Convolutional Neural Networks

Alasdair Newson

LTCI, Télécom Paris, IP Paris alasdair.newson@telecom-paris.fr

Introduction

- Neural networks provide a highly flexible way to model complex dependencies and patterns in data
- In the previous lessons, we saw the following elements :
 - MLPs : fully connected layers, biases
 - Activation functions : sigmoid, soft max, ReLU
 - Optimisation : gradient descent, stochastic gradient descent
 - Regularisation : weight decay, dropout, batch normalisation
 - RNNs : for sequential data

Introduction

- In MLPs each layer of the network contained fully connected layers
- Unfortunately, there are great drawbacks with such an approach

- Each hidden unit is connected to each input unit
- There is high redundancy in these weights :
 - In the above example, 65 million weights are required

Introduction

- For many types of data with grid-like topological structures (eg. images), it is not necessary to have so many weights
- For these data, the convolution operation is often extremely useful
- Reduces the number of parameters to train
 - Training is faster
 - Convergence is easier : smaller parameter space

 A neural network with convolution operations is known as a Convolutional Neural Network (CNN)

- "Neocognitron" of Fukushima* : first to incorporate notion of receptive field into a neural network, based on work on animal perception of Hubert and Weisel[†]
- Yann LeCun first to propose back-propagation for training convolutional neural networks[‡]
 - Automatic learning of parameters instead of hand-crafted weights
 - However, training was very long : required 3 days (in 1990)

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

* Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position, Fukushima, K., Biological Cybernetics, 1980

[†] Receptive fields and functional architecture of monkey striate cortex, Hubel, D. H. and Wiesel, T. N, 1968

Backpropagation Applied to Handwritten Zip Code Recognition, LeCun, Y. et al., AT&T Bell Laboratories

- In the years 1998-2012, research continued on shallow and deep neural networks, but other machine learning approaches were preferred (GMMs, SVMs etc.)
- In 2012, Alex Krizhevsky et al. used Graphics Processing Units (GPUs) to carry out backpropagation on a very deep convolutional neural network
 - Greatly outperformed classic approaches in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
- GPUs turned out to be very efficient for training neural nets (lots of parallel computations)
- Signalled the beginning of deep learning revolution

Introduction - some history

- Since 2012, CNNs have completely revolutionised many domains
- CNNs produce competetive/best results for most problems in image processing and computer vision

Being applied to an ever-increasing number of problems

Summary

Introduction, notation

- 2 Convolutional Layers
- 3 Down-sampling and the receptive field
- 4 CNN details and variants
- 5 CNNs in practice
- 6 Image datasets, well-known CNNs, and applications
 - Applications of CNNs
 - Interpreting CNNs
 - Visualising CNNs
 - Adversarial examples

Introduction - some notation

Notations

- $x \in \mathbb{R}^n$: input vector
- $y \in \mathbb{R}^q$: output vector
- u_ℓ : feature vector at layer ℓ
- θ_ℓ : network parameters at layer ℓ

- A "Convolutional Neural Network" (CNN) is simply a concatenation of :
 - Convolutions (filters)
 - Additive biases
 - Own-sampling ("Max-Pooling" etc.)
 - On-linearities
- In this lesson, we will be mainly concentrating on convolutional and down-sampling layers

Summary

Introduction, notation

- 2 Convolutional Layers
- 3 Down-sampling and the receptive field
- 4 CNN details and variants
- 5 CNNs in practice
- 6 Image datasets, well-known CNNs, and applications
 - Applications of CNNs
 - Interpreting CNNs
 - Visualising CNNs
 - Adversarial examples

Convolution operator

Let f and g be two integrable functions. The **convolution operator** * takes as its input two such functions, and outputs another function h = f * g, which is defined at any point $t \in \mathbb{R}$ as :

$$h(t) = (f * g)(t) = \int_{-\infty}^{+\infty} f(\tau)g(t - \tau)d\tau.$$

• Intuitively, the function h is defined as the inner product between f and a shifted version of g

 In many practical applications, in particular for CNNs, we use the discrete convolution operator, which acts on discretised functions;

Discrete convolution operator

Let f_n and g_n be two summable series, with $n \in \mathbb{Z}$. The discrete convolution operator is defined as :

$$(f * g)(n) = \sum_{i=-\infty}^{+\infty} f(i)g(n-i)$$

- Intuitively, the function h is defined as the inner product between f and a shifted version of g
- In practice, the filter is of small spatial support, around 3×3 , or 5×5
- Therefore, only a **small number** of parameters need to be trained (9 or 25 for these filters)

Properties of convolution

- Associativity : (f * g) * h = f * (g * h)
- **2** Commutativity : f * g = g * f
- $\textbf{ Silinearity : } (\alpha f)*(\beta g)=\alpha\beta(f*g) \text{, for } (\alpha,\beta)\in\mathbb{R}\times\mathbb{R}$
- Sequivariance to translation : $(f * (g + \tau))(t) = (f * g)(t + \tau)$

Associativity, commutativity

- Associativity+commutativity implies that we can carry out convolution in any order
- There is no point in having two or more consecutive convolutions
 - This is true in fact for any linear map

Equivariance to translation

- Equivariance implies that the convolution of any shifted input $(f + \tau) * g$ contains the same information as $f * g^{\dagger}$
- This is useful, since we want to detect objects anywhere in the image

[†] if we forget about border conditions for a moment

Convolutional Layers - 2D Convolution

- Most often, we are going to be working with images
- Therefore, we require a 2D convolution operator : this is defined in a very similar manner to 1D convolution :

2D convolution operator

$$(f*g)(s,t) = \sum_{i=-\infty}^{+\infty} \sum_{j=-\infty}^{+\infty} f(i,j)g(s-i,t-j)$$

Important remarks for the rest of the lesson!

- ullet We are going to denote the filters with w
- For lighter notation, we write $w(i) =: w_i$ (and the same for x_i etc.)

 \mathcal{U}

 \mathcal{U}

u

- The filter weights w_i determine what type of "feature" can be detected by convolutional layers;
- Example, sobel filters :

• Convolutional filters can also act as low-pass/smoothing filters

Input image

Low-pass filtered image

 We can also write convolution as a matrix/vector product, as in the case of fully connected layers

Example : discrete Laplacian operator

- This further illustrates the drastic reduction in weight parameters (9 instead of *Kn*)
- Can be useful to view convolution in this manner (we will see this later)

• At this point, it is good to have a more "neural network"-based illustration of CNNs

- We can see two of the main justifications for CNNs
 - Sparse connectivity
 - Weight sharing

- Now that we understand convolution, how do we **optimize** a neural network with convolutional layers ? **Back-propagation**
- Consider a layer with just a convolution with w

$$x \longrightarrow y$$

- We have the derivatives $\frac{\partial \mathcal{L}}{\partial y_i}$ available
- We want to calculate the following quantities :

•
$$\frac{\partial \mathcal{L}}{\partial x_k}$$
 (for further back-propagation) and
• $\frac{\partial \mathcal{L}}{\partial w_k}$

• We shall use the abbreviation $\frac{\partial \mathcal{L}}{\partial y_i} =: dy_i$

• Before considering the general case, let's take an example from the illustration from above

• Say we want to calculate $dx_1 := \frac{\partial \mathcal{L}}{\partial x_1}$

- Each element y_i depends on the input x_i and the weight w_k
- Therefore, we can consider that the loss is a function of several variables :

$$\mathcal{L} = f(x_1, \ldots, x_n, w_1, \ldots, w_K, y_1(x_{\cdot}, w_{\cdot}), \ldots, y_m(x_{\cdot}, w_{\cdot}))$$

• We use the multi-variate chain rule

$$dx_1 = \sum_i \frac{\partial \mathcal{L}}{\partial y_i} \frac{\partial y_i}{\partial x_1}$$

 $dx_1 = ???$

• As we can see, the order of the weights is flipped

• Now, let us calculate $\frac{\partial \mathcal{L}}{\partial x_k}$ for any k

$$\begin{split} \frac{\partial \mathcal{L}}{\partial x_k} &= \sum_i dy_i \frac{\partial y_i}{\partial x_k} \\ &= \sum_i dy_i \frac{\partial (x * w)_i}{\partial x_k} \\ &= \sum_i dy_i \frac{\partial \left(\sum_j x_j w_{i-j}\right)}{\partial x_k} \\ &= \sum_i dy_i w_{i-k} = \sum_i dy_i w_{-(k-i)} \end{split}$$

multi-variate chain rule

• More compactly : $dx_k = (dy * flip(w))_k$

- Recall that the convolution operator can be written $y = A_w x$, with A_w the convolution matrix
- The flipping of the weights corresponds to a transpose of A

$$dx = A_w^{\mathsf{T}} dy \tag{1}$$

- This gives an easy method of backpropagation in convolutional layers
 - Although you will not actually have to implement this

• Now for the second part : $\frac{\partial \mathcal{L}}{\partial w_{k}}$

• Again, we use the chain rule. For example $da = \sum_i \frac{\partial \mathcal{L}}{\partial y_i} \frac{\partial y_i}{\partial a}$

• We have $y_i = ax_{i-1} + bx_i + cx_{i+1}$

$$da = \sum_{i} dy_i \ x_{i-1}$$

• In the general case, we have:

$$\begin{split} \frac{\partial \mathcal{L}}{\partial w_k} &= \sum_i dy_i \frac{\partial y_i}{\partial w_k} & \text{multi-variate chain rule} \\ &= \sum_i dy_i \frac{\partial (x * w)_i}{\partial w_k} \\ &= \sum_i dy_i \frac{\partial \left(\sum_j x_j w_{i-j}\right)}{\partial w_k} \\ &= \sum_i dy_i x_{i-k} = \sum_i dy_i x_{-(k-i)} \qquad k = i-j \end{split}$$

• More compactly : $dw_k = (dy * flip(x))_k$

- Note : optimisation of loss w.r.t one parameter w_k involves entire image
- Weights are "shared" across the entire image
- This notion of weight sharing is one of the main justifications of using CNNs
- In practice, we do not calculate dw_k and dx_k ourselves, we use the **automatic differentiation** tools of Tensorflow, Pytorch etc.

Convolutional Layers - border conditions

- The convolution operator poses a problem at the borders
- Theoretically, we consider functions defined over an infinite domain, but which have compact support
- In reality, we only have finite vectors/matrices to work on

Convolutional Layers - border conditions

Two common approaches to border conditions

"VALID" approach

- Only take shift/dot products that do not extend beyond Supp(u)
- Output size : m |w| + 1

"SAME" approach

- Keep output size *m*
- Need to choose values outside of Supp(u) : zero-padding

2D+feature convolution

- ullet Several filters are used per layer, let us say K filters : $\{w_1,\ldots,w_K\}$
- The resulting vectors/images are then stacked together to produce the next layer's input $u^{\ell+1}\in\mathbb{R}^{m\times n\times K}$

$$u^{\ell+1} = [u * w_1, \ldots, u * w_K]$$

• Therefore, the next layer's weights must have a depth of *K*. The 2D convolution with an image of depth *K* is defined as

$$(u*w)_{y,x} = \sum_{i,j,k} u(i,j,\mathbf{k}) \ w(y-i,x-j,\mathbf{k})$$

Useful explanation : https://towardsdatascience.com/ a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

• Illustration of several consecutive convolutional layers with different numbers of filter

- Each layer contains "image" with a depth, where each channel corresponds to a different filter response
- Each layer is a concatenation of several features : rich information

Useful explanation : https://towardsdatascience.com/

a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

Convolutional layers - a note on Biases

- A note on biases in neural networks : each output layer is associated with one bias
- There is not one bias per pixel
- This is coherent with the idea of weight sharing (bias sharing)

- In many cases, we are primarily interested in detection;
- We would like to detect objects wherever they are in the image

- Formally, we would like to have some shift invariance property;
- This is done in CNNs by using subsampling, or some variant :
 - Strided convolutions
 - Max pooling
- We explain these now

Summary

Introduction, notation

- 2 Convolutional Layers
- Own-sampling and the receptive field
- 4 CNN details and variants
- 5 CNNs in practice
- 6 Image datasets, well-known CNNs, and applications
 - Applications of CNNs
 - Interpreting CNNs
 - Visualising CNNs
 - Adversarial examples

Down-sampling and the receptive field

The Receptive Field

- Neural networks were initially inspired by the brain's functioning
- Hubel and Weisel[†] showed that the visual cortex of cats and monkeys contained cells which individually responded to different small regions of the visual field
- The region which an individual cell responds to is known as the "receptive field" of that cell

[†] **Receptive fields and functional architecture of monkey striate cortex**, Hubel, D. H.; Wiesel, T. N, 1968 Illustration from : http://www.yorku.ca/eye/cortfld.htm

The Receptive Field

 This idea was imitated in convolutional neural networks by adding down-sampling operations

Illustration from : Applied Deep Learning, Andrei Bursuc, https://www.di.ens.fr/~lelarge/dldiy/slides/lecture_7/

• Strided convolution is simply convolution, followed by subsampling

Subsampling operator (for 1D case)

Let $x \in \mathbb{R}^n$. We define the subsampling step as $\delta > 1$, and the subsampling operator $S\delta : \mathbb{R}^n \to \mathbb{R}^{\frac{n}{\delta}}$, applied to x, as

$$S_{\delta}(x)(t) = x(\delta t), \text{ for } t = 0 \dots \frac{n}{\delta} - 1$$

Max pooling

- Max pooling subsampling consists in taking the maximum value over a certain region
- This maximum value is the new subsampled value
- We will indicate the max pooling operator with S_m

Max pooling

Back propagation of max pooling only passes the gradient through the maximum

Down-sampling

- Conclusion : cascade of convolution, non-linearities and subsampling produces shift-invariant classification/detection
- We can detect Roger wherever he is in the image !

u * w

Convolution + non-linearity +max pooling

Summary

Introduction, notation

- 2 Convolutional Layers
- 3 Down-sampling and the receptive field
- CNN details and variants
 - 5 CNNs in practice
- Image datasets, well-known CNNs, and applications
 - Applications of CNNs
 - Interpreting CNNs
 - Visualising CNNs
 - Adversarial examples

Dilated Convolution

- There is a variant of convolution called dilated convolution*
- Increase spatial extent of convolution without adding parameters
 - Add a space *D* between each point in the convolution

$$(u * v)(y, x) = \sum_{i,j,k} u(i, j, k)v(y - Di, x - Dj, k)$$
(2)

* Multi-Scale Context Aggregation by Dilated Convolution, Yu, F, Kolten, V, ICLR 2016

Locally connected layers / unshared convolution

- We might wish for a mix of a dense layer and a convolutional layer
- One possibility : **locally-connected layers** (sometimes called "unshared convolution")
 - Local connectivity but no weight sharing

 Number of weights increases linearly with the number of pixels, rather than quadratically (for MLPs)

Summary

Introduction, notation

- 2 Convolutional Layers
- 3 Down-sampling and the receptive field
- 4 CNN details and variants

6 CNNs in practice

- Image datasets, well-known CNNs, and applications
 - Applications of CNNs
- Interpreting CNNs
 - Visualising CNNs
 - Adversarial examples

How to build your CNN ?

How to build your CNN ?

- We have looked at the following operations : convolutions, additive biases, non-linearities
- All of these elements make up convolutional neural networks
- However, how do we put these together to create our own CNN ?
 - Architecture ?
 - Programming tools ?
 - Datasets ?

Architecture : vanilla CNN

- Simple classification CNN architecture often consists of a **feature learning section**
 - $\bullet~\mbox{Convolution} \rightarrow \mbox{biases} \rightarrow \mbox{non-linearities} \rightarrow \mbox{subsampling}$
 - This continues until a fixed subsampling is achieved
- After this, a classification section is used
 - Fully connected layer \rightarrow non-linearity

Architecture

- Central question : how to choose number of layers ?
- Complicated, very little theoretical understanding, currently a hot topic of research
- However : there are a few rules of thumb to follow
 - Receptive field of the deepest layer should encompass what we consider to be a fundamental brick of the objects we are analysing

• Set number of layers and subsampling factors according to the problem

CNN programming frameworks

- Caffe
 - Open source, developed by University of California, Berkley
 - Network created in separate specific files
 - Somewhat laborious to use, less used than other frameworks
- Theano
 - Open source, created by the Université de Montréal
 - Unfortunately, to be discontinued due to strong competition
- Tensorflow
 - Open source, developed by Google
 - Implements a wide range of deep learning functionalities, widely used
- Pytorch
 - Open source, developed by Facebook
 - Implements a wide range of deep learning functionalities, widely used

Summary

Introduction, notation

- 2 Convolutional Layers
- 3 Down-sampling and the receptive field
- 4 CNN details and variants
- 5 CNNs in practice
- Image datasets, well-known CNNs, and applications
 Applications of CNNs
 - - Visualising CNNs
 - Visualising CNNs
 - Adversarial examples

MNIST dataset

- MNIST is a dataset of 60,000 28×28 pixel grey-level images containing hand-written digits
- The digits are centred in the images and scaled to have roughly the same size
- Although quite a "simple" dataset, still used to display performance of modern CNNs

Caltech 101

- Produced in 2003, first major object recognition dataset
- 9,146 images, 101 object categories, each category contains between 40 and 800 images
- Annotations exist for each image : bounding box for the object and a human-drawn outline

ImageNet dataset

- Dataset created in 2009 by researchers from Princeton unverisity
- Very large dataset : 14,197,122 images, hand-annotated
- Used for the ImageNet Large Scale Visual Recognition Challenge, an annual benchmark competition for object recognition algorithms

LeNet (1989/1998)

- Created by Yann LeCun in 1989, goal : to recognise handwritten digits
- Able to classify digits with 98.9% accuracy, used by U.S. government to automatically read digits

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Illustration from : Gradient-based Learning Applied to Document Recognition, LeCun, Y. Bottou, L., Bengio, Y. and Haffner, Proceedings of the IEEE, 1989

AlexNet (2012)

- AlexNet : created by Alex Krizhevsky in 2012
- Improved accuracy of ImageNet Large Scale Visual Recognition Challenge competition by **10 percentage points** (16.4%)
- First truly deep neural network
- Signaled beginning of dominance of deep learning in image processing and computer vision

Illustration from : Imagenet classification with deep convolutional neural networks, Krizhevsky, A., Sutskever, I. and Hinton, G. E, NIPS, 2012
GoogLeNet (2015)

- In 2014/2015, Google introduced the "Inception" architecture/module
- Major attempt at reducing total number of parameters
- No fully connected layers, only convolutional
 - 2 million instead of 60 million for AlexNet
- Novel idea : have variable receptive field sizes in one layer

Going deeper with convolutions, Szegedy et al, CVPR, 2015

GoogLeNet (2015)

- Created by Google in 2014, GoogLeNet is a specific implementation of the "inception" architecture
- 6.6% test error rate on ImageNet (human error rate 5%)

Going deeper with convolutions, Szegedy et al, CVPR, 2015

VGG16 (2015)

- VGG16 is a 16-layer network, with small receptive fields (3×3 filters, with less subsampling)
- Around 7.5% test error on ILSVRC

Very Deep Convolutional Networks for Large-Scale Image Recognition, Simonyan, K. and Zisserman, A., ICLR, 2015 Illustration from Mathieu Cord, https://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/

Summary of advances in CNNs

Network	LeNet (1998)	AlexNet (2012)	GoogLeNet (2014)	VGG16 (2015)	
lmage size Layers Parameters	28×28 3 60,000	$\begin{array}{c} 256\times256\times3\\ 8\\ 60 \text{ million} \end{array}$	$256 \times 256 \times 3$ 22 2 million	$\begin{array}{c} 224 \times 224 \times 3 \\ 16 \\ 138 \text{ million} \end{array}$	

- As we mentioned before, CNNs make sense for data with grid-like structures
- In particular, images are most often the target of CNNs
- Arguably the most common application of CNNs is to **image** classification
- Why is image classification important ? Closely linked to :
 - Object detection
 - Tracking
 - Image search (in large databases for example)
- In recent years, the best performing classification algorithms have been using neural networks

- Why is image classification difficult ?
 - Images can vary in size, shape, position
 - We need to deal with variable lighting conditions, occlusions etc.
- Let us look at a standard CNN classificaton network

- We have input datapoints x, which we wish to classify into several, predefined classes $\{c_i\}, i = 1 \dots K$, where K is the number of classes
- As we have seen, convolution, non-linearities, subsampling allow for robust classification that is invariant to many perturbations

• Vast majority of CNN classification networks follow this general architecture

Resiudal architectures : ResNET

- ResNET* (2016) uses skip connections to mitigate the vanishing gradient problem
 - Similar to LSTM, except propagates through network layers, rather than time
- Residual mechanism used in many subsequent architectures
- Latest residual archticture gives 87.54% accuracy on ImageNet

* Deep Residual Learning for Image Recognition, Kaiming, H. et al, CVPR, 2016 Illustration from https://becominghuman.ai/resnet-convolution-neural-network-e10921245d3d

Attention mechanism in image networks

- Recall the **attention mechanism** in RNNs : addresses problem of long range dependency
 - Networks exist with attention only : transformer*
- Also used in image network architectures (usually self-attention)

 $Attention(Q, K, V) = \text{Softmax}(QK^T)V$

- Q, queries: what is the importance of these elements
- K, keys: we use these elements for comparison (weighting)
- V, values: we use these to "reconstruct" the queries
- Often Q, K, V are the same, image patches

(3)

Attention mechanism in image networks

- Recall the **attention mechanism** in RNNs : addresses problem of long range dependency
 - Networks exist with attention only : transformer*
- Also used in image network architectures (usually self-attention)

 $Attention(Q, K, V) = Softmax(QK^T)V$

- ullet This equation says that the attention is a weighted version of V
- $\bullet\,$ The weights are given by a softmax of the dot products between patches in Q and those in K

(4)

Attention mechanism in image networks

* Attention is all you need, Vaswani et al, NIPS, 2017

Attention mechanism in image networks

- Combined attention/convolution archtictures present the best accuracies on ImageNeT (to date*)
 - CoAt-Net7: 90.88% accuracy on ImageNet

Rank	Model	Top 1 🕈 Accuracy	Top 5 Accuracy	of params	Training Data	Paper	Code	Result	Year	Tags 🗹
1	CoAtNet-7	90.88%		2440M	~	CoAtNet: Marrying Convolution and Attention for All Data Sizes	0	Ð	2021	Corv+Transformer JFT-38
2	ViT-G/14	90.45%		1843M	~	Scaling Vision Transformers		Ð	2021	Transformer JFT-38
3	CoAtNet-6	90.45%		1470M	~	CoAtNet: Marrying Convolution and Attention for All Data Sizes	0	Ð	2021	Corv+Transformer JFT-38
4	VIT-MoE-15B (Every-2)	90.35%		14700M	~	Scaling Vision with Sparse Mixture of Experts		Ð	2021	Transformer JFT-38
5	Meta Pseudo Labels (EfficientNet-L2)	90.2%	98.8	480M	~	Meta Pseudo Labels	0	Ð	2020	EfficientNet JFT-300M

* https://paperswithcode.com/sota/image-classification-on-imagenet

- We can also detect the position of objects in images
- RNN* proposes a simple approach :
 - Propose a list of bounding boxes in the image
 - Pass the resized sub-images through a powerful classification network
 - Olassify each sub-image with your favourite classifier

R-CNN: Regions with CNN features

Many variants on this work (Fast R-NN, Faster R-CNN) etc.

* Rich feature hierarchies for accurate object detection and semantic segmentation, Girschik, R. et al. CVPR 2014

Motion estimation

- Motion estimation is a central task for many image processing and computer vision problems : tracking, video editing
- Optical flow involves estimating a vector field (u, v): $\mathbb{R}^2 \to \mathbb{R}^2$ where each vector points to the displacement of pixel (x, y) from an image I_1 to I_2

$$I_1(x,y) = I_2(x + u(x,y), y + v(x,y))$$

Illustration from : BriefMatch: Dense binary feature matching for real-time optical flow estimation, Eilertsen, G, Forssén, P-E, Unger, J., Scandinavian Conference on Image Analysis, 2017

Motion estimation with CNNs

- A major challenge of optical flow estimation is to handle both fine and large-scale motions
 - This is difficult to do with classical, variational approaches
- CNNs have this multi-scale architecture already built in
- Example : FlowNet* uses this, first extracting meaningful features from the images (in parallel) and then combining them to create the optical flow

* FlowNet: Learning Optical Flow with Convolutional Networks, Fischer et al, ICCV 2015

Super-resolution

- Image super-resolution : go from a low-resolution image to a higher-resolution one
- Relatively straightforward approach with a CNN*

• Drawback, highly dependent on degradation used in lower-resolution images in database

* Learning a deep convolutional network for image super-resolution, Chao et al, ECCV 2014

Point clouds

- CNNs require regular grids. Point cloud data are not in this format
- Nevertheless, ways have been found to deal with this
- ShapeNet* splits a volume up into sub-regions that are processed by CNNs
- Each region is a Bernoulli random variable representing the probability of this voxel belonging to a shape
- This general approach (using voxels) is followed in many other approaches

* 3d shapenets: A deep representation for volumetric shapes, W. Zhirong et al. CVPR, 2015

Summary

Introduction, notation

- 2 Convolutional Layers
- 3 Down-sampling and the receptive field
- 4 CNN details and variants
- 5 CNNs in practice
- 6 Image datasets, well-known CNNs, and applications
 - Applications of CNNs
- Interpreting CNNs
 - Visualising CNNs
 - Adversarial examples

- As is often the case in deep learning, it is very difficult to understand what is going on in CNNs
- Much research is being dedicated to understanding these networks
 - Explainable AI (XAI) Darpa project*
- We discuss two topics related to interpretability
 - Visualising CNNs
 - Adversarial examples

* https://www.darpa.mil/program/explainable-artificial-intelligence

Visualising CNNs

- We would like to understand what CNNs are learning
 - Unfortunately filters are difficult to interpret (especially deeper layers)

Layer 3 filters

Layer 1 filters

• Therefore, much research has been dedicated to visualising CNNs

Visualising CNNs

- Idea : "invert" CNN, find x to maximise the output of a certain layer
 - Understand what this layer is "seeing"
- This is possible due to backpropagation

Basic CNN visualisation algorithm

• Choose a layer ℓ to visualise

•
$$x_0 \sim \mathcal{N}(0, 1)$$

• For $i = 1 \dots N$

•
$$x^{i} = x^{i-1} + \lambda \nabla_{x} \| u^{\ell}(x^{i-1}) \|$$

Gradient ascent

• Return x^N

$$x^i = x^{i-1} + \lambda \nabla_x \| u^\ell(x^{i-1}) \|$$

Gradient ascent

- Generalisation: maximise response to a given filter response
- Choose layer ℓ , filter k and element ("pixel") (i,j)
- Random initialisation x_0 , constrain norm of solution x

$$\hat{x} = \operatorname*{arg\,max}_{x} u_{i,j,k}^{\ell}$$
 with $\parallel x \parallel = \rho$

• Optimisation : gradient ascent

[†] Erhan, Bengio, Courville, Vincent, Visualizing Higher-Layer Features of a Deep Network, University of Montreal, 2009

• More sophisticated approach: standard inverse problem with regularisation

$$\hat{x} = \underset{x}{\arg\min} \|f(x) - f_0\|_2^2 + \lambda \|x\|_2^2 + \mu \|\nabla x\|_2^2$$

[†]Mahendran and Vedaldi **Understanding Deep Image Representations by Inverting Them**, Conference on Computer Vision and Pattern Recognition, 2014

(5)

Layer 1 Layer 2 Layer 3 Layer 4 Maximisation of different activations applied to MNIST dataset

[†] Erhan, Bengio, Courville, Vincent, Visualizing Higher-Layer Features of a Deep Network, University of Montreal, 2009

- Another approach of Simonyan et al.[†] proposes to see what images correspond to what classes
- Choose a class c, maximise the response of this class

$$\hat{x} = \underset{x}{\arg\max} f(x)_c - \lambda \|x\|_2^2$$

- $\bullet\,$ Find an $L_2\mbox{-regularised}$ image which maximises the score for a given class c
- Initialise with random input image x_0

[†] Simonyan, Vedaldi, Zisserman Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, arXiv preprint arXiv:1312.6034, 2013

Visualising CNNs

dumbbell

dalmatian

bell pepper

lemon

husky

Class model visualisation

[†] Simonyan, Vedaldi, Zisserman Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, arXiv preprint arXiv:1312.6034, 2013

Visualising CNNs

- Similar idea with Inception architecture of Google : "Deep Dream"
- Maximise a class from input image

Input image

Maximising "dogs" category

Deepdream - a code example for visualizing neural networks, Mordvintsev, A., Olah, C. and Tyka, M., Google Research, 2015

- We often get the impression that CNNs are the end all and be all of AI
- Consistently produce state-of-the-art results on images
- However, CNNs are not infallible : adversarial examples[†] !

• How was this image created ???

Intriguing properties of neural networks, Szegedy, C. et al, arXiv preprint arXiv:1312.6199, 2013

• Szegedy et al. propose[†] add a small perturbation r that fools the classifier network f into choosing the wrong class c for $\hat{x} = x + r$

$$\underset{r}{\arg\min} |r|_{2}^{2}, \text{ s.t } f(x+r) = c, x+r \in [0,1]^{n}$$

- \hat{x} is the closest example to x s.t \hat{x} is classified as in class c
- Minimisation with box-constrained L-BFGS algorithm

[†] Intriguing properties of neural networks, Szegedy, C. et al, arXiv preprint arXiv:1312.6199, 2013

• Common explanation : the space of images is very high-dimensional, and contains many areas that are unexplored during training time

Example of loss surfaces in commonly used networks (Res-Nets)

Illustration from Visualizing the Loss Landscape of Neural Nets, Li, H et al, NIPS, 2018

- Many approaches to adversarial examples exist. Goodfellow et al.[†] propose a principled way of creating these
- Consider the output of a fully connected layer $\langle w, \hat{x} \rangle = \langle w, x \rangle + \langle w, r \rangle$
- Let us set $r = \operatorname{sign}(w)$. What happens to $\langle w, \hat{x} \rangle$?
 - Increase by nm as dimension n increases (m is average value of w)
 - However, $|r|_{\infty}$ does not increase with n
- Conclusion : we can add a small vector r that increases the output response $\langle w, \hat{x} \rangle$

[†] Explaining and Harnessing Adversarial Examples, Goodfellow, I.J, Shlens, J. and Szegedy, C., ICLR 2015

- \bullet Goodfellow et al. consider a local linearisation of the network's loss around θ
 - $\mathcal{L}(x_0) \approx f(x_0) + w \nabla_x \mathcal{L}(\theta, x_0, y_0)$
- Thus, the perturbation image \hat{x} is set to

 $\hat{x} = x + \epsilon \operatorname{sign}(\nabla_x \mathcal{L}(\theta, x, y))$

 † Explaining and Harnessing Adversarial Examples, Goodfellow, I.J, Shlens, J. and Szegedy, C., ICLR 2015

- Even worse, it is possible to create universal adversarial examples†
- Perturbations that fool a network for any image class

- Simple algorithm : initialise perturbation r, go through database adding specific perturbations to r, project onto set $\{ r, ||r|| < \varepsilon \}$
- What do these perturbations look like ?

Universal adversarial perturbations, Moosavi-Dezfooli, S-M, et al arXiv preprint (2017)

[†] Universal adversarial perturbations, Moosavi-Dezfooli, S-M, et al arXiv preprint (2017)

- Conclusion : CNNs are not necessarily robust
- Adversarial examples are a significant problem :
 - Even printed photos of adversarial examples work[†]

• Explaining and resisting adversarial examples is currently a hot research topic

Adversarial Examples in the Physical World, Kurakin, A., Goodfellow, I. J, Bengio, S. et al. ICLR workshop, 2017

- CNNs represent the state-of-the art in many different domains/problems
- If you have an unsolved problem, there is a good chance CNNs will produce a good/excellent result

• However : theoretical understanding is still relatively limited

- This leads to problems such as adversarial examples
- It is not clear whether CNNs are truly robust/generalisable
- This is a hot research topic, important if CNNs are to be used in industrial applications
- 21/10/2021 : last lab work, on CNNs