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Introduction

@ Neural networks provide a highly flexible way to model complex
dependencies and patterns in data

@ In the previous lessons, we saw the following elements :

e MLPs : fully connected layers, biases

e Activation functions : sigmoid, soft max, ReLU

e Optimisation : gradient descent, stochastic gradient descent
o Regularisation : weight decay, dropout, batch normalisation
o RNNs : for sequential data
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Introduction

@ In MLPs each layer of the network contained fully connected layers

o Unfortunately, there are great drawbacks with such an approach

Fully connected
256 layer

256 1000

1222222225022

@ Each hidden unit is connected to each input unit
@ There is high redundancy in these weights :
o In the above example, 65 million weights are required



Introduction

e For many types of data with grid-like topological structures (eg.
images), it is not necessary to have so many weights

@ For these data, the convolution operation is often extremely useful
@ Reduces the number of parameters to train

e Training is faster
o Convergence is easier : smaller parameter space

FULLY CONNECTED NEURAL NET  LOCALLY CONNECTED NEURAL NET

Example: 1000x1000 image
1M hidden units
) 10°12 parameter:

Example: 1000x1000 image
1M hidden units
Filter size: 10x10
100M parameters

- Spatial correlation is local
- Befter fo put resources elsewhere!

@ A neural network with convolution operations is known as a
Convolutional Neural Network (CNN)



Introduction - some history

@ “Neocognitron” of Fukushima* : first to incorporate notion of
receptive field into a neural network, based on work on animal
perception of Hubert and Weisel

@ Yann LeCun first to propose back-propagation for training
convolutional neural networks

o Automatic learning of parameters instead of hand-crafted weights
o However, training was very long : required 3 days (in 1990)
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cural Network, here for digits recognition. Each plane s a feature map, i.c. a set of units

* Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in
Position, Fukushima, K., Biological Cybernetics, 1980

f Receptive fields and functional architecture of monkey striate cortex, Hubel, D. H. and Wiesel, T. N, 1968

] Backpropagation Applied to Handwritten Zip Code Recognition, LeCun, Y. et al., AT&T Bell Laboratories
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Introduction - some history

@ In the years 1998-2012, research continued on shallow and deep neural
networks, but other machine learning approaches were preferred
(GMMs, SVMs etc.)

@ In 2012, Alex Krizhevsky et al. used Graphics Processing Units
(GPUs) to carry out backpropagation on a very deep convolutional
neural network

o Greatly outperformed classic approaches in the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC)

@ GPUs turned out to be very efficient for training neural nets (lots of
parallel computations)

Signalled the beginning of deep learning revolution



Introduction - some history

@ Since 2012, CNNs have completely revolutionised many domains
@ CNNs produce competetive/best results for most problems in image

processing and computer vision

Image classification
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= Applications of deep learning Yy

From Atsshet, Grouel e ol CVPR, 2018

Image restoration
Medical imaging 9

Automatic speech recognition

@ Being applied to an ever-increasing number of problems



@ Introduction, notation



Introduction - some notation

o x € R™: input vector

o y € R? : output vector

@ uy : feature vector at

@ 0y : network parameters at layer £

layer ¢

reR" —

Neural network with L layers

I yeRq



Introduction

e A “Convolutional Neural Network” (CNN) is simply a
concatenation of :
@ Convolutions (filters)
@ Additive biases
© Down-sampling (“Max-Pooling” etc.)
@ Non-linearities

@ In this lesson, we will be mainly concentrating on convolutional and
down-sampling layers
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© Convolutional Layers
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Convolutional Layers

Convolution operator

Let f and g be two integrable functions. The convolution operator *
takes as its input two such functions, and outputs another function
h = f * g, which is defined at any point ¢ € R as :

+oo

Mo = (Fro® = [ f@glt=r)ar.

—0o0

@ Intuitively, the function h is defined as the inner product between f
and a shifted version of g
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Convolutional Layers

@ In many practical applications, in particular for CNNs, we use the
discrete convolution operator, which acts on discretised functions;

Discrete convolution operator

Let f,, and g, be two summable series, with n € Z. The discrete
convolution operator is defined as :

(fxg)n)= > fli)g(n—1i)

1=—00

@ Intuitively, the function h is defined as the inner product between f
and a shifted version of g

@ In practice, the filter is of small spatial support, around 3 x 3, or 5 x 5

@ Therefore, only a small number of parameters need to be trained (9
or 25 for these filters)
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Convolutional Layers

Properties of convolution
@ Associativity : (f*g)«h= fx(g*h)

@ Commutativity : fxg=g* f
© Bilinearity : (af) * (Bg) = aB(f xg), for (o, 3) e R x R

© Equivariance to translation : (f* (g+ 7)) (t) = (f*xg)(t +T)
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Convolutional Layers

Associativity, commutativity

o Associativity+-commutativity implies that we can carry out convolution
in any order

@ There is no point in having two or more consecutive convolutions
e This is true in fact for any linear map

Equivariance to translation

@ Equivariance implies that the convolution of any shifted input
(f + 7) % g contains the same information as f * g '

@ This is useful, since we want to detect objects anywhere in the image

Tif we forget about border conditions for a moment
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Convolutional Layers - 2D Convolution

@ Most often, we are going to be working with images

@ Therefore, we require a 2D convolution operator : this is defined in a
very similar manner to 1D convolution :

2D convolution operator

+oo +0o0

(frg)st)= > > fli,j)gls—it—j)

1=—00 j_—OO

Important remarks for the rest of the lesson!
@ We are going to denote the filters with w

@ For lighter notation, we write w(i) =: w; (and the same for z; etc.)
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Convolutional Layers : Visual lllustration

Eier u(p + i)w(i)

u u *xw
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Convolutional Layers : Visual lllustration

u u *xw
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Convolutional Layers : Visual lllustration

u u *xw
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Convolutional Layers : Visual lllustration

u u *xw
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Convolutional Layers : Visual lllustration

u u *xw
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Convolutional Layers : Visual lllustration

u u *xw
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Convolutional Layers : Visual lllustration

u u *xw
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Convolutional Layers : Visual lllustration

u u *xw
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Convolutional Layers : Visual lllustration

u u *xw
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Convolutional Layers : Visual lllustration

u u *xw
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Convolutional Layers : Visual lllustration

u u *xw
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Convolutional Layers : Visual lllustration

u u *xw
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Convolutional Layers : Visual lllustration

u u *xw
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Convolutional Layers

@ The filter weights w; determine what type of “feature” can be
detected by convolutional layers;

o Example, sobel filters :

Horizontal edge Vertical edge

-2 -1
0 0 O
1 2 1

-1 0 1
2 0 -2
-1 0 1
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Convolutional Layers

e Convolutional filters can also act as low-pass/smoothing filters

Input image Low-pass filtered image
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Convolutional Layers

@ We can also write convolution as a matrix/vector product, as in the
case of fully connected layers

Example : discrete Laplacian operator

4 -1 Lo 0
0 0
0 1 o 1 4 -1 -
w=[ -1 4 -1 | 5 A, =« 0 -1 4 -1 1
0 -1 0 .
-1 ER B L1

@ This further illustrates the drastic reduction in weight parameters (9
instead of Kn)

@ Can be useful to view convolution in this manner (we will see this later)
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Convolutional Layers

@ At this point, it is good to have a more “neural network”-based
illustration of CNNs

xo Yo
1 n
) Y2
i3 E

@ We can see two of the main justifications for CNNs

@ Sparse connectivity
@ Weight sharing
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Convolutional Layers

@ Now that we understand convolution, how do we optimize a neural
network with convolutional layers 7 Back-propagation

o Consider a layer with just a convolution with w

T *xWw

@ We have the derivatives gyﬁ available

@ We want to calculate the following quantities :

° % (for further back-propagation) and
oL

6wk

o We shall use the abbreviation 2 —i s dy;
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Convolutional Layers

@ Before considering the general case, let's take an example from the
illustration from above

@ Say we want to calculate dzq := g—fl
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Convolutional Layers

@ Each element y; depends on the input x; and the weight wy,
@ Therefore, we can consider that the loss is a function of several
variables :

L=f(x1,...,¢p,w1,..., g, y1(z,w.), ..., Ym(x.,w.))

@ We use the multi-variate chain rule
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Convolutional Layers

Zo Yo
T A1
) Y2
T3 E

dxq =777
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Convolutional Layers

Zo Yo
T A1
) Y2
T3 E

0yo
oY1 dy 282

0 0
dry = dyoﬂ + dyy 0z,

=d dy1b+d
11 oy Yoc + ay1b + ayaa

@ As we can see, the order of the weights is flipped
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Convolutional Layers

@ Now, let us calculate g—ﬁ for any k
),

multi-variate chain rule
(%sk Z yl@az
T *W);
= Zdyiia )Z
i Lk
(Z 75i5)

= Z dy; ™
= Z dyiw;—g = Zdyiw— -

@ More compactly : dzj = (dy = flip(w)),
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Convolutional Layers

@ Recall that the convolution operator can be written y = Az, with A,
the convolution matrix
@ The flipping of the weights corresponds to a transpose of A

dx = A, Tdy (1)

@ This gives an easy method of backpropagation in convolutional layers
o Although you will not actually have to implement this

A. Newson 40



Convolutional Layers

oL
Owy,

@ Now for the second part :

xo Yo
xq A
i) Y2
T3 E

@ Again, we use the chain rule. For example da =3, %%
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Convolutional Layers

xo Yo
1 n
) Y2
i3 E

o We have y; = ax;—1 + bx; + cxiq1

da = dy; v;1
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Convolutional Layers

@ In the general case, we have:

o
owy,

O
= Zdyi Yi multi-variate chain rule
, owy,

—Zdyz x*w)

(Z )
N R
Z Y g
= Z‘dyz‘xifk = Z‘dyz‘l‘f(k%) k=i—j

@ More compactly : dwy, = (dy * flip(x)),
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Convolutional Layers

@ Note : optimisation of loss w.r.t one parameter wy involves entire
image

@ Weights are “shared” across the entire image

@ This notion of weight sharing is one of the main justifications of
using CNNs

@ In practice, we do not calculate dw; and dxj ourselves, we use the
automatic differentiation tools of Tensorflow, Pytorch etc.
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Convolutional Layers - border conditions

@ The convolution operator poses a problem at the borders

@ Theoretically, we consider functions defined over an infinite domain,
but which have compact support

@ In reality, we only have finite vectors/matrices to work on

Pien, ulp +i)w(i)

U *xw
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Convolutional Layers - border conditions

Two common approaches to border conditions

“VALID" approach “SAME" approach
@ Only take shift/dot products that do @ Keep output size m
not extend beyond Supp(u) @ Need to choose values outside of
@ Output size : m — |w|+ 1 Supp(u) : zero-padding
T =
i5i e

u u* w
u E] u ok w D
m

w
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2D-feature convolution

@ Several filters are used per layer, let us say K filters : {wy,...,wx}

@ The resulting vectors/images are then stacked together to produce the
next layer's input u/t1 € RmxnxK

{+1

T =[uxwy,. ..Uk wE|

@ Therefore, the next layer's weights must have a depth of K. The 2D
convolution with an image of depth K is defined as

(uw)yz =Y ul(i,jk) wy—iaz—jk)
4,5,k

Useful explanation : https: // towardsdatascience. com/
a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
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Convolutional layers

@ lllustration of several consecutive convolutional layers with different
numbers of filter

Ko S

m
¥ . m * . m
i
n — —

@ Each layer contains “image” with a depth, where each channel
corresponds to a different filter response

@ Each layer is a concatenation of several features : rich information

Useful explanation : https: // towardsdatascience. com/
a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
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Convolutional layers - a note on Biases

@ A note on biases in neural networks : each output layer is
associated with one bias

@ There is not one bias per pixel

@ This is coherent with the idea of weight sharing (bias sharing)

. K=y S
by V — +b1 J/f
+by +bh
m . . m
k m * . _
4,
— 'y -
" [Er+bx n
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Convolutional Layers

@ In many cases, we are primarily interested in detection;

@ We would like to detect objects wherever they are in the image

e Formally, we would like to have some shift invariance property;
@ This is done in CNNs by using subsampling, or some variant :

o Strided convolutions
e Max pooling

@ We explain these now
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© Down-sampling and the receptive field
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DOWN-SAMPLING AND THE
RECEPTIVE FIELD

......



The Receptive Field

@ Neural networks were initially inspired by the brain’s functioning

@ Hubel and Weisel' showed that the visual cortex of cats and monkeys
contained cells which individually responded to different small regions
of the visual field

@ The region which an individual cell responds to is known as the
“receptive field” of that cell

stimulus presented
on TV screen

+ —— lateral “recording
geniculate electrode
nucleus
. Adapted rom Zeki, 1963

f Receptive fields and functional architecture of monkey striate cortex, Hubel, D. H.; Wiesel, T. N, 1968 lllustration from :
http: //www. yorku. ca/ eye/ cortfld. htm
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The Receptive Field

@ This idea was imitated in convolutional neural networks by adding
down-sampling operations

_—

0 Convolution +

subsampling

lllustration from : Applied Deep Learning, Andrei Bursuc, https: //www. di. ens. fr/ ~lelarge/dldiy/slides/ lecture_7/
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Strided convolution

@ Strided convolution is simply convolution, followed by subsampling

Subsampling operator (for 1D case)

Let x € R™. We define the subsampling step as § > 1, and the subsampling
operator S4 : R” — R5, applied to z, as

Ss(z) (t) = z(ot), fort = 0...%— 1

Ss(u)
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Max pooling

@ Max pooling subsampling consists in taking the maximum value over
a certain region

@ This maximum value is the new subsampled value

@ We will indicate the max pooling operator with .S,,

MaX >
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Max pooling

@ Back propagation of max pooling only passes the gradient through the

maximum
10 | 80
15 | 30
Max pooling

A. Newson

Back propagation

V91‘:2-;—1 .




Down-sampling

@ Conclusion : cascade of convolution, non-linearities and subsampling
produces shift-invariant classification/detection

@ We can detect Roger wherever he is in the image !

U xw

Convolution + non-linearity +max pooling

v v v v
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@ CNN details and variants
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Dilated Convolution

@ There is a variant of convolution called dilated convolution*
@ Increase spatial extent of convolution without adding parameters
e Add a space D between each point in the convolution

|| ]| :’%E :H:
FHHHHHHHH
(uxv)(y,z) = Z u(i, j, k)v(y — Di,x — Dj, k) (2)

1,5,k

* Multi-Scale Context Aggregation by Dilated Convolution, Yu, F, Kolten, V, ICLR 2016
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Locally connected layers / unshared convolution

@ We might wish for a mix of a dense layer and a convolutional layer

@ One possibility : locally-connected layers (sometimes called
“unshared convolution™)
o Local connectivity but no weight sharing

@ Number of weights increases linearly with the number of pixels, rather
than quadratically (for MLPs)
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© CNNs in practice
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How to build your CNN ?

How to build your CNN ?

@ We have looked at the following operations : convolutions, additive
biases, non-linearities

@ All of these elements make up convolutional neural networks

@ However, how do we put these together to create our own CNN 7?7

o Architecture ?
e Programming tools 7
o Datasets ?
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Architecture : vanilla CNN

@ Simple classification CNN architecture often consists of a feature
learning section
o Convolution — biases — non-linearities — subsampling
e This continues until a fixed subsampling is achieved

@ After this, a classification section is used
o Fully connected layer — non-linearity

cAR
= tRuck
— van

ERE] [| sicycLe

INPUT \CONVOLUIION +RELU  POOLING  CONVOLUTION + RELU POOLING nmm SOFTMAX

CONNECTED

FEATURE LEARNING CLASSIFICATION
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Architecture

@ Central question : how to choose number of layers ?

@ Complicated, very little theoretical understanding, currently a hot
topic of research

@ However : there are a few rules of thumb to follow

o Receptive field of the deepest layer should encompass what we
consider to be a fundamental brick of the objects we are analysing

_—
convolution,
subsampling etc.

@ Set number of layers and subsampling factors according to the problem
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CNN programming frameworks

o Caffe

e Open source, developed by University of California, Berkley
o Network created in separate specific files
o Somewhat laborious to use, less used than other frameworks

@ Theano

e Open source, created by the Université de Montréal
e Unfortunately, to be discontinued due to strong competition

@ Tensorflow

e Open source, developed by Google
e Implements a wide range of deep learning functionalities, widely used

@ Pytorch

o Open source, developed by Facebook
o Implements a wide range of deep learning functionalities, widely used
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@ Image datasets, well-known CNNs, and applications
@ Applications of CNNs
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MNIST dataset

@ MNIST is a dataset of 60,000 28 x 28 pixel grey-level images
containing hand-written digits

@ The digits are centred in the images and scaled to have roughly the
same size

@ Although quite a “simple” dataset, still used to display performance of
modern CNNs

0000200029 0000 000
L T T N R A A R A A A
2222322222022 2422%
3333333353333 333
¥ ¢+rY4 449 Y4Y9 ¢vdds Ny
S5 5855S$S 5575855455
b6bblbGbbbaotébtel
T777710 T2 2% 777
¥3 528 8P FYEPTT IS
7199999%949%49449979
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Caltech 101

@ Produced in 2003, first major object recognition dataset

@ 9,146 images, 101 object categories, each category contains between
40 and 800 images

@ Annotations exist for each image : bounding box for the object and a
human-drawn outline

baseball-bat

basketball-hoop
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ImageNet dataset

o Dataset created in 2009 by researchers from Princeton unverisity
@ Very large dataset : 14,197,122 images, hand-annotated

@ Used for the ImageNet Large Scale Visual Recognition Challenge, an
annual benchmark competition for object recognition algorithms
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LeNet (1989/1998)

o Created by Yann LeCun in 1989, goal : to recognise handwritten digits

@ Able to classify digits with 98.9% accuracy, used by U.S. government
to automatically read digits

C3: f. maps 16@10x10
géz'gi%re maps S4: f. maps 16@5x5
S2: . maps
6@14x14

INPUT
32x32

C i i C i Full

Fig. 2. Archi © of LeNet-5, a C fonal Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

lllustration from : Gradient-based Learning Applied to Document Recognition, LeCun, Y. Bottou, L., Bengio, Y. and Haffner,
Proceedings of the IEEE, 1989
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AlexNet (2012)

@ AlexNet : created by Alex Krizhevsky in 2012

@ Improved accuracy of ImageNet Large Scale Visual Recognition
Challenge competition by 10 percentage points (16.4%)

o First truly deep neural network

@ Signaled beginning of dominance of deep learning in image processing

and computer vision
&l

Gense’|  [dens:

pooling 20% 2038

(Krizhevsky et al., 2012)

lllustration from : Imagenet classification with deep convolutional neural networks, Krizhevsky, A., Sutskever, I. and Hinton, G.
E, NIPS, 2012
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GoogleNet (20

In 2014/2015, Google introduced the “Inception” architecture/module

Major attempt at reducing total number of parameters

No fully connected layers, only convolutional
o 2 million instead of 60 million for AlexNet

Novel idea : have variable receptive field sizes in one layer

Filter
concatenation

]

1x1 convolutions 3x3 { 5x5 i 3x3 max pooling

Previous layer

Going deeper with convolutions, Szegedy et al, CVPR, 2015
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GoogleNet (2015)

o Created by Google in 2014, GooglLeNet is a specific implementation of
the “inception” architecture

@ 6.6% test error rate on ImageNet (human error rate 5%)

Going deeper with convolutions, Szegedy et al, CVPR, 2015
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VGG16 (2015)

e VGG16 is a 16-layer network, with small receptive fields (3 x 3 filters,
with less subsampling)

o Around 7.5% test error on ILSVRC

224x224x3 224 x224x64

112 x]112 x 128

56/ 56 x 256
7 28X 28X512 o _i';7><:“»12
o e 1x1x4096 1x1 %1000

() convolution+ReLU
I’:ﬁ max pooling

fully connected+ReLU
(f softmax

Very Deep Convolutional Networks for Large-Scale Image Recognition, Simonyan, K. and Zisserman, A., ICLR, 2015
lllustration from Mathieu Cord,
https: //blog. heuritech. com/2016/ 02/ 29/ a-brief-report-of-the-heuritech-deep-learning-meetup-5/
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Summary of advances in CNNs

Network LeNet (1998) AlexNet GoogLeNet VGG16 (2015)
(2012) (2014)

Image size 28 x 28 256 x 256 x 3 256 x 256 x 3 224 x 224 x 3

Layers 3 8 22 16

Parameters 60,000 60 million 2 million 138 million

Evolution of CNN perfomance

Error on ILSVRC
=
o}

2011 2012 2013 2015 2014 2015
SVM AlexNet AlexNet, bis VGG16 GoogleNetieep ResNets
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Image classification

@ As we mentioned before, CNNs make sense for data with grid-like
structures

@ In particular, images are most often the target of CNNs

@ Arguably the most common application of CNNs is to image
classification

@ Why is image classification important 7 Closely linked to :

o Object detection
e Tracking
o Image search (in large databases for example)

@ In recent years, the best performing classification algorithms have been
using neural networks
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Image classification

o Why is image classification difficult 7

o Images can vary in size, shape, position
o We need to deal with variable lighting conditions, occlusions etc.

@ Let us look at a standard CNN classificaton network
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Image classification

@ We have input datapoints x, which we wish to classify into several,
predefined classes {c¢;},i =1... K, where K is the number of classes

@ As we have seen, convolution, non-linearities, subsampling allow for
robust classification that is invariant to many perturbations

E —
E_
ﬁ;\.g LA S

SOFTMAX

FuLLY
INPUT CONVOLUTION + RELU  POOLING  CONVOLUTION + RELU  POOLING FLATIEN PR

FEATURE LEARNING CLASSIFICATION

@ Vast majority of CNN classification networks follow this general
architecture
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Image classification

Resiudal architectures : ResNET

@ ResNET* (2016) uses skip connections
to mitigate the vanishing gradient
problem

o Similar to LSTM, except propagates

X
through network layers, rather than
time F(x) x
identity
@ Residual mechanism used in many Fix) +x
su bseq uent architectures Figure 2. Residual learning: a building block.

o Latest residual archticture gives 87.54%
accuracy on ImageNet

* Deep Residual Learning for Image Recognition, Kaiming, H. et al, CVPR, 2016
lllustration from https: //becominghuman. ai/resnet-convolution-neural-network-e10921245d3d
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Image classification

Attention mechanism in image networks

Recall the attention mechanism in RNNs : addresses problem of long
range dependency

o Networks exist with attention only : transformer*

Also used in image network architectures (usually self-attention)
Attention(Q, K, V) = Softmax(QK™)V (3)

@, queries: what is the importance of these elements
K, keys: we use these elements for comparison (weighting)

V', values: we use these to “reconstruct” the queries

Often Q, K,V are the same, image patches

* Attention is all you need, Vaswani et al, NIPS, 2017
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Image classification

Attention mechanism in image networks

Recall the attention mechanism in RNNs : addresses problem of long
range dependency

o Networks exist with attention only : transformer*

Also used in image network architectures (usually self-attention)

Attention(Q, K, V) = Softmax(QK™T)V (4)

This equation says that the attention is a weighted version of V

The weights are given by a softmax of the dot products between
patches in ) and those in K

* Attention is all you need, Vaswani et al, NIPS, 2017
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Image classification

Attention mechanism in image networks

* Attention is all you need, Vaswani et al, NIPS, 2017
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Image classification

Attention mechanism in image networks

e Combined attention/convolution archtictures present the best
accuracies on ImageNeT (to date®)

ViT-G/14 90.45% 1843M v 3 2021 %
3 conmers s0asx wou v o = wm ngﬂ
4 VIT-MoE-158 90.35% 14700M v 3 2021 m
o =

* https://paperswithcode.com/sota/image-classificati
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Image classification

@ We can also detect the position of objects in images
@ RNN* proposes a simple approach :
@ Propose a list of bounding boxes in the image

@ Pass the resized sub-images through a powerful classification network
@ C(lassify each sub-image with your favourite classifier

R-CNN: Regions with CNN features
el Warped region

B )

{{person?yes |

i =F
- Bt iy o\ SR
g

2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

@ Many variants on this work (Fast R-NN, Faster R-CNN) etc.

* Rich feature hierarchies for accurate object detection and semantic segmentation, Girschik, R. et al. CVPR 2014
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Motion estimation

@ Motion estimation is a central task for many image processing and
computer vision problems : tracking, video editing

e Optical flow involves estimating a vector field (u,v) : R? — R?
where each vector points to the displacement of pixel (x,y) from an

image I to I

[1(1’,:[/) - IQ(x+ u(a:,y),y + ’U(.%‘,y))

(a) Frame 1 (b) Frame 2 Optical flow

lllustration from : BriefMatch: Dense binary feature matching for real-time optical flow estimation, Eilertsen, G, Forssén, P-E,
Unger, J., Scandinavian Conference on Image Analysis, 2017
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Motion estimation with CNNs

@ A major challenge of optical flow estimation is to handle both fine and
large-scale motions
e This is difficult to do with classical, variational approaches
@ CNNs have this multi-scale architecture already built in
@ Example : FlowNet* uses this, first extracting meaningful features
from the images (in parallel) and then combining them to create the
optical flow

* FlowNet: Learning Optical Flow with Convolutional Networks, Fischer et al, ICCV 2015
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Super-resolution

@ Image super-resolution : go from a low-resolution image to a
higher-resolution one

o Relatively straightforward approach with a CNN*

1 feature maps 73 feature maps
of low-resolution image  of high-resolution image

Low-resolution i ¥
image (input)

d

]

Non-linear mapping Reconstruction

Patch extraction
and representation

@ Drawback, highly dependent on degradation used in lower-resolution
images in database

* Learning a deep convolutional network for image super-resolution, Chao et al, ECCV 2014
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Point clouds

@ CNNs require regular grids. Point cloud data are not in this format

@ Nevertheless, ways have been found to deal with this

* . . Input Depth Map Volumetric
@ ShapeNet™ splits a volume up into (backofasofa)  Representation

sub-regions that are processed by -
CNNs

@ Each region is a Bernoulli random
variable representing the probability of
this voxel belonging to a shape

sofa?

dresser? =

LA

bathtub?
@ This general approach (using voxels) is Shape Completion  Next-Best-View ~ Recognition

followed in many other approaches http://3DShapeNets.cs.princeton.edu

* 3d shapenets: A deep representation for volumetric shapes, W. Zhirong et al. CVPR, 2015
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@ Interpreting CNNs
@ Visualising CNNs
@ Adversarial examples
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Adversarial examples

@ As is often the case in deep learning, it is very difficult to understand
what is going on in CNNs

@ Much research is being dedicated to understanding these networks
o Explainable Al (XAl) Darpa project*

@ We discuss two topics related to interpretability

e Visualising CNNs
o Adversarial examples

* https://www. darpa. mil/program/ explainable-artificial-intelligence
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Visualising CNNs

@ We would like to understand what CNNs are learning
o Unfortunately filters are difficult to interpret (especially deeper layers)

Layer 3 filters

Layer 1 filters
@ Therefore, much research has been dedicated to visualising CNNs
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Visualising CNNs

o Idea : “invert” CNN, find z to maximise the output of a certain layer
e Understand what this layer is “seeing”

o This is possible due to backpropagation

Basic CNN visualisation algorithm

@ Choose a layer ¢ to visualise
® I~ N(O, 1)
@ Fori=1...N
o z' =z + AV, |uf (2" )| Gradient ascent

o Return 2V

ol =2t AV, luf (')
-

Gradient ascent
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Visualising features

@ Generalisation: maximise response to a given filter response
@ Choose layer /, filter k£ and element (“pixel”) (i, 7)

@ Random initialisation xq, constrain norm of solution x

L

T =argmaxu;
W
x

with || @ || = p

@ Optimisation : gradient ascent

fErhan, Bengio, Courville, Vincent, Visualizing Higher-Layer Features of a Deep Network, University of Montreal, 2009
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Visualising CNNs

@ More sophisticated approach: standard inverse problem with
regularisation

& = arg min|| f(z) = foll3 + A3 + || V|3 (5)

T Mahendran and Vedaldi Understanding Deep Image Representations by Inverting Them, Conference on Computer Vision and
Pattern Recognition, 2014
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Visualising CNNs

Layer 1 Layer 2 Layer 3 Layer 4
Maximisation of different activations applied to MNIST dataset

TErhan, Bengio, Courville, Vincent, Visualizing Higher-Layer Features of a Deep Network, University of Montreal, 2009
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Visualising CNNs

@ Another approach of Simonyan et al.! proposes to see what images
correspond to what classes

@ Choose a class ¢, maximise the response of this class

# = argmax f(@). — a3

@ Find an Ly-regularised image which maximises the score for a given
class ¢

@ Initialise with random input image xg

fSimonyan, Vedaldi, Zisserman Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency
Maps, arXiv preprint arXiv:1312.6034, 2013
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Visualising CNNs

dumbbell dalmatian

bell pepper lemon

Class model visualisation

TSimonyan, Vedaldi, Zisserman Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency
Maps, arXiv preprint arXiv:1312.6034, 2013
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Visualising CNNs

@ Similar idea with Inception architecture of Google : "Deep Dream”

@ Maximise a class from input image

Input image Maximising “dogs"” category

Deepdream - a code example for visualizing neural networks, Mordvintsev, A., Olah, C. and Tyka, M., Google Research, 2015
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Adversarial examples

@ We often get the impression that CNNs are the end all and be all of Al
o Consistently produce state-of-the-art results on images

@ However, CNNs are not infallible : adversarial examples !

+.007 x

@ How was this image created 777

T Intriguing properties of neural networks, Szegedy, C. et al, arXiv preprint arXiv:1312.6199, 2013
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Adversarial examples

@ Szegedy et al. propose! add a small perturbation r that fools the
classifier network f into choosing the wrong class ¢ for & =z +r

argmin|r|3, s.t f(x +7)=c, z+rec0,1]"
T

@ T is the closest example to x s.t Z is classified as in class ¢

@ Minimisation with box-constrained L-BFGS algorithm

-~ eET

T Intriguing properties of neural networks, Szegedy, C. et al, arXiv preprint arXiv:1312.6199, 2013
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Adversarial examples

@ Common explanation : the space of images is very high-dimensional,
and contains many areas that are unexplored during training time

Example of loss surfaces in commonly used networks (Res-Nets)

lllustration from Visualizing the Loss Landscape of Neural Nets, Li, H et al, NIPS, 2018
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Adversarial examples

@ Many approaches to adversarial examples exist. Goodfellow et al.f
propose a principled way of creating these

o Consider the output of a fully connected layer (w, %) = (w, z) + (w, )

o Let us set r = sign(w). What happens to (w, &) ?

o Increase by nm as dimension n increases (m is average value of w)
o However, |r|o does not increase with n

@ Conclusion : we can add a small vector r that increases the output
response (w, &)

T Explaining and Harnessing Adversarial Examples, Goodfellow, I.J, Shlens, J. and Szegedy, C., ICLR 2015
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Adversarial examples

@ Goodfellow et al. consider a local linearisation of the network’s loss
around 6

° E(Qjo) ~ f(il'o) + wvxﬁ(o,fbo,yo)

@ Thus, the perturbation image % is set to

=2 —+ ESign(Vx£(97 z, y))

+.007 x

; z+
- NV IO 2] ign(.40(6,.4)
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

T Explaining and Harnessing Adversarial Examples, Goodfellow, I.J, Shlens, J. and Szegedy, C., ICLR 2015
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Adversarial examples

@ Even worse, it is possible to create universal adversarial examplesy

@ Perturbations that fool a network for any image class

macaw three-toed sloth macaw

common newt carousel grey fox

@ Simple algorithm : initialise perturbation r, go through database
adding specific perturbations to r, project onto set { r,||r|| < &}

@ What do these perturbations look like ?

' Universal adversarial perturbations, Moosavi-Dezfooli, S-M, et al arXiv preprint (2017)
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Adversarial examples

(d) VGG-19 (e) GoogLeNet (f) ResNet-152

' Universal adversarial perturbations, Moosavi-Dezfooli, S-M, et al arXiv preprint (2017)



Adversarial examples

@ Conclusion : CNNs are not necessarily robust
@ Adversarial examples are a significant problem :
o Even printed photos of adversarial examples work!

(a) Image from dataset (b) Clean image (c) Adv. image, e =4 (d) Adv. image, e = §

@ Explaining and resisting adversarial examples is currently a hot
research topic

' Adversarial Examples in the Physical World, Kurakin, A., Goodfellow, I. J, Bengio, S. et al. ICLR workshop, 2017
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@ CNNs represent the state-of-the art in many different
domains/problems

@ If you have an unsolved problem, there is a good chance CNNs will
produce a good/excellent result

However : theoretical understanding is still relatively limited
e This leads to problems such as adversarial examples
o It is not clear whether CNNs are truly robust/generalisable
e This is a hot research topic, important if CNNs are to be used in
industrial applications

21/10/2021 : last lab work, on CNNs
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