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Introduction

Neural networks provide a highly flexible way to model complex
dependencies and patterns in data

In the previous lessons, we saw the following elements :
MLPs : fully connected layers, biases
Activation functions : sigmoid, soft max, ReLU
Optimisation : gradient descent, stochastic gradient descent
Regularisation : weight decay, dropout, batch normalisation
RNNs : for sequential data

Fully connected Non-linearity
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Introduction

In MLPs each layer of the network contained fully connected layers
Unfortunately, there are great drawbacks with such an approach

Fully connected 
layer

256

256

1000

Each hidden unit is connected to each input unit
There is high redundancy in these weights :

In the above example, 65 million weights are required
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Introduction

For many types of data with grid-like topological structures (eg.
images), it is not necessary to have so many weights
For these data, the convolution operation is often extremely useful
Reduces the number of parameters to train

Training is faster
Convergence is easier : smaller parameter space

A neural network with convolution operations is known as a
Convolutional Neural Network (CNN)
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Introduction - some history

“Neocognitron” of Fukushima∗ : first to incorporate notion of
receptive field into a neural network, based on work on animal
perception of Hubert and Weisel†
Yann LeCun first to propose back-propagation for training
convolutional neural networks‡

Automatic learning of parameters instead of hand-crafted weights
However, training was very long : required 3 days (in 1990)
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∗ Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in
Position, Fukushima, K., Biological Cybernetics, 1980
† Receptive fields and functional architecture of monkey striate cortex, Hubel, D. H. and Wiesel, T. N, 1968
‡ Backpropagation Applied to Handwritten Zip Code Recognition, LeCun, Y. et al., AT&T Bell Laboratories



Introduction - some history

In the years 1998-2012, research continued on shallow and deep neural
networks, but other machine learning approaches were preferred
(GMMs, SVMs etc.)

In 2012, Alex Krizhevsky et al. used Graphics Processing Units
(GPUs) to carry out backpropagation on a very deep convolutional
neural network

Greatly outperformed classic approaches in the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC)

GPUs turned out to be very efficient for training neural nets (lots of
parallel computations)

Signalled the beginning of deep learning revolution
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Introduction - some history

Since 2012, CNNs have completely revolutionised many domains
CNNs produce competetive/best results for most problems in image
processing and computer vision

Applications of deep learning

Medical imaging

Image classification

Computer graphics

From AtlasNet, Groueix et al, CVPR, 2018

Image style transfer

Automatic speech recognition

Image restoration

Medical Image Classification with Convolutional
Neural Network, Li et al., ICARCV, 2014

A Neural Algorithm of Artistic 
Style, Gatys et al, CVPR 2015

Medical Image Classification with Convolutional
Neural Network, Li et a., ICARCV, 2014

Being applied to an ever-increasing number of problems
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Introduction - some notation

Notations
x ∈ Rn : input vector
y ∈ Rq : output vector
u` : feature vector at layer `
θ` : network parameters at layer `

Neural network with L layers
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Introduction

A “Convolutional Neural Network” (CNN) is simply a
concatenation of :

1 Convolutions (filters)
2 Additive biases
3 Down-sampling (“Max-Pooling” etc.)
4 Non-linearities

In this lesson, we will be mainly concentrating on convolutional and
down-sampling layers
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Convolutional Layers

Convolution operator
Let f and g be two integrable functions. The convolution operator ∗
takes as its input two such functions, and outputs another function
h = f ∗ g, which is defined at any point t ∈ R as :

h(t) = (f ∗ g)(t) =
∫ +∞

−∞
f(τ)g(t− τ)dτ.

Intuitively, the function h is defined as the inner product between f
and a shifted version of g
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Convolutional Layers

In many practical applications, in particular for CNNs, we use the
discrete convolution operator, which acts on discretised functions;

Discrete convolution operator
Let fn and gn be two summable series, with n ∈ Z. The discrete
convolution operator is defined as :

(f ∗ g)(n) =
+∞∑
i=−∞

f(i)g(n− i)

Intuitively, the function h is defined as the inner product between f
and a shifted version of g
In practice, the filter is of small spatial support, around 3× 3, or 5× 5
Therefore, only a small number of parameters need to be trained (9
or 25 for these filters)
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Convolutional Layers

Properties of convolution
1 Associativity : (f ∗ g) ∗ h = f ∗ (g ∗ h)

2 Commutativity : f ∗ g = g ∗ f

3 Bilinearity : (αf) ∗ (βg) = αβ(f ∗ g), for (α, β) ∈ R× R

4 Equivariance to translation : (f ∗ (g + τ)) (t) = (f ∗ g)(t+ τ)
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Convolutional Layers

Associativity, commutativity
Associativity+commutativity implies that we can carry out convolution
in any order
There is no point in having two or more consecutive convolutions

This is true in fact for any linear map

Equivariance to translation
Equivariance implies that the convolution of any shifted input
(f + τ) ∗ g contains the same information as f ∗ g †

This is useful, since we want to detect objects anywhere in the image
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† if we forget about border conditions for a moment



Convolutional Layers - 2D Convolution

Most often, we are going to be working with images
Therefore, we require a 2D convolution operator : this is defined in a
very similar manner to 1D convolution :

2D convolution operator

(f ∗ g)(s, t) =
+∞∑
i=−∞

+∞∑
j=−∞

f(i, j)g(s− i, t− j)

Important remarks for the rest of the lesson!
We are going to denote the filters with w
For lighter notation, we write w(i) =: wi (and the same for xi etc.)
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Convolutional Layers : Visual Illustration
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A. Newson 18
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Convolutional Layers : Visual Illustration

A. Newson 26
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Convolutional Layers : Visual Illustration
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Convolutional Layers : Visual Illustration
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Convolutional Layers

The filter weights wi determine what type of “feature” can be
detected by convolutional layers;
Example, sobel filters :

Horizontal edge[ -1 -2 -1
0 0 0
1 2 1

] Vertical edge[ -1 0 1
2 0 -2
-1 0 1

]
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Convolutional Layers

Convolutional filters can also act as low-pass/smoothing filters

Input image Low-pass filtered image
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Convolutional Layers

We can also write convolution as a matrix/vector product, as in the
case of fully connected layers

Example : discrete Laplacian operator

w =

( 0 −1 0
−1 4 −1

0 −1 0

)
→ Aw = K

y

n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
4 −1 0· · · −1 0· · ·
−1 4 −1 0· · · −1 0· · ·
0 −1 4 −1 0· · · −1 0· · ·

. . . . . . . . . . . . . . . . . .
−1 0· · · −1 0· · · −1 4


This further illustrates the drastic reduction in weight parameters (9
instead of Kn)
Can be useful to view convolution in this manner (we will see this later)
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Convolutional Layers

At this point, it is good to have a more “neural network”-based
illustration of CNNs

...

...

We can see two of the main justifications for CNNs
1 Sparse connectivity
2 Weight sharing
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Convolutional Layers

Now that we understand convolution, how do we optimize a neural
network with convolutional layers ? Back-propagation
Consider a layer with just a convolution with w

We have the derivatives ∂L
∂yi

available
We want to calculate the following quantities :

∂L
∂xk

(for further back-propagation) and
∂L

∂wk

We shall use the abbreviation ∂L
∂yi

=: dyi
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Convolutional Layers

Before considering the general case, let’s take an example from the
illustration from above

...

...

Say we want to calculate dx1 := ∂L
∂x1
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Convolutional Layers

Each element yi depends on the input xi and the weight wk
Therefore, we can consider that the loss is a function of several
variables :

L = f (x1, . . . , xn, w1, . . . , wK , y1(x·, w·), . . . , ym(x·, w·))

We use the multi-variate chain rule

dx1 =
∑
i

∂L
∂yi

∂yi
∂x1
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Convolutional Layers

...

...

dx1 =???
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Convolutional Layers

...

...

dx1 = dy0
∂y0
∂x1

+ dy1
∂y1
∂x1

+ dy1
∂y2
∂x1

= dy0c+ dy1b+ dy2a

As we can see, the order of the weights is flipped
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Convolutional Layers

Now, let us calculate ∂L
∂xk

for any k

∂L
∂xk

=
∑
i

dyi
∂yi
∂xk

multi-variate chain rule

=
∑
i

dyi
∂(x ∗ w)i
∂xk

=
∑
i

dyi
∂
(∑

j xjwi−j
)

∂xk

=
∑
i

dyiwi−k =
∑
i

dyiw−(k−i)

More compactly : dxk = (dy ∗ flip(w))k
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Convolutional Layers

Recall that the convolution operator can be written y = Awx, with Aw
the convolution matrix
The flipping of the weights corresponds to a transpose of A

dx = Aw
ᵀdy (1)

This gives an easy method of backpropagation in convolutional layers
Although you will not actually have to implement this
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Convolutional Layers

Now for the second part : ∂L
∂wk

...

...

Again, we use the chain rule. For example da =
∑
i
∂L
∂yi

∂yi
∂a
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Convolutional Layers

...

...

We have yi = axi−1 + bxi + cxi+1

da =
∑
i

dyi xi−1
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Convolutional Layers

In the general case, we have:

∂L
∂wk

=
∑
i

dyi
∂yi
∂wk

multi-variate chain rule

=
∑
i

dyi
∂(x ∗ w)i
∂wk

=
∑
i

dyi
∂
(∑

j xjwi−j
)

∂wk

=
∑
i

dyixi−k =
∑
i

dyix−(k−i) k = i− j

More compactly : dwk = (dy ∗ flip(x))k
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Convolutional Layers

Note : optimisation of loss w.r.t one parameter wk involves entire
image

Weights are “shared” across the entire image

This notion of weight sharing is one of the main justifications of
using CNNs

In practice, we do not calculate dwk and dxk ourselves, we use the
automatic differentiation tools of Tensorflow, Pytorch etc.
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Convolutional Layers - border conditions

The convolution operator poses a problem at the borders

Theoretically, we consider functions defined over an infinite domain,
but which have compact support

In reality, we only have finite vectors/matrices to work on
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Convolutional Layers - border conditions

Two common approaches to border conditions

“VALID” approach

Only take shift/dot products that do
not extend beyond Supp(u)
Output size : m− |w|+ 1

“SAME” approach

Keep output size m
Need to choose values outside of
Supp(u) : zero-padding

0
0

00 0
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2D+feature convolution

Several filters are used per layer, let us say K filters : {w1, . . . , wK}

The resulting vectors/images are then stacked together to produce the
next layer’s input u`+1 ∈ Rm×n×K

u`+1 = [u ∗ w1, . . . , u ∗ wK ]

Therefore, the next layer’s weights must have a depth of K. The 2D
convolution with an image of depth K is defined as

(u ∗ w)y,x =
∑
i,j,k

u(i, j, k) w(y − i, x− j, k)
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Useful explanation : https: // towardsdatascience. com/
a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215


Convolutional layers

Illustration of several consecutive convolutional layers with different
numbers of filter

Each layer contains “image” with a depth, where each channel
corresponds to a different filter response
Each layer is a concatenation of several features : rich information
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Useful explanation : https: // towardsdatascience. com/
a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215


Convolutional layers - a note on Biases

A note on biases in neural networks : each output layer is
associated with one bias

There is not one bias per pixel

This is coherent with the idea of weight sharing (bias sharing)
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Convolutional Layers

In many cases, we are primarily interested in detection;
We would like to detect objects wherever they are in the image

Formally, we would like to have some shift invariance property;
This is done in CNNs by using subsampling, or some variant :

Strided convolutions
Max pooling

We explain these now
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Down-sampling and the
receptive field
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The Receptive Field

Neural networks were initially inspired by the brain’s functioning
Hubel and Weisel† showed that the visual cortex of cats and monkeys
contained cells which individually responded to different small regions
of the visual field
The region which an individual cell responds to is known as the
“receptive field” of that cell
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† Receptive fields and functional architecture of monkey striate cortex, Hubel, D. H.; Wiesel, T. N, 1968 Illustration from :
http: // www. yorku. ca/ eye/ cortfld. htm

http://www.yorku.ca/eye/cortfld.htm


The Receptive Field

This idea was imitated in convolutional neural networks by adding
down-sampling operations

Convolution + 
subsampling
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Illustration from : Applied Deep Learning, Andrei Bursuc, https: // www. di. ens. fr/ ~lelarge/ dldiy/ slides/ lecture_ 7/

https://www.di.ens.fr/~lelarge/dldiy/slides/lecture_7/


Strided convolution

Strided convolution is simply convolution, followed by subsampling

Subsampling operator (for 1D case)
Let x ∈ Rn. We define the subsampling step as δ > 1, and the subsampling
operator Sδ : Rn → R

n
δ , applied to x, as

Sδ(x) (t) = x(δt), for t = 0 . . . n
δ
− 1

A. Newson 55



Max pooling

Max pooling subsampling consists in taking the maximum value over
a certain region
This maximum value is the new subsampled value
We will indicate the max pooling operator with Sm

max (
(
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Max pooling

Back propagation of max pooling only passes the gradient through the
maximum

10

15 30

80

80

Max pooling Back propagation

0

0 0
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Down-sampling

Conclusion : cascade of convolution, non-linearities and subsampling
produces shift-invariant classification/detection
We can detect Roger wherever he is in the image !

Convolution + non-linearity +max pooling

✓ ✓ ✓ ✓
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Dilated Convolution

There is a variant of convolution called dilated convolution∗
Increase spatial extent of convolution without adding parameters

Add a space D between each point in the convolution

D = 1 D = 2 D = 3

(u ∗ v)(y, x) =
∑
i,j,k

u(i, j, k)v(y −Di, x−Dj, k) (2)
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∗ Multi-Scale Context Aggregation by Dilated Convolution, Yu, F, Kolten, V, ICLR 2016



Locally connected layers / unshared convolution

We might wish for a mix of a dense layer and a convolutional layer
One possibility : locally-connected layers (sometimes called
“unshared convolution”)

Local connectivity but no weight sharing

...

...

Number of weights increases linearly with the number of pixels, rather
than quadratically (for MLPs)
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How to build your CNN ?

How to build your CNN ?
We have looked at the following operations : convolutions, additive
biases, non-linearities

All of these elements make up convolutional neural networks

However, how do we put these together to create our own CNN ?
Architecture ?
Programming tools ?
Datasets ?
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Architecture : vanilla CNN

Simple classification CNN architecture often consists of a feature
learning section

Convolution → biases → non-linearities → subsampling
This continues until a fixed subsampling is achieved

After this, a classification section is used
Fully connected layer → non-linearity
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Architecture

Central question : how to choose number of layers ?

Complicated, very little theoretical understanding, currently a hot
topic of research

However : there are a few rules of thumb to follow
Receptive field of the deepest layer should encompass what we
consider to be a fundamental brick of the objects we are analysing

convolution, 
subsampling etc.

Set number of layers and subsampling factors according to the problem
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CNN programming frameworks

Caffe
Open source, developed by University of California, Berkley
Network created in separate specific files
Somewhat laborious to use, less used than other frameworks

Theano
Open source, created by the Université de Montréal
Unfortunately, to be discontinued due to strong competition

Tensorflow
Open source, developed by Google
Implements a wide range of deep learning functionalities, widely used

Pytorch
Open source, developed by Facebook
Implements a wide range of deep learning functionalities, widely used
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MNIST dataset

MNIST is a dataset of 60,000 28× 28 pixel grey-level images
containing hand-written digits
The digits are centred in the images and scaled to have roughly the
same size
Although quite a “simple” dataset, still used to display performance of
modern CNNs
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Caltech 101

Produced in 2003, first major object recognition dataset
9,146 images, 101 object categories, each category contains between
40 and 800 images
Annotations exist for each image : bounding box for the object and a
human-drawn outline
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ImageNet dataset

Dataset created in 2009 by researchers from Princeton unverisity
Very large dataset : 14,197,122 images, hand-annotated
Used for the ImageNet Large Scale Visual Recognition Challenge, an
annual benchmark competition for object recognition algorithms
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LeNet (1989/1998)

Created by Yann LeCun in 1989, goal : to recognise handwritten digits
Able to classify digits with 98.9% accuracy, used by U.S. government
to automatically read digits
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Illustration from : Gradient-based Learning Applied to Document Recognition, LeCun, Y. Bottou, L., Bengio, Y. and Haffner,
Proceedings of the IEEE, 1989



AlexNet (2012)

AlexNet : created by Alex Krizhevsky in 2012
Improved accuracy of ImageNet Large Scale Visual Recognition
Challenge competition by 10 percentage points (16.4%)
First truly deep neural network
Signaled beginning of dominance of deep learning in image processing
and computer vision
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Illustration from : Imagenet classification with deep convolutional neural networks, Krizhevsky, A., Sutskever, I. and Hinton, G.
E, NIPS, 2012



GoogLeNet (2015)

In 2014/2015, Google introduced the “Inception” architecture/module
Major attempt at reducing total number of parameters
No fully connected layers, only convolutional

2 million instead of 60 million for AlexNet
Novel idea : have variable receptive field sizes in one layer
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Going deeper with convolutions, Szegedy et al, CVPR, 2015



GoogLeNet (2015)

Created by Google in 2014, GoogLeNet is a specific implementation of
the “inception” architecture
6.6% test error rate on ImageNet (human error rate 5%)
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Going deeper with convolutions, Szegedy et al, CVPR, 2015



VGG16 (2015)

VGG16 is a 16-layer network, with small receptive fields (3× 3 filters,
with less subsampling)
Around 7.5% test error on ILSVRC
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Very Deep Convolutional Networks for Large-Scale Image Recognition, Simonyan, K. and Zisserman, A., ICLR, 2015
Illustration from Mathieu Cord,
https: // blog. heuritech. com/ 2016/ 02/ 29/ a-brief-report-of-the-heuritech-deep-learning-meetup-5/

https://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/


Summary of advances in CNNs
Network LeNet (1998) AlexNet

(2012)
GoogLeNet

(2014)
VGG16 (2015)

Image size 28× 28 256× 256× 3 256× 256× 3 224× 224× 3
Layers 3 8 22 16
Parameters 60,000 60 million 2 million 138 million

2011
SVM

2012
AlexNet

2013
AlexNet, bis

2015
VGG16

2014
GoogleNet

2015
deep ResNets
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Evolution of CNN perfomance

A. Newson 76



Image classification

As we mentioned before, CNNs make sense for data with grid-like
structures

In particular, images are most often the target of CNNs

Arguably the most common application of CNNs is to image
classification

Why is image classification important ? Closely linked to :
Object detection
Tracking
Image search (in large databases for example)

In recent years, the best performing classification algorithms have been
using neural networks
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Image classification

Why is image classification difficult ?
Images can vary in size, shape, position
We need to deal with variable lighting conditions, occlusions etc.

Let us look at a standard CNN classificaton network
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Image classification

We have input datapoints x, which we wish to classify into several,
predefined classes {ci}, i = 1 . . .K, where K is the number of classes

As we have seen, convolution, non-linearities, subsampling allow for
robust classification that is invariant to many perturbations

Vast majority of CNN classification networks follow this general
architecture
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Image classification

Resiudal architectures : ResNET
ResNET∗ (2016) uses skip connections
to mitigate the vanishing gradient
problem

Similar to LSTM, except propagates
through network layers, rather than
time

Residual mechanism used in many
subsequent architectures

Latest residual archticture gives 87.54%
accuracy on ImageNet
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∗Deep Residual Learning for Image Recognition, Kaiming, H. et al, CVPR, 2016
Illustration from https: // becominghuman. ai/ resnet-convolution-neural-network-e10921245d3d

https://becominghuman.ai/resnet-convolution-neural-network-e10921245d3d


Image classification

Attention mechanism in image networks
Recall the attention mechanism in RNNs : addresses problem of long
range dependency

Networks exist with attention only : transformer∗

Also used in image network architectures (usually self-attention)

Attention(Q,K, V ) = Softmax(QKT )V (3)

Q, queries: what is the importance of these elements
K, keys: we use these elements for comparison (weighting)
V , values: we use these to “reconstruct” the queries
Often Q,K, V are the same, image patches

A. Newson 81

∗Attention is all you need, Vaswani et al, NIPS, 2017



Image classification

Attention mechanism in image networks
Recall the attention mechanism in RNNs : addresses problem of long
range dependency

Networks exist with attention only : transformer∗

Also used in image network architectures (usually self-attention)

Attention(Q,K, V ) = Softmax(QKT )V (4)

This equation says that the attention is a weighted version of V
The weights are given by a softmax of the dot products between
patches in Q and those in K
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∗Attention is all you need, Vaswani et al, NIPS, 2017



Image classification

Attention mechanism in image networks

?Q

K K

K
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∗Attention is all you need, Vaswani et al, NIPS, 2017



Image classification

Attention mechanism in image networks
Combined attention/convolution archtictures present the best
accuracies on ImageNeT (to date∗)

CoAt-Net7: 90.88% accuracy on ImageNet
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∗https://paperswithcode.com/sota/image-classification-on-imagenet



Image classification

We can also detect the position of objects in images
RNN∗ proposes a simple approach :

1 Propose a list of bounding boxes in the image
2 Pass the resized sub-images through a powerful classification network
3 Classify each sub-image with your favourite classifier

Many variants on this work (Fast R-NN, Faster R-CNN) etc.
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∗ Rich feature hierarchies for accurate object detection and semantic segmentation, Girschik, R. et al. CVPR 2014



Motion estimation

Motion estimation is a central task for many image processing and
computer vision problems : tracking, video editing
Optical flow involves estimating a vector field (u, v) : R2 → R2

where each vector points to the displacement of pixel (x, y) from an
image I1 to I2

I1(x, y) = I2(x+ u(x, y), y + v(x, y))

Optical flow
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Illustration from : BriefMatch: Dense binary feature matching for real-time optical flow estimation, Eilertsen, G, Forssén, P-E,
Unger, J., Scandinavian Conference on Image Analysis, 2017



Motion estimation with CNNs

A major challenge of optical flow estimation is to handle both fine and
large-scale motions

This is difficult to do with classical, variational approaches
CNNs have this multi-scale architecture already built in
Example : FlowNet∗ uses this, first extracting meaningful features
from the images (in parallel) and then combining them to create the
optical flow
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∗ FlowNet: Learning Optical Flow with Convolutional Networks, Fischer et al, ICCV 2015



Super-resolution

Image super-resolution : go from a low-resolution image to a
higher-resolution one
Relatively straightforward approach with a CNN∗

Drawback, highly dependent on degradation used in lower-resolution
images in database
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∗ Learning a deep convolutional network for image super-resolution, Chao et al, ECCV 2014



Point clouds

CNNs require regular grids. Point cloud data are not in this format
Nevertheless, ways have been found to deal with this

ShapeNet∗ splits a volume up into
sub-regions that are processed by
CNNs
Each region is a Bernoulli random
variable representing the probability of
this voxel belonging to a shape
This general approach (using voxels) is
followed in many other approaches
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∗ 3d shapenets: A deep representation for volumetric shapes, W. Zhirong et al. CVPR, 2015
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Adversarial examples

As is often the case in deep learning, it is very difficult to understand
what is going on in CNNs

Much research is being dedicated to understanding these networks
Explainable AI (XAI) Darpa project∗

We discuss two topics related to interpretability
Visualising CNNs
Adversarial examples
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∗ https: // www. darpa. mil/ program/ explainable-artificial-intelligence

https://www.darpa.mil/program/explainable-artificial-intelligence


Visualising CNNs

We would like to understand what CNNs are learning
Unfortunately filters are difficult to interpret (especially deeper layers)

Layer 1 filters
Layer 3 filters

Therefore, much research has been dedicated to visualising CNNs
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Visualising CNNs
Idea : “invert” CNN, find x to maximise the output of a certain layer

Understand what this layer is “seeing”
This is possible due to backpropagation

Basic CNN visualisation algorithm
Choose a layer ` to visualise

x0 ∼ N (0, 1)
For i = 1 . . . N

xi = xi−1 + λ∇x‖u`(xi−1)‖ Gradient ascent

Return xN

Gradient ascent
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Visualising features

Generalisation: maximise response to a given filter response
Choose layer `, filter k and element (“pixel”) (i, j)
Random initialisation x0, constrain norm of solution x

x̂ = arg max
x

u`i,j,k

with ‖ x ‖ = ρ

Optimisation : gradient ascent
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†Erhan, Bengio, Courville, Vincent, Visualizing Higher-Layer Features of a Deep Network, University of Montreal, 2009



Visualising CNNs

More sophisticated approach: standard inverse problem with
regularisation

x̂ = arg min
x
‖f(x)− f0‖22 + λ‖x‖22 + µ‖∇x‖22 (5)
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†Mahendran and Vedaldi Understanding Deep Image Representations by Inverting Them, Conference on Computer Vision and
Pattern Recognition, 2014



Visualising CNNs

Layer 1 Layer 2 Layer 3 Layer 4
Maximisation of different activations applied to MNIST dataset
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†Erhan, Bengio, Courville, Vincent, Visualizing Higher-Layer Features of a Deep Network, University of Montreal, 2009



Visualising CNNs

Another approach of Simonyan et al.† proposes to see what images
correspond to what classes
Choose a class c, maximise the response of this class

x̂ = arg max
x

f(x)c − λ‖x‖22

Find an L2-regularised image which maximises the score for a given
class c
Initialise with random input image x0
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†Simonyan, Vedaldi, Zisserman Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency
Maps, arXiv preprint arXiv:1312.6034, 2013



Visualising CNNs

Class model visualisation
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†Simonyan, Vedaldi, Zisserman Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency
Maps, arXiv preprint arXiv:1312.6034, 2013



Visualising CNNs

Similar idea with Inception architecture of Google : “Deep Dream”
Maximise a class from input image

Input image Maximising “dogs” category
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Deepdream - a code example for visualizing neural networks, Mordvintsev, A., Olah, C. and Tyka, M., Google Research, 2015



Adversarial examples

We often get the impression that CNNs are the end all and be all of AI
Consistently produce state-of-the-art results on images
However, CNNs are not infallible : adversarial examples† !

How was this image created ???
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† Intriguing properties of neural networks, Szegedy, C. et al, arXiv preprint arXiv:1312.6199, 2013



Adversarial examples

Szegedy et al. propose† add a small perturbation r that fools the
classifier network f into choosing the wrong class c for x̂ = x+ r

arg min
r
|r|22, s.t f(x+ r) = c, x+ r ∈ [0, 1]n

x̂ is the closest example to x s.t x̂ is classified as in class c
Minimisation with box-constrained L-BFGS algorithm
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† Intriguing properties of neural networks, Szegedy, C. et al, arXiv preprint arXiv:1312.6199, 2013



Adversarial examples

Common explanation : the space of images is very high-dimensional,
and contains many areas that are unexplored during training time

Example of loss surfaces in commonly used networks (Res-Nets)
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Illustration from Visualizing the Loss Landscape of Neural Nets, Li, H et al, NIPS, 2018



Adversarial examples

Many approaches to adversarial examples exist. Goodfellow et al.†
propose a principled way of creating these

Consider the output of a fully connected layer 〈w, x̂〉 = 〈w, x〉+ 〈w, r〉

Let us set r = sign(w). What happens to 〈w, x̂〉 ?
Increase by nm as dimension n increases (m is average value of w)
However, |r|∞ does not increase with n

Conclusion : we can add a small vector r that increases the output
response 〈w, x̂〉
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† Explaining and Harnessing Adversarial Examples, Goodfellow, I.J, Shlens, J. and Szegedy, C., ICLR 2015



Adversarial examples

Goodfellow et al. consider a local linearisation of the network’s loss
around θ

L(x0) ≈ f(x0) + w∇xL(θ, x0, y0)

Thus, the perturbation image x̂ is set to

x̂ = x+ εsign(∇xL(θ, x, y))
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† Explaining and Harnessing Adversarial Examples, Goodfellow, I.J, Shlens, J. and Szegedy, C., ICLR 2015



Adversarial examples

Even worse, it is possible to create universal adversarial examples†
Perturbations that fool a network for any image class

Simple algorithm : initialise perturbation r, go through database
adding specific perturbations to r, project onto set { r, ||r|| < ε}
What do these perturbations look like ?
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† Universal adversarial perturbations, Moosavi-Dezfooli, S-M, et al arXiv preprint (2017)



Adversarial examples
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† Universal adversarial perturbations, Moosavi-Dezfooli, S-M, et al arXiv preprint (2017)



Adversarial examples

Conclusion : CNNs are not necessarily robust
Adversarial examples are a significant problem :

Even printed photos of adversarial examples work†

Explaining and resisting adversarial examples is currently a hot
research topic

A. Newson 107

† Adversarial Examples in the Physical World, Kurakin, A., Goodfellow, I. J, Bengio, S. et al. ICLR workshop, 2017



Summary

CNNs represent the state-of-the art in many different
domains/problems

If you have an unsolved problem, there is a good chance CNNs will
produce a good/excellent result

However : theoretical understanding is still relatively limited
This leads to problems such as adversarial examples
It is not clear whether CNNs are truly robust/generalisable
This is a hot research topic, important if CNNs are to be used in
industrial applications

21/10/2021 : last lab work, on CNNs
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