parental prior is more robust than achieves a rate of accuracy which is higher than the 1D
the spatial. It is important to note that although segmenta- HMRF and is similar to the 2D HMRF.

tion accuracy increases through the table, it is mirrored by
an increase in delocalization of boundaries. Errors within 5.2. Algorithm complexity
regions are being removed, but at boundaries they are

being enhanced. JS&R appears less affected by this in the Although it was expected that combining segmentation
parameter region up t8 ~ 1.5. SettingB chooses the point and registration would increase the computational com-
where evidence frorm neighbours outweighs the pixel plexity this has not proved to be the case. A breakdown of
likelihood. A high value ofg is undesirable as it tends to timings for images of increasing siz&, 100°, 200 afd 500
oversmooth fine detail at boundaries. for 3 and 255 classes/gray levels is shdailén5.The
The registration is tested against a mutual information tests were performed on a Pentium 3 700 MHz with 512
algorithm using image intensity. As with the segmentation MB ram. As can be seerTabla 5a significant saving
HMRFs, all parameters have been kept identical where is made in calculating the entropy with fewer classes. This
Table 3
Fraction of recovered registrations class vs. intensity mutual informafidn, (= 1, ﬁga,em= 0.5, 0 ic= 60, K=4)
s JS&R Intensity Ml
0 T+l 15 30 45 60 15 30 45 60
5 0 1.00 1.00 1.00 1.00 1.00 1.00 0.81 0.66
5 1.00 1.00 1.00 1.00 0.98 0.86 0.81 0.68
10 1.00 1.00 1.00 1.00 0.98 0.72 0.63 0.54
15 0.96 0.96 0.96 0.96 1.00 0.79 0.72 0.57
10 0 1.00 1.00 1.00 0.98 0.97 1.00 0.81 0.63
5 0.98 1.00 1.00 0.94 0.98 0.94 0.78 0.70
10 1.00 1.00 1.00 0.92 1.00 0.73 0.60 0.52
15 0.98 1.00 0.80 0.80 1.00 0.85 0.62 0.57
15 0 1.00 1.00 0.84 0.84 0.97 0.86 0.59 0.53
5 0.98 0.96 0.88 0.92 0.98 0.86 0.73 0.65
10 1.00 0.80 0.72 0.68 0.98 0.66 0.52 0.52
15 0.98 0.92 0.88 0.72 0.98 0.79 0.60 0.55
Table 4
JS&R segmentation accuracy vs. 1D HMRF and 2D MRF given correct registrﬁm,((: 0.5, B%u=1,K=4)
1D HMRF JS&R 2D HMRF (known transform)
Un FCC /"’LSE ULSE FCC lu/l_sE O—LSE FCC M LSE o LSE
15 0.99 0.02 0.14 0.99 0.04 0.20 0.99 0.02 0.15
30 0.98 0.14 0.34 0.98 0.13 0.34 0.99 0.12 0.26
45 0.94 0.29 0.49 0.96 0.23 0.43 0.96 0.22 0.40

60 0.89 0.46 0.59 0.93 0.36 0.53 0.94 0.30 0.48




548 PP. Wyatt, J.A. Noble / Medical Image Analysis 7 (2003) 539-552

Table 5

Timings for combined segmentation and rigid registration algorithm computational cost breakdown (times given in milliseconds per iteration)
Image size 106100 200x 200 500< 500

No. classes/grayscales 3 255 3 255 3 255
Calculation of mappings 2 2 10 10 44 44
Form histogram (PV interpolation) 7 7 43 43 267 267
Form histogram (NN interpolation) 2 2 10 10 48 48
Calculation of entropy 0.2 5.5 0.2 5.5 0.2 5.5
Total time per iteration 9.2 145 53.2 58.5 311.2 316.5

results from fewer log calculations. As the MRF typically /www.bic.mni.mcgill.ca} are shown. T1 and T2 weighted

takes between 0.15 and 1.5 seconds to run depending upon

image size and the number of iterations for ICM conver-
gence (typically 4—-7) a time saving is normally realized.
As the proposed algorithm uses a multiresolution search
strategy, fewer iterations will be necessary at high res-
olution. This results from convergence having been pri-
marily obtained at low resolution. For small datasets a
factor of 10 is often achievable.

It should also be noted that one reason Ml typically uses
bilinear (PV) interpolation is that it provides smoother
histogram construction which helps reduce the number of
local minima. As the class-based criterion is more robust in

this respect there is no reason that nearest-neighbour

interpolation could not be used instead, which would
increase the time saving.

5.3. Phantom images

In Fig. 6the results of applying rigid registration to MR
phantom brain images taken from brainwelhttyg:/

(d) T2 Image (B)

(b) Segment A:using A

(e) Segment B:using B

images with slice thickness 1 mm, noise of 9% and
intensity inhomogeneity of 20% are shown. It is difficult to
validate this example as the images are generated from a
fuzzy model of the brain and so binarization does not yield
an unambiguous class map making ground truth hard to
obtain. However, it can be seen visually that the JS&R
segmentations maintain better separation of the sulci (i.e.
between the white and gray matter) and retain finer detalil
than the separate segmentations. This detail is lost by the
separate algorithm owing to insufficient separation in the
1D likelihood model. The simulated misregistration was
recovered by both the separate registration process and
JS&R algorithm. For ease of visual comparison a one-to-
one match has been enforced.

5.4. Medical images

Fig. 7 shows five frames covering approximately one

quarter of a cardiac cycle, of a mouse heart MR sequence.

The sequence was obtained from an 11.7 Tesla machine.

(c) Segment A:using A&B

(f) Segment B:using A&B

Fig. 6. Segmentation and registration of multimodal brain images; separate versus combined results.
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Fig. 7. Segmentations, of 1/4 cycle, mouse heart MRI sequence (size: 2000 pixels).

Each voxel is~0.1X0.1X 1.0 mnT in size with temporal
resolution of ~5 ms. The first column shows the MRI
images, the second the single dataset segmentations. The

image, from the source image should leave a random field
of white noise behind. To avoid bias, the means of the

third and fourth columns show the paired segmentations
obtained using JS&R (non-rigid) on pairs of adjacent
images with two and three classes, respectively. The
combined segmentations appear better visually than the
separate segmentations; maintaining separation of left and
right ventricles. Segmentation accuracy was compared to a
manual segmentation of the ventricles. Assessing the error
in non-rigid registration is difficult as ground truth is
difficult to establish. For the registration, one possibility is
that, if the noise field is Gaussian, subtraction of the
registered image projected into the frame of the source

images are shifted to zero and they are normalized befol
subtraction. The registrations obtained from conventional
mutual information and the combined JS&R algorithms
produced images with very similar appearance. Subtracting
the registered images from the source left no statistically
significant differendeabbes 6 shows, whilst there is
only a small increase in the fraction of correctly classified
pixels the error and variance in the location of the
boundary are substantially reduced, as is the Hausdorff
distance. The improvement in correctly classified pixels is
small as interpolation near borders can give misleading
information. The Hausdorff distance reduces principally as
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Table 6 features from both images might help overcome this
Error in 2 class segmentations of mouse heart sequence (averages over Zﬁmitation

f - . -

rames) Possibly the most important, though difficult to analyse,
issues are convergence and robustness. Theoretically, it
can be shown that the expected classification error re-

JS&R
Mean (S.D.)

Error measure Separate

Mean (=S.D.)

Fraction correctly classified
LSE in boundary (pixels)
Variance in boundary (pixels sqr)
Hausdorff distance (pixels)

0.9596 (0.015)
1.5864 (0.577)
2.2827 (1.111)
10.9298 (5.608)

0.9961 (0.299)
1.0115 (0.533)
5.2957 (2.963)

separation between left and right ventricles is maintained
by the combined algorithm and not always by the separate.

0.9638 (0.004) sulting from a GMM-MRF with four neighbour cliques is
greater than or equal te40% of that of the maximum

likelihood (ML) error for the same GMM without the
spatial prior (Appendix B). It would therefore seem

reasonable to expect a corresponding improvement in
robustness to noise for the MAP registration criteria over

the ML. In practice, the improvement may not attain the
theoretical owing to interpolation errors, the GMM'’s

6. Discussion and summary

failings in modelling real world problems and the theoret-

ical requirement thapd be allowed to approach infinity.

The aim of this paper has been to demonstrate the
advantages in applying a combined segmentation and
registration method, developing foundations for such an
algorithm and showing potential applications. Several key
aspects which can be improved have also been identified.

The proposed algorithm performs well for two reasons.
Firstly, the Markov prior introduces spatial regularization
into the registration through the class-based entropy mea-
sure of Eq. (11). This has the additional benefit of reducing
the computational load of registration which offsets the
additional cost of segmentation. Secondly, the minimiza-
tion of entropy of classes leads to good matching where
the additional information improves segmentation accura-
cy. In addition, the JS&R algorithm retains the information
theoretic criterion advantage of being modality indepen-
dent.

The results ofFigs. 5—7illustrate an improvement from
the combination of information. Essentially this combina-
tion makes an additional set of features available. In our
algorithm these feature sets have been limited solely to
intensity. In a single dataset a similar effect can be
achieved by computing wavelet coefficients or co-occur-
rence statistics. The advantage of the feature(s) from the
second data set versus additional feature(s) computed on
the same dataset is that as the noise is motion-decorrelated
between datasets it should be more robust and reliable. The
Gaussian model currently employed for segmentation is
known to fail on texture segmentation and exhibit poor
performance on various imaging modalities, e.g. ultra-
sound. Developing models to make use of scale-based

However, it has been demonstrated that practically signifi-
cant improvement in accuracy and robustness is realized.
The greatest weakness in the method is in setting the
PRALS, Boarenr@nNdoy. Particularly in the case g4,
too high a value leads to over smoothing of boundaries.
Although the joint likelihood mé&@¥|, X,/S T) is

beneficial, it is not always sufficient. Two potential

additions can help here. The first is construction of the
multiresolution hierarchy with an anisotropic or region
preserving filter, i.e. median filter. The second is to alter

the prior weight according to a locally adaptive measure,
such as suggesBaliksrroui et al. (2003).

Fig. 8 shows the segmentation of frame 14 of the mouse
heart sequence (using frame 15 for JS&R) and one instance

where the combined algorithm performs poorly. Although

inFig. 8(d) the JS&R algorithm retains separation of the
left and right ventricles, unlike the separate image seg-
mentafiggy 8(c), the centre of the bloodpool is mis-

classified. This error results from the segmentation model
simplicity: there is no higher level information available to
model the difference in appearance and the local property
of the MRF is unable to maintain region continuity. In
order to be able to correctly match the images there need:
to be overlap between the features locally. This is one
reason for implementing a multiresolution search strategy
The effective increase in search area provided by the lowe
resolutions aids convergence at the finer scales. However,

Fig. 8 the intensity and class-based non-rigid criteria

used are unable to cope with this fading; indeed, any
region-based method would struggle.

(a) Frame 14 (b) Frame 15

(c) Separate

(d) JS&R

Fig. 8. Erroneous classification resulting from fading of bloodpool.
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A final consideration concerns the extension to 3D In 2D these form, after fusion with other data, functions
applications. The principal difference is a necessary redefi- ¢, ,(x,, X,), 9, {x, X ). The fractional error for the same
nition of the Markov prior model. Depending upon the data becomes

scanning method used, i.e rotating 3D probe or planar
slices, the Markov field will cease to be isotropic and
homogeneous as a result of the non-uniformity of res- 6%, = f f min [ 4, (X4, X)), G, {X , X )] dx Gx 4
olution. Therefore, it would be necessary to determine a—sa —=

appropriate clique functions. In the case of sparse data (A.2)
there would be less of an advantage in joint segmentation

as improvements in accuracy stem from monomodal/mul- iff the data are independent, thef, Xy X)) =
timodal compounding of information. The exact utility Frua(X1) ¥x,) and Eq. (A.2) becomes

would depend upon the extent to which data smoothness

could be assumed and compounding exists. a+sa o

To summarize, results indicate that the addition of a ., _ J J' , . o~
spatial prior leads to substantially greater robustness in 0%, = min [90G) F1(X,), x5 F4x ) ] ax,0x

atéda =

rigid registration and the combination of data improves azoa s
segmentation accuracy. There is also an increase in speed atoa
for the case of combined segmentation and rigid registra- =f (x,) dx, j min [ F,(X,), FAx)]dx,
tion. This suggests the combination of segmentation and S a—sa
registration is worth pursuing in future. a+sa
= f min [ #,(X,), F,(X,) ] dx .. (A.3)
a—da

7. Further references . .
Hence, the error for 2 is equal to that for . This also

implies that the ratio #,(x,)/%,(x,) =%, a constant.
However, if G, 45Xy, Xp) # Fa,2)(X) 9(X,) then the
ratio 4, ,(Xy, X)/9,4{x, x)#J. The maximum ML
misclassification must bé%,, as the maximum union of
F (X)), Fyx) is min [F(x,), F{x)]. Consequently,
extending this logic to the whole domain:

For further reading seeB@nsal et al., 1998; Brailean
and Katsaggelos, 1995a, 1995b; Brailean et al., 1995;
Papademetris et al., 2001; Roche et al., 3000
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Appendix B. Expected error reduction of MRF with
respect to the ML error

Appendix A. Improved separability of functions in ) ) )

higher dimensions Consider a Gaussian model of parametewith mean
M, varianceg; and weightw;

If we can prove, for an\N-dimensional functiort#, that
the error of maximum likelihood (ML) classification is  — ——
upper-bounded by the 1D case, then this proves that ML~ (~270;)
classification from the fusion of registered datasets yields
equal or more accurate results than those possible for anyModelsy, andy, will intercept atx,, x,,, obtained from the

w:
1 e—l/Z(X—,u,i/(ri)Z.

single dataset. solution to
Consider 1D functions%,(x,), Z,(X,), with ML error ) ) )
8%, (about pointa) (05— oI+ 2,0 T — o Ix
w, 0.
. + [Mfai — ulo?-21n <1—2> ] o, (B.1)
W0,
0&, = f min [ #,(X,), FAx)]dx, (A1)

a—sa The maximum likelihood classification error is simply
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min (X4.Xp) max (Xa,Xp)
&= f min (y,, y,) dy + f min (y,, y, dy
— min (X5, Xp)

©

+ f min (y,, y,) dy.

max (X, Xp)

The effect of an MRF is essentially that locally it alters
the relationship betweery, by using the current local
neighbour class to alter the weighs. This shifts the
intercepts in Eq. (B.1) as the weight becomes
we s PP As B the intercept for all cliques
apart from the single exception where the prior clique
energiesS ., 7.() are equal for botly,, y, will tend to
+o, Hence the errors for those cliques will be zero. For

Image Analysis 7 (2003) 539-552
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n)! is the binomial coefficient#y,,/=y A). Therefore
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fraction of the MLE. This assumes that the lattice is
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For the special case of a four-neighbourhood, this is
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Appendix C. Definitions of error measures used

The error measures used are defined as follows.
The Hausdorff measure (HD) calculates the maximum

of the minimum distances between two curves or sets of

numbers. If two sets of points correspond to two curves

P ={p;, P»-.-., P} and 2 ={q,, 0, ..., 0.}, then the
Hausdorff Erroré,, is

€, = Arg"[Arg "2, - 2. (1)

The LSE is the average of the distance between two

medical image analysis and computer vision. Proc. SPIE Med. Imag.,
Vol. 4322, pp. 236-248.

Geman, S., Geman, D., 1984. Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images. IEEE PAMI 6 (6), 721-741.

Greig, D.M., Porteos, B.T., Seheult, A.H., 1989. Exact maximum a
posteriori estimation for binary images. J. R. Stat. Soc. Ser. B 51 (2),
271-279.
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maximization of mutual information. IEEE Trans. Med. Imag. 16 (2),
187-198.
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registration methods. Med. Image Anal. 2 (1), 1-36.

McLaughlin, R.A., Hipwell, J. et al., 2002. A comparison of intensity-
based registration and feature-based registration for neurointerven-
tions. In: Proceedings MICCAI, Japan, pp. 517-524.

Papademetris, X., Onat, E.T. et al., 2001. The active elastic model.
Inform. Process. Med. Imag, June.

curves, which in the case of segmentation are the boundarypennec, X., 1998. Towards a generic framework for recognition based on

between regions for the ground truth and test segmenta-

tion:

1 S in
gLSE:NzL [ArgJM ”gbu _Qj”]' (C.2)
Fraction Correctly Classified (FCC): if the ground truth
for pixels s€ ¥ is known and it is compared to a trial
segmentatiom € &, then the fraction of correctly classified
pixels is

S#T,

FCC = %} Ef‘, 8(s,r) whered(s r) = {2 (22)
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