Internship subject (Master 2 or Master 1)

Open Automata meet Session Types

Advisors: Rabéa Ameur-Boulifa\(^{(1)}\) and Ludovic Henrio\(^{(2)}\)

Place:
\(\text{(1) Eurecom – Sophia Antipolis} \)
or
\(\text{(2) Laboratoire de l’Informatique du Parallélisme (LIP) – ENS de Lyon} \)

contact: rabea.ameur-boulifa@telecom-paris.fr ludovic.henrio@ens-lyon.fr

Context

In the previous years, we have studied theoretical foundations for open systems and we defined open automata \([5, 2, 4]\) that can be seen as labelled transition systems (LTSs) with parameters and holes. The transitions of open automata are much more complex than transitions of an LTS: they include guards expressing the relations between the parameters of the automaton with the actions of the holes, and assignments encoding their effects. We proved that our models have good properties, namely that composition preserves some properties like bisimulation.

The composition of open automata refers to filling holes, it requires to check the compatibility of their sorts. Nowadays, we simply verify the compatibility of two automata to be composed based on action labels and arity. But, we are interested in enriching holes with description of behaviours to give them enough power and enable us to check equivalences for these open systems. The description will characterise all the interactions and the series of inputs and outputs of data exchanged between the automata and its surroundings. Precisely, the theory of session types and behavioural types \([3]\) are intended to describe dynamic aspects of the behaviour of processes.

To tackle this issue, we ask: Can we synthesise a global type from a collection of automata in order to ensure the composability of an open automaton with a compatible surrounding automaton?

Objectives

The main objective of the internship is to deal with the characterization of interactions of open automaton with its environment. These interactions can be characterised as behavioural types. More specifically, the internship would follow the following steps:

- Familiarization with technical material: the semantics of open automata and the notion of behavioural types \([1]\) that allows to describe the dynamic aspects of processes. In particular the notion of session types that focus on process interactions should be studied.

- Design of an adequate characterisation of compatibility condition suitable for the composition open automata, and study the guarantees brought by this condition.
• Application to the proof of absence of deadlock upon composition.

• We additionally have defined a notion of bisimulation between open automata. One additional objective of the internship could be to prove that behavioural types behave well relatively to bisimilarity.

• Design of examples demonstrating the benefit of this work.

The internship can be tackled only theoretically on paper, or formalised in an interactive theorem prover, or integrated with existing tools for open automata bisimilarity (based on SMT solvers).

References

